ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Coherent Topological Polariton Laser

  • Tristan H. Harder*
    Tristan H. Harder
    Technische Physik, Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
    *Email: [email protected]
  • Meng Sun
    Meng Sun
    Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34126, Korea
    Basic Science Program, Korea University of Science and Technology (UST), Daejeon 34113, Korea
    More by Meng Sun
  • Oleg A. Egorov
    Oleg A. Egorov
    Institute of Condensed Matter Theory and Optics Friedrich-Schiller-University Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
  • Ihor Vakulchyk
    Ihor Vakulchyk
    Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34126, Korea
    Basic Science Program, Korea University of Science and Technology (UST), Daejeon 34113, Korea
  • Johannes Beierlein
    Johannes Beierlein
    Technische Physik, Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
  • Philipp Gagel
    Philipp Gagel
    Technische Physik, Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
  • Monika Emmerling
    Monika Emmerling
    Technische Physik, Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
  • Christian Schneider
    Christian Schneider
    Technische Physik, Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
    Institute of Physics, University of Oldenburg, D-26129 Oldenburg, Germany
  • Ulf Peschel
    Ulf Peschel
    Institute of Condensed Matter Theory and Optics Friedrich-Schiller-University Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
    More by Ulf Peschel
  • Ivan G. Savenko
    Ivan G. Savenko
    Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34126, Korea
    Basic Science Program, Korea University of Science and Technology (UST), Daejeon 34113, Korea
  • Sebastian Klembt*
    Sebastian Klembt
    Technische Physik, Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
    *Email: [email protected]
  • , and 
  • Sven Höfling
    Sven Höfling
    Technische Physik, Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
    SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, United Kingdom
Cite this: ACS Photonics 2021, 8, 5, 1377–1384
Publication Date (Web):April 13, 2021
https://doi.org/10.1021/acsphotonics.0c01958
Copyright © 2021 American Chemical Society

    Article Views

    2046

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (3 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Topological concepts have been applied to a wide range of fields in order to successfully describe the emergence of robust edge modes that are unaffected by scattering or disorder. In photonics, indications of lasing from topologically protected modes with improved overall laser characteristics were observed. Here, we study exciton-polariton microcavity traps that are arranged in a one-dimensional Su–Schrieffer–Heeger lattice and form a topological defect mode from which we unequivocally observe highly coherent polariton lasing. Additionally, we confirm the excitonic contribution to the polariton lasing by applying an external magnetic field. These systematic experimental findings of robust lasing and high temporal coherence are meticulously reproduced by a combination of a generalized Gross–Pitaevskii model and a Lindblad master equation model. Thus, by using the comparatively simple SSH geometry, we are able to describe and control the exciton-polariton topological lasing, allowing for a deeper understanding of topological effects on microlasers.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsphotonics.0c01958.

    • White light reflection measurements highlighting the strong coupling between exciton and photon; further input–output characteristics supporting the coherence measurements; measurements of the Zeeman splitting as well as magnetic field dependent condensation threshold confirming polariton condensation; details on the experimental and theoretical methods (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 22 publications.

