Coherent Topological Polariton Laser
- Tristan H. Harder*Tristan H. Harder*Email: [email protected]Technische Physik, Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, GermanyMore by Tristan H. Harder
- ,
- Meng SunMeng SunCenter for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34126, KoreaBasic Science Program, Korea University of Science and Technology (UST), Daejeon 34113, KoreaMore by Meng Sun
- ,
- Oleg A. EgorovOleg A. EgorovInstitute of Condensed Matter Theory and Optics Friedrich-Schiller-University Jena, Max-Wien-Platz 1, D-07743 Jena, GermanyMore by Oleg A. Egorov
- ,
- Ihor VakulchykIhor VakulchykCenter for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34126, KoreaBasic Science Program, Korea University of Science and Technology (UST), Daejeon 34113, KoreaMore by Ihor Vakulchyk
- ,
- Johannes BeierleinJohannes BeierleinTechnische Physik, Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, GermanyMore by Johannes Beierlein
- ,
- Philipp GagelPhilipp GagelTechnische Physik, Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, GermanyMore by Philipp Gagel
- ,
- Monika EmmerlingMonika EmmerlingTechnische Physik, Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, GermanyMore by Monika Emmerling
- ,
- Christian SchneiderChristian SchneiderTechnische Physik, Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, GermanyInstitute of Physics, University of Oldenburg, D-26129 Oldenburg, GermanyMore by Christian Schneider
- ,
- Ulf PeschelUlf PeschelInstitute of Condensed Matter Theory and Optics Friedrich-Schiller-University Jena, Max-Wien-Platz 1, D-07743 Jena, GermanyMore by Ulf Peschel
- ,
- Ivan G. SavenkoIvan G. SavenkoCenter for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34126, KoreaBasic Science Program, Korea University of Science and Technology (UST), Daejeon 34113, KoreaMore by Ivan G. Savenko
- ,
- Sebastian Klembt*Sebastian Klembt*Email: [email protected]Technische Physik, Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, GermanyMore by Sebastian Klembt
- , and
- Sven HöflingSven HöflingTechnische Physik, Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, GermanySUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, United KingdomMore by Sven Höfling
Abstract

Topological concepts have been applied to a wide range of fields in order to successfully describe the emergence of robust edge modes that are unaffected by scattering or disorder. In photonics, indications of lasing from topologically protected modes with improved overall laser characteristics were observed. Here, we study exciton-polariton microcavity traps that are arranged in a one-dimensional Su–Schrieffer–Heeger lattice and form a topological defect mode from which we unequivocally observe highly coherent polariton lasing. Additionally, we confirm the excitonic contribution to the polariton lasing by applying an external magnetic field. These systematic experimental findings of robust lasing and high temporal coherence are meticulously reproduced by a combination of a generalized Gross–Pitaevskii model and a Lindblad master equation model. Thus, by using the comparatively simple SSH geometry, we are able to describe and control the exciton-polariton topological lasing, allowing for a deeper understanding of topological effects on microlasers.
Cited By
This article is cited by 22 publications.
- Fatemeh Davoodi, Nahid Talebi. Unidirectional Wave Propagation in a Topological Plasmonic Ring Resonator via a Symmetry-Broken Excitation Scheme. ACS Applied Nano Materials 2023, 6
(22)
, 20823-20830. https://doi.org/10.1021/acsanm.3c03796
- Jonathan Jurkat, Sebastian Klembt, Marco De Gregorio, Moritz Meinecke, Quirin Buchinger, Tristan H. Harder, Johannes Beierlein, Oleg A. Egorov, Monika Emmerling, Constantin Krause, Christian Schneider, Tobias Huber-Loyola, Sven Höfling. Single-Photon Source in a Topological Cavity. Nano Letters 2023, 23
(3)
, 820-826. https://doi.org/10.1021/acs.nanolett.2c03693
- Chuyuan Zheng, Yanli Zhang, Weili Zhang. Programmable Polariton Topological Insulators All-Optically Controlled by the Stark Effect. ACS Applied Materials & Interfaces 2023, 15
(3)
, 4764-4773. https://doi.org/10.1021/acsami.2c19115
- Subhaskar Mandal, Gui-Geng Liu, Baile Zhang. Topology with Memory in Nonlinear Driven-Dissipative Photonic Lattices. ACS Photonics 2023, 10
(1)
, 147-154. https://doi.org/10.1021/acsphotonics.2c01367
- Subhaskar Mandal, Rimi Banerjee, Timothy C. H. Liew. From the Topological Spin-Hall Effect to the Non-Hermitian Skin Effect in an Elliptical Micropillar Chain. ACS Photonics 2022, 9
(2)
, 527-539. https://doi.org/10.1021/acsphotonics.1c01425
- Philipp Gagel, Tristan H. Harder, Simon Betzold, Oleg A. Egorov, Johannes Beierlein, Holger Suchomel, Monika Emmerling, Adriana Wolf, Ulf Peschel, Sven Höfling, Christian Schneider, Sebastian Klembt. Electro-optical Switching of a Topological Polariton Laser. ACS Photonics 2022, 9
(2)
, 405-412. https://doi.org/10.1021/acsphotonics.1c01605
- Marco Dusel, Simon Betzold, Tristan H. Harder, Monika Emmerling, Johannes Beierlein, Jürgen Ohmer, Utz Fischer, Ronny Thomale, Christian Schneider, Sven Höfling, Sebastian Klembt. Room-Temperature Topological Polariton Laser in an Organic Lattice. Nano Letters 2021, 21
(15)
, 6398-6405. https://doi.org/10.1021/acs.nanolett.1c00661
- Jia-Ning Zhang, Jin-Xuan Han, Jin-Lei Wu, Jie Song, Yong-Yuan Jiang. Robust beam splitter with fast quantum state transfer through a topological interface. Frontiers of Physics 2023, 18
(5)
https://doi.org/10.1007/s11467-023-1289-z
- I. Septembre, C. Leblanc, L. Hermet, H. S. Nguyen, X. Letartre, D. D. Solnyshkov, G. Malpuech. Design of a room-temperature topological exciton-polariton laser in a
ZnO
/
TiO
2
photonic crystal slab. Physical Review B 2023, 107
(15)
https://doi.org/10.1103/PhysRevB.107.155304
- Bofeng Zhu, Li-Jun Lang, Qiang Wang, Qi Jie Wang, Y. D. Chong. Topological transitions with an imaginary Aubry-André-Harper potential. Physical Review Research 2023, 5
(2)
https://doi.org/10.1103/PhysRevResearch.5.023044
- Song Luo, Hang Zhou, Long Zhang, Zhanghai Chen. Nanophotonics of microcavity exciton–polaritons. Applied Physics Reviews 2023, 10
(1)
https://doi.org/10.1063/5.0121316
- Philipp Gagel, Oleg Egorov, Franciszek Dzimira, Johannes Beierlein, Monika Emmerling, Adriana Wolf, Fauzia Jabeen, Christian Schneider, Sven Höfling, Sebastian Klembt. Electrically driven lasing of a topological defect in a vertical cavity laser array. 2023, STh4Q.7. https://doi.org/10.1364/CLEO_SI.2023.STh4Q.7
- Haochen Wang, Hang Zhou, Song Luo, Long Zhang, Zhanghai Chen. Controllable topological edge mode in an optically excited exciton-polariton lattice. Physical Review B 2022, 106
(22)
https://doi.org/10.1103/PhysRevB.106.L220305
- Pavel Kokhanchik, Dmitry Solnyshkov, Thilo Stöferle, Barbara Piętka, Jacek Szczytko, Guillaume Malpuech. Modulated Rashba-Dresselhaus Spin-Orbit Coupling for Topology Control and Analog Simulations. Physical Review Letters 2022, 129
(24)
https://doi.org/10.1103/PhysRevLett.129.246801
- Teng Long, Xuekai Ma, Jiahuan Ren, Feng Li, Qing Liao, Stefan Schumacher, Guillaume Malpuech, Dmitry Solnyshkov, Hongbing Fu. Helical Polariton Lasing from Topological Valleys in an Organic Crystalline Microcavity. Advanced Science 2022, 9
(29)
https://doi.org/10.1002/advs.202203588
- Christian N. Saggau, Sreeramulu Valligatla, Xiaoyu Wang, Haiyun Dong, Libo Ma, Oliver G. Schmidt. Coaxial Micro Ring Arrays Fabricated on Self‐Assembled Microtube Cavities for Resonant Light Modulation. Laser & Photonics Reviews 2022, 16
(9)
https://doi.org/10.1002/lpor.202200085
- Alexey Kavokin, Timothy C. H. Liew, Christian Schneider, Pavlos G. Lagoudakis, Sebastian Klembt, Sven Hoefling. Polariton condensates for classical and quantum computing. Nature Reviews Physics 2022, 4
(7)
, 435-451. https://doi.org/10.1038/s42254-022-00447-1
- Georgiy Kurganov, Dmitry Dobrykh, Ekaterina Puhtina, Ildar Yusupov, Alexey Slobozhanyuk, Yuri S. Kivshar, Dmitry Zhirihin. Temperature control of electromagnetic topological edge states. Applied Physics Letters 2022, 120
(23)
https://doi.org/10.1063/5.0096841
- Zhen Chai, Weiyi Wang, Zhongxing Tian, Yuting Xu. Edge-mode polariton chains in the dielectric whispering gallery modes and two-dimensional material’s topological system. Journal of Optics 2022, 24
(6)
, 064001. https://doi.org/10.1088/2040-8986/ac60bb
- Long Zhang, Jiaqi Hu, Jinqi Wu, Rui Su, Zhanghai Chen, Qihua Xiong, Hui Deng. Recent developments on polariton lasers. Progress in Quantum Electronics 2022, 83 , 100399. https://doi.org/10.1016/j.pquantelec.2022.100399
- Dmitry V. Zhirihin, Yuri S. Kivshar. Topological Photonics on a Small Scale. Small Science 2021, 1
(12)
https://doi.org/10.1002/smsc.202100065
- Maciej Pieczarka, Eliezer Estrecho, Sanjib Ghosh, Matthias Wurdack, Mark Steger, David W. Snoke, Kenneth West, Loren N. Pfeiffer, Timothy C. H. Liew, Andrew G. Truscott, Elena A. Ostrovskaya. Topological phase transition in an all-optical exciton-polariton lattice. Optica 2021, 8
(8)
, 1084. https://doi.org/10.1364/OPTICA.426996