    1. Fatemeh Davoodi, Nahid Talebi. Unidirectional Wave Propagation in a Topological Plasmonic Ring Resonator via a Symmetry-Broken Excitation Scheme. ACS Applied Nano Materials 2023, 6 (22) , 20823-20830. https://doi.org/10.1021/acsanm.3c03796
    2. Jonathan Jurkat, Sebastian Klembt, Marco De Gregorio, Moritz Meinecke, Quirin Buchinger, Tristan H. Harder, Johannes Beierlein, Oleg A. Egorov, Monika Emmerling, Constantin Krause, Christian Schneider, Tobias Huber-Loyola, Sven Höfling. Single-Photon Source in a Topological Cavity. Nano Letters 2023, 23 (3) , 820-826. https://doi.org/10.1021/acs.nanolett.2c03693
    3. Chuyuan Zheng, Yanli Zhang, Weili Zhang. Programmable Polariton Topological Insulators All-Optically Controlled by the Stark Effect. ACS Applied Materials & Interfaces 2023, 15 (3) , 4764-4773. https://doi.org/10.1021/acsami.2c19115
    4. Subhaskar Mandal, Gui-Geng Liu, Baile Zhang. Topology with Memory in Nonlinear Driven-Dissipative Photonic Lattices. ACS Photonics 2023, 10 (1) , 147-154. https://doi.org/10.1021/acsphotonics.2c01367
    5. Subhaskar Mandal, Rimi Banerjee, Timothy C. H. Liew. From the Topological Spin-Hall Effect to the Non-Hermitian Skin Effect in an Elliptical Micropillar Chain. ACS Photonics 2022, 9 (2) , 527-539. https://doi.org/10.1021/acsphotonics.1c01425
    6. Philipp Gagel, Tristan H. Harder, Simon Betzold, Oleg A. Egorov, Johannes Beierlein, Holger Suchomel, Monika Emmerling, Adriana Wolf, Ulf Peschel, Sven Höfling, Christian Schneider, Sebastian Klembt. Electro-optical Switching of a Topological Polariton Laser. ACS Photonics 2022, 9 (2) , 405-412. https://doi.org/10.1021/acsphotonics.1c01605
    7. Marco Dusel, Simon Betzold, Tristan H. Harder, Monika Emmerling, Johannes Beierlein, Jürgen Ohmer, Utz Fischer, Ronny Thomale, Christian Schneider, Sven Höfling, Sebastian Klembt. Room-Temperature Topological Polariton Laser in an Organic Lattice. Nano Letters 2021, 21 (15) , 6398-6405. https://doi.org/10.1021/acs.nanolett.1c00661
    8. Jia-Ning Zhang, Jin-Xuan Han, Jin-Lei Wu, Jie Song, Yong-Yuan Jiang. Robust beam splitter with fast quantum state transfer through a topological interface. Frontiers of Physics 2023, 18 (5) https://doi.org/10.1007/s11467-023-1289-z
    9. I. Septembre, C. Leblanc, L. Hermet, H. S. Nguyen, X. Letartre, D. D. Solnyshkov, G. Malpuech. Design of a room-temperature topological exciton-polariton laser in a ZnO / TiO 2 photonic crystal slab. Physical Review B 2023, 107 (15) https://doi.org/10.1103/PhysRevB.107.155304
    10. Bofeng Zhu, Li-Jun Lang, Qiang Wang, Qi Jie Wang, Y. D. Chong. Topological transitions with an imaginary Aubry-André-Harper potential. Physical Review Research 2023, 5 (2) https://doi.org/10.1103/PhysRevResearch.5.023044
    11. Song Luo, Hang Zhou, Long Zhang, Zhanghai Chen. Nanophotonics of microcavity exciton–polaritons. Applied Physics Reviews 2023, 10 (1) https://doi.org/10.1063/5.0121316
    12. Philipp Gagel, Oleg Egorov, Franciszek Dzimira, Johannes Beierlein, Monika Emmerling, Adriana Wolf, Fauzia Jabeen, Christian Schneider, Sven Höfling, Sebastian Klembt. Electrically driven lasing of a topological defect in a vertical cavity laser array. 2023, STh4Q.7. https://doi.org/10.1364/CLEO_SI.2023.STh4Q.7
    13. Haochen Wang, Hang Zhou, Song Luo, Long Zhang, Zhanghai Chen. Controllable topological edge mode in an optically excited exciton-polariton lattice. Physical Review B 2022, 106 (22) https://doi.org/10.1103/PhysRevB.106.L220305
    14. Pavel Kokhanchik, Dmitry Solnyshkov, Thilo Stöferle, Barbara Piętka, Jacek Szczytko, Guillaume Malpuech. Modulated Rashba-Dresselhaus Spin-Orbit Coupling for Topology Control and Analog Simulations. Physical Review Letters 2022, 129 (24) https://doi.org/10.1103/PhysRevLett.129.246801
    15. Teng Long, Xuekai Ma, Jiahuan Ren, Feng Li, Qing Liao, Stefan Schumacher, Guillaume Malpuech, Dmitry Solnyshkov, Hongbing Fu. Helical Polariton Lasing from Topological Valleys in an Organic Crystalline Microcavity. Advanced Science 2022, 9 (29) https://doi.org/10.1002/advs.202203588
    16. Christian N. Saggau, Sreeramulu Valligatla, Xiaoyu Wang, Haiyun Dong, Libo Ma, Oliver G. Schmidt. Coaxial Micro Ring Arrays Fabricated on Self‐Assembled Microtube Cavities for Resonant Light Modulation. Laser & Photonics Reviews 2022, 16 (9) https://doi.org/10.1002/lpor.202200085
    17. Alexey Kavokin, Timothy C. H. Liew, Christian Schneider, Pavlos G. Lagoudakis, Sebastian Klembt, Sven Hoefling. Polariton condensates for classical and quantum computing. Nature Reviews Physics 2022, 4 (7) , 435-451. https://doi.org/10.1038/s42254-022-00447-1
    18. Georgiy Kurganov, Dmitry Dobrykh, Ekaterina Puhtina, Ildar Yusupov, Alexey Slobozhanyuk, Yuri S. Kivshar, Dmitry Zhirihin. Temperature control of electromagnetic topological edge states. Applied Physics Letters 2022, 120 (23) https://doi.org/10.1063/5.0096841
    19. Zhen Chai, Weiyi Wang, Zhongxing Tian, Yuting Xu. Edge-mode polariton chains in the dielectric whispering gallery modes and two-dimensional material’s topological system. Journal of Optics 2022, 24 (6) , 064001. https://doi.org/10.1088/2040-8986/ac60bb
    20. Long Zhang, Jiaqi Hu, Jinqi Wu, Rui Su, Zhanghai Chen, Qihua Xiong, Hui Deng. Recent developments on polariton lasers. Progress in Quantum Electronics 2022, 83 , 100399. https://doi.org/10.1016/j.pquantelec.2022.100399
    21. Dmitry V. Zhirihin, Yuri S. Kivshar. Topological Photonics on a Small Scale. Small Science 2021, 1 (12) https://doi.org/10.1002/smsc.202100065
    22. Maciej Pieczarka, Eliezer Estrecho, Sanjib Ghosh, Matthias Wurdack, Mark Steger, David W. Snoke, Kenneth West, Loren N. Pfeiffer, Timothy C. H. Liew, Andrew G. Truscott, Elena A. Ostrovskaya. Topological phase transition in an all-optical exciton-polariton lattice. Optica 2021, 8 (8) , 1084. https://doi.org/10.1364/OPTICA.426996

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect