ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Phonon-Polaritonic Bowtie Nanoantennas: Controlling Infrared Thermal Radiation at the Nanoscale

  • Tao Wang
    Tao Wang
    Institute of Physics (IA), RWTH Aachen University, Aachen 52056, Germany
    More by Tao Wang
  • Peining Li
    Peining Li
    Institute of Physics (IA), RWTH Aachen University, Aachen 52056, Germany
    More by Peining Li
  • Dmitry N. Chigrin*
    Dmitry N. Chigrin
    Institute of Physics (IA), RWTH Aachen University, Aachen 52056, Germany
    DWI Leibniz-Institute for Interactive Materials, Aachen 52074, Germany
    *E-mail: [email protected]
  • Alexander J. Giles
    Alexander J. Giles
    U.S. Naval Research Laboratory, Washington, D.C., United States
    NRC Postdoctoral Fellow (Residing at US. Naval Research Laboratory, Washington, D.C., United States
  • Francisco J. Bezares
    Francisco J. Bezares
    Departamento de Matemática-Física, Universidad de Puerto Rico−Cayey, Cayey 00736, Puerto Rico
  • Orest J. Glembocki
    Orest J. Glembocki
    U.S. Naval Research Laboratory, Washington, D.C., United States
  • Joshua D. Caldwell*
    Joshua D. Caldwell
    U.S. Naval Research Laboratory, Washington, D.C., United States
    Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37205 United States
    *E-mail: [email protected]
  • , and 
  • Thomas Taubner*
    Thomas Taubner
    Institute of Physics (IA), RWTH Aachen University, Aachen 52056, Germany
    *E-mail: [email protected]
Cite this: ACS Photonics 2017, 4, 7, 1753–1760
Publication Date (Web):June 15, 2017
https://doi.org/10.1021/acsphotonics.7b00321

Copyright © 2017 American Chemical Society. This publication is licensed under CC-BY-NC-ND.

  • Open Access

Article Views

4016

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (3 MB)
Supporting Info (1)»

Abstract

A conventional thermal emitter exhibits a broad emission spectrum with a peak wavelength depending upon the operation temperature. Recently, narrowband thermal emission was realized with periodic gratings or single microstructures of polar crystals supporting distinct optical modes. Here, we exploit the coupling of adjacent phonon-polaritonic nanostructures, demonstrating experimentally that the nanometer-scale gaps can control the thermal emission frequency while retaining emission line widths as narrow as 10 cm–1. This was achieved by using deeply subdiffractional bowtie-shaped silicon carbide nanoantennas. Infrared far-field reflectance spectroscopy, near-field optical nanoimaging, and full-wave electromagnetic simulations were employed to prove that the thermal emission originates from strongly localized surface phonon-polariton resonances of nanoantenna structures. The observed narrow emission line widths and exceptionally small modal volumes provide new opportunities for the user-design of near- and far-field radiation patterns for advancements in infrared spectroscopy, sensing, signaling, communications, coherent thermal emission, and infrared photodetection.

Thermal emitters are used in a wide array of applications covering a broad frequency range. At visible and near-infrared frequencies, thermal emitters are used for lighting (e.g., incandescent light bulbs), heating, and energy harvesting (e.g., thermophotovoltaic solar cells), (1,2) while in the mid-infrared, they are utilized as light sources for infrared spectroscopy, sensing, and imaging. (3−5) Conventional thermal emitters are based on black- or gray-body radiation (e.g., silicon carbide glowbars) and give off a broadband spectrum covering a few 1000 cm–1. However, thermal emitters with a narrowband spectrum (<50 cm–1) are highly desired, for example, in infrared photodetection, (6) nondispersive infrared sensing, (7,8) and molecular spectroscopy. (8,9)
In order to reduce the line width of thermal emission, concepts based on the resonant modes of photonic crystals (10,11) and plasmonic (12−15) and phononic microantennas (16−20) have been developed. Engineering of the optical modes within photonic crystals has recently resulted in thermal emission line widths of approximately 10 cm–1. (10,11) In contrast, thermal emission line widths of 100 cm–1 have been realized within plasmonic perfect absorbers. (12−14) However, with careful design of a plasmonic band gap using gold gratings, reductions in line widths to 10 cm–1 have also been shown. (15) This reduction in line width is tied to the diffractive orders of the gratings though; thus the radiation pattern of the thermal emission and the line width become intimately entwined.
A promising alternative to photonic crystals and surface plasmon polaritons (SPPs) is found in surface phonon polaritons (SPhPs), which are supported in polar crystals (e.g., SiC (16−20)) and have also been used for narrowband thermal emission. Unlike the SPP counterparts, SPhPs are only supported in a defined frequency range between the transverse (TO) and longitudinal optical (LO) phonons of the material, which for SiC occurs at ∼797–972 cm–1 (10.3–12.5 μm). This spectral region is referred to as the “Reststrahlen band” and corresponds to the real part (ε1) of the dielectric function becoming negative and strongly dispersive (Figure 1a). (21,22) By changing the material (such as SiC, (16−20,23−26) hexagonal BN, (27−30) SiO2, (31) GaN (32)), SPhP resonances can be realized throughout the spectral range, extending from roughly 6 to 325 μm. (33,34) Importantly, SPhPs exhibit optical lifetimes that are orders of magnitude longer than SPPs, thereby resulting in much lower optical losses, as observed in the exceptionally low values of the imaginary part (ε2) of the dielectric function in Figure 1a. The combined virtues of low optical losses and the polaritonic dispersion allow the realization of narrowband thermal emitters with deeply subdiffractional geometries and exceptionally narrow, highly absorptive resonances. For instance, by using the propagating SPhP modes in SiC gratings (16−19) and the localized SPhP resonances in SiC whiskers, (20) thermal emission with line widths as narrow as 5 cm–1 have been observed. However, up to now, narrowband thermal emission is mainly controlled at the micrometer length scale by the grating period (10−12,14−19) or the antenna dimension. (13,20) In the realm of ultracompact optical sources and devices at infrared frequencies, there is a need to scale down the size of those narrow-band thermal emitters and to control their thermal emission at the nanometer scale. In addition, this provides the ability to independently control both the thermal emission frequency, line width, and radiation pattern through the nanoantenna particle and array design.

Figure 1

Figure 1. Array of low-loss SiC-bowtie nanoantennas. (a) Dielectric permittivity (ε = ε1 + iε2) of the used 4H-SiC substrate: black lines, εo for the o-axis, red lines, εe for the e-axis (Supporting Information S1). The ratio η (η = |ε21|) is provided in the inset. (b) Sketch of one unit cell of the SiC bowtie array. (c) SEM image of an array of nanoantennas with a large gap size, taken at 45°. (d) SEM image of an array of nanoantennas with a small gap size, taken at 0°. All the scale bars indicate 1 μm.

Here, for the first time, we experimentally demonstrate that nanometer gaps within nanoscale 4H-SiC bowtie antennas can be used to control the narrowband thermal emission frequency throughout the Reststrahlen band with emission line widths as narrow as 10 cm–1. Consistent with the results of Schuller et al., (20) we also show that the emission polarization is determined by the geometry of the underlying nanoantennas. Using nanoscale imaging of the optical fields through the use of scattering-type scanning near-field optical microscopy (s-SNOM), (25,30) we have mapped the local SPhP field distributions and have successfully correlated these to electromagnetic simulations with good qualitative agreement. This correlation provides strong support that such simulations can offer the predictive design of the thermal emission spectra and near- and far-field radiation patterns.

Results and Discussion

ARTICLE SECTIONS
Jump To

Design of SPhP Bowtie Antennas with Nanoscale Gaps

To demonstrate and investigate the nanoscale control of thermal emission, we fabricated bowtie-shaped 4H-SiC nanopillars with nanoscale gaps (Figure 1b,c), following the procedures outlined in refs (23) and (24). Each phononic bowtie antenna consists of two triangular nanopillars with a base W and height L (W = L = 600 nm) that are pointing at one another and have a height h ≈ 1 μm (Figure 1b). These nanoantennas were fabricated using electron beam lithography and reactive ion etching into a 4H-SiC semi-insulating substrate, (23,24) resulting in nanostructures protruding from and still physically attached to the underlying SiC substrate. In an effort to adjust the interparticle coupling and, accordingly, the resonance (emission) frequency, the gap g between the bowtie tips was varied from nominally 0 (touching) to 90 nm in approximately 15 nm increments. SEM measurements determined g = 0, 25, 35, 50, 65, 80, and 95 nm at the top surface of the bowtie components. However, as shown from the SEM images, this gap is not uniform along the height, with up to a ∼50% gap variation observed due to the etching process. For each gap size, bowtie-shaped nanopillars were arranged into a periodic array with a period p = 2 μm center-to-center and covered a total area of 50 × 50 μm2.
The shape and relative position of bowtie antennas have direct implications on their coupling and resonance behavior. In comparison to the previously studied circular-shaped and cylindrical SPhP antennas (or resonators), (23−26) the bowties possess sharp corners and small gaps at the nanometer scale. Thus, they provide stronger local field enhancements and a higher sensitivity to changes in gap, (35−39) thereby providing a nanometric “knob” to tune the emission spectra, while retaining the same overall form factor. In the case of the incident electric field being aligned perpendicular to the bowtie long axis, the two nanopillars act as two weakly interacting, triangular-shaped antennas. In contrast, with the incident field aligned parallel to this axis, the tips of the adjacent triangles in the bowtie antenna strongly couple and the resonance frequency, amplitude, and line width depend directly upon the gap size. Thus, not only does this geometry provide an anisotropic emission response, but it also provides the opportunity by changing the bowtie gap to independently control the emission in one orientation (parallel), while nominally leaving the other unchanged (perpendicular). In this Article we will focus on this parallel case, with a full spectroscopic analysis and polarization dependence to be presented elsewhere.

Measurements of Gap-Dependent Far-Field Reflection and Thermal Emission

To examine and understand the thermal emission spectra of the bowtie antennas, we first measured their reflectance spectra at both room (20 °C) and elevated temperatures (350 °C), with the latter also serving as the temperature for the collection of the thermal emission spectra (see Methods). In the reflectance spectra of the bowtie arrays with a 50 nm gap (Figure 2a) at both room (black curve) and elevated 350 °C (red curve) temperatures, four primary, localized SPhP modes (labeled A1 to A4) are observed. At 350 °C, a spectral red-shift is induced due to 4H-SiC lattice expansion; (16,20) however, otherwise the spectra remain nominally unchanged.

Figure 2

Figure 2. IR reflectance and thermal emission spectra of the SiC bowtie nanoantennas. (a) Room-temperature (20 °C), high-temperature (350 °C) reflectance, and high-temperature (350 °C) thermal emittance spectrum with four distinct modes (A1 to A4). The gap g is ∼50 nm. (b) Thermal emittance spectra for all fabricated gap sizes. In all measurements, the electric field is parallel to the antenna axis.

The thermal emission spectrum (measured at 350 °C, blue curve) of bowtie nanoantennas with the ∼50 nm gap is presented in Figure 2a, with the four resonances being correlated to those observed in the reflectance spectra. In addition, the polarization selection rules and approximate line widths of the resonant modes were also retained in the far field, clearly indicating that these nanostructures have the potential to serve as solid-state, narrow-band polarized light sources in the infrared spectral domain. The resonance frequency and amplitude of the thermal emission show a clear dependence on the gap size, especially for the modes A2 and A3 (Figure 2b). In particular, when g decreases from 95 nm to 0 nm, the resonance peak of mode A2 was found to shift ∼10 cm–1, from 882 cm–1 to 872 cm–1, while a similar ∼9 cm–1 shift was found for A3, shifting from 905 cm–1 to 896 cm–1. The relative emittance of A2 and A3 also depends upon g, with A3 dominating the emittance spectra at large gaps, with ∼24% larger emittance than A2 at this widest gap. However, at g = 50 nm, the emittance of the A2 mode overtakes A3, eventually resulting in ∼53% larger emittance for the A2 mode than A3 at g = 25 nm (see Supporting Information Figures S2 and S3).
While the amplitude of the thermal emission dictates the brightness of these optical sources, the monochromaticity is expressed by the emission line width. A good figure of merit for this, the quality factor (Q = ωres/Δωres), also takes into account the emission frequency and was quantified for the four resonances observed as a function of g. Here, ωres and Δωres represent the resonance frequency and line width, respectively. As shown in Figure 2b, Q is nominally independent of the gap size. Quantitatively, the line widths of the four emission modes were extracted using a Lorentzian line shape and determined to be ∼10 cm–1 for A1 and ∼18 cm–1 for the other modes. This results in corresponding thermal emission Q-factors of ∼80, 70, 50, and 55 for A1, A2, A3, and A4, respectively. The Q-factors of these four resonances are comparable to (or better than) thermal emission resonances in SiC gratings (16−19) and SiC whiskers. (20) However, in contrast to those structures, here the narrow line widths are obtained from isolated, deeply subdiffractional structures. While the four resonances observed in this sample overlap, resulting in a broader overall spectral bandwidth than any single resonance, it is important to note that the number of resonances and their quality factors can be engineered by careful choice of individual nanostructure geometry. For example, a single, narrowband thermal emission peak can be obtained in a cylindrical nanopillar of SiC (23,24) (see Supporting Information Figure S4). Further research might be necessary to identify an optimal configuration of the nanoantennas that would provide the largest quality factor, emission spectral properties, and far-field radiation pattern for a given application, although the results provided here indicate that this design can benefit from careful nanoscale control of the interparticle separations.

Numerical Simulations and Near-Field Optical Characterization

In order to identify the physical nature of the resonances in the thermal emission spectra, we have further analyzed the experimental and simulated reflectance spectra. To fit the experimental data, we considered the anisotropy of SiC in the simulations. The overall spectral shifts induced through the modification of bowtie gap size are most clearly understood through comparison of the series of experimental and simulated (see Methods) reflectance spectra presented in Figure 3a and b, respectively. The simulations show a good agreement with the experimental results, confirming the gap-size dependences of the main reflectance dips (Figure 3c). While the positions of A1 and A4 appear nominally independent of the gap size (A1 ≈ 864 cm–1, A4 ≈ 960 cm–1), A2 and A3 display distinct red-shifts as the gap is reduced, with the shifts being consistent with thermal emission spectra described above. Upon close inspection, it is clear that the “A2” resonance is actually two overlapping SPhP modes centered ∼880–890 cm–1 at 95 nm gaps and undergo a ∼5 cm–1 red-shift with decreasing bowtie gap down to 35 nm. Further gap reduction to 25 nm induced another ∼5 cm–1 red-shift to ∼875 cm–1. This drastic increase in the rate of the resonance spectral shift is consistent with the well-known plasmonic coupling or plasmon hybridization effects typically discussed in terms of plasmonic “hot-spots”. (40,41) To our knowledge, SPhP-based “hot-spots” have not been reported. Such highly localized optical fields have been shown in plasmonic systems to drastically enhance light–matter interactions, for instance enabling single-molecule detection via the surface-enhanced Raman scattering effect or surface-enhanced fluorescence. (35) Upon further reduction of the bowtie gap, the red-shift is reversed, as the further reduction from 25 nm to 0 nm results in a blue-shift for the A2 mode, and no further shift for A3 is observed. This may be related to nonlocal or quantum effects of SPhPs similar to close-to-touching plasmonic bowtie antennas. (37,42) Different from the quantum plasmonic resonance, (37,42−44) free electrons are not responsible for the SPhP resonance; thus field screening effects and/or new theories based on the coupling of phonon-polaritonic vibrations between near-touching SPhP resonators are desired to fully understand the possible quantum effects of SPhPs.

Figure 3

Figure 3. Reflectance spectra of the SiC bowtie nanoantenna arrays. (a) Experimentally obtained FTIR reflectance spectra (at room temperature) of arrays of the SiC-bowtie nanoantennas with different gap sizes, by keeping the antenna width W = 600 nm and length L = 600 nm. During the measurements, an electric field parallel to the antenna axis has been used (TM polarization, as indicated in the inset). Four major dips (A1–A4) are found in the measured spectra. (b) Simulated gap-dependent reflectance spectra of SiC-bowtie nanoantenna arrays. (c) Resonance peaks of mode A1 to A4 as a function of bowtie gap g. Open (closed) scatter points indicate the simulated (experimental) results. The dashed lines are a guide for the eye. (d) Simulated surface-charge density distribution of the SiC bowtie array with the gap size g = 50 nm at the A1 to A4 frequency modes, respectively.

In addition to the experimental and simulated reflectance, we also provide the simulated surface-charge densities (Figure 3d) and the electric field distributions (Figure 4a) for those resonance modes. Through comparison of near-field optical amplitude and phase images (Figure 4b–d) recorded by using an s-SNOM (25,30,45−47) (details in Methods) to these calculated spatial plots, their validity can be corroborated. Due to restrictions of the laser-covered wavelength range (see Methods), the s-SNOM images were collected at the closest possible frequency to each resonance for the modes A2–A4, while the A1 mode was outside of our accessible spectral window. Such near-field modal distributions (Figure 3d and Figure 4) offer direct insight into the physical origin of the resonances; that is, they provide the necessary understanding of the observed resonance to explain the observed spectral shifts with gap size and enable the eventual control of the modal properties of the thermal emission radiation patterns in the near and far field.

Figure 4

Figure 4. Calculated (a) and experimentally measured (b–d) near-field patterns of resonant modes in SiC bowties: (a) Calculated z-axis component of total electric fields (top, amplitude |Ez|; bottom, phase Arg(Ez)) calculated at a plane 10 nm above the bowtie (g = 50 nm). All the images are normalized to the same scale. For highlighting the fields on the bowtie top surfaces, the outer area is covered by a mask. Calculations are for three frequencies: 886 cm–1 (A2), 910 cm–1 (A3), 954 cm–1 (A4), corresponding to the numerical values of mode resonant frequencies. (b) Measured distribution of optical near fields (amplitude s2 and phase φ2; see Methods) on the top surface of representative bowtie antennas with g ≈ 50 nm at three wavelengths: 888 cm–1 (close to A2), 905 cm–1 (close to A3), 954 cm–1 (close to A4). The incident (p-polarized) light is from a line-tunable mid-infrared CO2 laser. These images are recorded using a dielectric Si tip to suppress the potential tip influence as much as possible. The recorded images reveal distinct mode behaviors in the bowtie antennas. (c, d) Near-field amplitude s2 (c) and phase φ2 (d) of a bowtie antenna array with g ≈ 50 nm at the wavenumber of 888 cm–1. In (b)–(d), the white arrows indicate the direction of electric fields. All the white scale bars indicate 1 μm. The I and II in c indicate two bowtie antennas with different resonance patterns.

For the resonance peak A1 (∼864 cm–1), the surface charge density is fairly evenly distributed across the nanopillar top surface, with the strongest localization of charge occurring about the base of the structure. This charge distribution is also symmetric about the gap (Figure 3d), with a large uniform charge distribution on the substrate that balances the opposing charge present in the pillars. Such a charge density distribution is consistent with the “monopolar” resonance mode for cylindrical nanopillars (23,24) and is a result of the presence of a negative permittivity substrate. As can be inferred from the surface charge density distribution of this A1 mode, almost no interaction across the gap is expected, and thus the resonance frequency should not depend upon the bowtie gap size, consistent with the spectral data (Figure 3a,b).
In contrast to A1, the resonance peak A2 (∼890 cm–1) exhibits a strong dependence upon the gap size and the surface charge is found to be primarily distributed on the top surface and along the closest facing sidewalls of the bowtie nanopillars. This local charge distribution is consistent with a dipole resonance established in each triangular nanopillar along the long axis of the bowtie, being antisymmetric across the bowtie gap (Figure 3d). In the simulated field distribution (Figure 4a, 886 cm–1) and the s-SNOM image recorded at 888 cm–1 (Figure 4b, close to the resonance A2, 880–890 cm–1), the nanoantenna yields stronger near fields at the gap and the corners of the bowtie, indicating that this mode consists of strongly coupled, localized near fields at the center of the gap. Such a coupled dipolar field distribution is consistent with optical modes observed in planar plasmonic bowtie antennas (35−37) and the spectral red-shift of the A2 mode in the reflectance spectra, resulting in “hot-spot” formation and ultrasmall mode volume on the scale of (λ/20)3. Such hot-spots could potentially find additional utility in the design of substrates for surface-enhanced infrared absorption (SEIRA). We note that the experimentally recorded field distribution (Figure 4b) is not as symmetric as the simulated results (Figure 4a). It is assumed that this may be due to the nonzero tip influence (e.g., the Si tip exhibiting a high refraction index) under a large illumination angle (about 60 degrees off-normal) in the measurements. Further systematic s-SNOM experiments are required to interpret the observed asymmetric near-field distribution. However, the close qualitative agreement between experiment and theory provides strong evidence that the electromagnetic simulations provide an accurate picture of the near-field distributions and thus can be useful for predictive design of infrared thermal emitters.
As in the case of the A2 resonance, a similar, if more continuous, spectral red-shift with decreasing bowtie gap size is observed for A3 (∼910 cm–1). However, the charge density distributions are indeed quite different. In this case, the charge is highly localized near the base of the antenna close to the substrate. Analogous to A2, the distributions between the two triangular nanopillars of the bowtie are also antisymmetric across the gap (Figure 3d), again inferring a strong near-field coupling between the two closely spaced nanostructures with ultrasmall mode volume. Such field coupling across the bowtie gap is also seen in the simulated field distribution (910 cm–1, Figure 4a). The s-SNOM image at 905 cm–1 (Figure 4b, close to the resonance A3 at 910 cm–1) shows that the near fields are localized toward the edges on the top surface of the bowtie. Compared to A2, the mode A3 has a weaker near-field amplitude (Figure 4a,b), which corresponds to the lower reflectance dips (Figure 3a,b) and thermal emission signal of the A3 mode at g = 50 nm (Figure 2b). Although the simulated and recorded amplitudes are different, both the simulated and recorded phase are indeed similar. This could be understood by the fact that the laser wavelength used for the s-SNOM is slightly off-resonance. For such a sharp resonance, the slightly shifted wavelength modifies the amplitude with a less pronounced influence upon the phase.
Finally, the mode A4 (∼960 cm–1) does not exhibit any significant shift with the changing bowtie gap, including a lack of dependence for the peak amplitude as well. In this case, the charge distribution is found to be primarily confined along the antenna sidewalls outside the bowtie gaps (Figure 3d). The fields are also uniformly distributed across the top surface of the bowtie, as shown in the simulated and measured field distributions (Figure 4a,b). As very little charge and field are localized along the bowtie sidewall within the gap, it is not surprising that this mode exhibits very little dependence upon changes in the gap size.
The observed modal behaviors of the bowtie antennas are indeed very sensitive to the small change of the gap size. As shown in Figure 4c and d, we clearly observe variations of the field distributions in different bowties (such as I and II labeled in Figure 4c) from the same array, as they exhibit slight variations in gap due to the nonuniform fabrication. This further confirms that the resonance frequency and near-field distributions of the antenna modes in our bowties can be strongly controlled by small changes of the bowtie gap size and infer that better uniformity would result from a further reduction of the observed line width.

Conclusions

ARTICLE SECTIONS
Jump To

In conclusion, we have demonstrated the realization of narrowband, polarized, solid-state thermal emitters based on periodic arrays of SiC bowtie nanoantennas. By varying the gap size between the triangular nanopillars that make up the bowtie nanoantennas, direct control of the coupling strength of certain SPhP modes was observed and thus has experimentally proven nanoscale control of the narrowband thermal emission spectrum. By correlating the thermal emission spectra to the far-field reflectance, scanning near-field imaging, and numerical simulations, the narrowband thermal emission can be understood as the result of the correspondingly narrowband SPhP resonances of the SiC bowtie nanoantennas. These observations imply that localized SPhP resonators can provide an avenue toward low-power, polarized, close to monochromatic thermal emitters useful for molecular sensing, SEIRA spectroscopy, free-space communications, and infrared signaling.
The design of such compact infrared sources also provides access to solid-state, narrowband infrared sources in spectral ranges where currently none exist and could therefore result in currently unanticipated advances in applied spectroscopy and optical engineering. By changing the geometric shape (such as cylinder nanopillar), height, or the interparticle spacing, such narrowband thermal emission may be tuned throughout the entire Reststrahlen band of a given material. (23−27) By photoinjection of excess free carriers (48) and phase change materials, (49) it is possible to actively control the SPhP-based narrowband thermal emission. This, therefore, provides a direct path toward the realization of amplitude or frequency modulation of these narrowband thermal emitters that can enable an even broader palette of applications, specifically for IR communications or beacons. Furthermore, by using other polar crystals, our thermal emitters can in principle be designed to cover the frequency range between 6 and approximately 325 μm (50 to 0.92 THz). (33,34) The long-wavelength limit on such approaches will of course be dictated by the obvious limitations in the thermal energy available at any chosen spectral frequency.

Methods

ARTICLE SECTIONS
Jump To

FTIR Reflectance and Thermal Emission Measurement

The reflectance and thermal emission spectra were taken with a Bruker Vertex 70 Fourier transform infrared (FTIR) spectrometer in combination with a Hyperion 2000 infrared microscope. All spectra were collected using the same custom-modifed Bruker microscope-based FTIR spectrometer similar to the setup in ref (20). A thermal stage (Linkam FTIR 600, Linkam Scientific Instruments, UK) was used to heat the sample with a controllable heating rate and maintain a stable temperature with variations of <0.1°. A 15× (numerical aperture, NA = 0.4) Cassegrain objective with a weighted average incidence (or collection) angle of about 17° is used for the thermal emission and reflectance measurements in Figure 2 and Figure 3. Both the reflectance and the thermal emission spectra of the SiC bowtie-shaped nanopillar arrays could be sequentially measured without changing spatial position or aperture size. The FTIR reflectance and thermal emittance spectra were recorded using an MCT (mercury cadmium telluride) detector. During all experiments, knife-edge apertures were set to form a measurement area about 60 × 60 μm2.
For reflection measurements, a polarizer was inserted in the optical path before the sample to polarize the light linearly with the electrical field vector along the long axis of the 4H-SiC bowtie antennas. All reflectance spectra were collected in reference to a flat gold mirror at the same conditions (temperature, polarization, and aperture size). For the case of thermal emission, the polarizer parallel to the long axis of the bowtie antenna was also used in the emission collection path. The emittance spectra have been recorded with 400 scans and a resolution of 4 cm–1, while the reflectance spectra have been recorded with 400 scans and a resolution of 1 cm–1. As all resonance line widths were found to be in excess of 10 cm–1, the different spectral resolution did not negatively impact the comparison.

Full-Wave Numerical Simulations

Full-wave 3D simulations have been performed using a commercial solver, CST Studio Suite. Plane-wave excitation in combination with Floquet Mode Ports has been used to model the experiment setup and to calculate a reflectance spectrum and field distributions. Periodic boundary conditions have been used in the lateral direction. Reflectance spectra calculations have been performed for an incident angle of 17° to match experiments, while the field profiles are calculated for an incident angle of 60° to better match the experimental conditions used in the s-SNOM measurements. To simulate the material response of the 4H-SiC, an anisotropic uniaxial model of its dielectric function (50) has been extracted and fitted to experimental data (Supporting Information S1).

Near-Field Optical Characterizations

Our s-SNOM (from Neaspec) is based on a tapping-mode atomic force microscope (AFM) in which a sharp, usually metallic tip (radius ∼30 nm) works as a scanning optical antenna for probing high-resolution near-field optical information. (25,30,45−47) However, it has been demonstrated that, when the s-SNOM is used to characterize a resonant optical antenna, the metallic tip can distort the actual field distribution of the antenna mode due to the strong tip–antenna interaction. (45) To avoid this distortion, we instead use a dielectric Si tip to probe the actual near fields of the SiC bowtie antenna. (25,30,45−47) The Si tip is illuminated by a tunable mid-infrared p-polarized CO2 laser (spanning from 885 to 1087 cm–1, Edinburgh Instruments), and the backscattered light from the tip is collected.
The p-polarized incident light is parallel to the bowtie antenna, whose direction is marked by an arrow in Figure 4c. Since the tip-induced polarizability is dominated along the out-of-plane (z) direction, the s-SNOM probes primarily the z-component of electric fields, namely, Ez. To suppress background scattering from the tip shaft and the sample, the tip vibrates with an amplitude of about 50 nm at a tapping frequency of ∼270 kHz, and the detector signal is demodulated by higher harmonic n (for the experiments shown in Figure 4, n = 2). By interferometric detection, the near-field optical amplitude sn and phase φn are obtained. The maximum scan range in the z-direction of our s-SNOM is 2.5 μm, which allows for imaging of the local field distribution on the top surface of the ∼1 μm high bowtie structures. We present the measured field distributions (amplitude s2 and phase φ2) on the top surface of a typical bowtie antenna (from the array with g = 50 nm) in Figure 4b. The fields from the substrate in the area outside the bowtie top surfaces are masked by the dark blue color in an effort to highlight the near fields on the bowtie top surfaces (see Supporting Information, Figure S5 for the complete image).

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsphotonics.7b00321.

  • (S1) Dielectric constants of 4H-SiC; (S2) emittance ratio between the A2 and A3 modes; (S3) simulated absorption spectra of the SiC bowtie nanoantennas; (S4) thermal emission spectra with a single resonance peak from the SiC nanopillars; (S5) SNOM image with and without mask (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Authors
    • Dmitry N. Chigrin - Institute of Physics (IA), RWTH Aachen University, Aachen 52056, GermanyDWI Leibniz-Institute for Interactive Materials, Aachen 52074, Germany Email: [email protected]
    • Joshua D. Caldwell - U.S. Naval Research Laboratory, Washington, D.C., United StatesDepartment of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37205 United States Email: [email protected]
    • Thomas Taubner - Institute of Physics (IA), RWTH Aachen University, Aachen 52056, Germany Email: [email protected]
  • Authors
    • Tao Wang - Institute of Physics (IA), RWTH Aachen University, Aachen 52056, GermanyOrcidhttp://orcid.org/0000-0003-2250-7569
    • Peining Li - Institute of Physics (IA), RWTH Aachen University, Aachen 52056, Germany
    • Alexander J. Giles - U.S. Naval Research Laboratory, Washington, D.C., United StatesNRC Postdoctoral Fellow (Residing at US. Naval Research Laboratory, Washington, D.C., United States
    • Francisco J. Bezares - Departamento de Matemática-Física, Universidad de Puerto Rico−Cayey, Cayey 00736, Puerto Rico
    • Orest J. Glembocki - U.S. Naval Research Laboratory, Washington, D.C., United States
  • Notes
    The authors declare no competing financial interest.

Acknowledgments

ARTICLE SECTIONS
Jump To

This work was supported by the Excellence Initiative of the German federal and state governments, the Ministry of Innovation of North Rhine-Westphalia. This work was also supported by the Defense Acquisition Program Administration of South Korea and the Agency for Defense Development as part of a basic research program under the contract UD110099GD. Work for NRL coauthors was funded by the Office of Naval Research and administered by the NRL Nanoscience Institute. A.J.G. and F.J.B. acknowledge the NRC/ASEE Postdoctoral Fellowship Programs at NRL.

References

ARTICLE SECTIONS
Jump To

This article references 50 other publications.

  1. 1
    Kraemer, D.; Poudel, B.; Feng, H.-P.; Caylor, J. C.; Yu, B.; Yan, X.; Ma, Y.; Wang, X.; Wang, D.; Muto, A.; McEnaney, K.; Chiesa, M.; Ren, Z.; Chen, G. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 2011, 10, 532538,  DOI: 10.1038/nmat3013
  2. 2
    Lenert, A.; Bierman, D. M.; Nam, Y.; Chan, W. R.; Celanović, I.; Soljačić, M.; Wang, E. N. A nanophotonic solar thermophotovoltaic device. Nat. Nanotechnol. 2014, 9, 126130,  DOI: 10.1038/nnano.2013.286
  3. 3
    Huth, F.; Schnell, M.; Wittborn, J.; Ocelic, N.; Hillenbrand, R. Infrared-spectroscopic nanoimaging with a thermal source. Nat. Mater. 2011, 10, 352356,  DOI: 10.1038/nmat3006
  4. 4
    Huth, F.; Govyadinov, A.; Amarie, S.; Nuansing, W.; Keilmann, F.; Hillenbrand, R. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Lett. 2012, 12, 39733978,  DOI: 10.1021/nl301159v
  5. 5
    Amenabar, I.; Poly, S.; Nuansing, W.; Hubrich, E. H.; Govyadinov, A. A.; Huth, F.; Krutokhvostov, R.; Zhang, L.; Knez, M.; Heberle, J.; Bittner, A. M.; Hillenbrand, R. Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nat. Commun. 2013, 4, 2890,  DOI: 10.1038/ncomms3890
  6. 6
    Rogalski, A. History of infrared detectors. Opto-Electron. Rev. 2012, 20, 279308,  DOI: 10.2478/s11772-012-0037-7
  7. 7
    Hodgkinson, J.; Tatam, R. P. Optical gas sensing: a review. Meas. Sci. Technol. 2013, 24, 012004,  DOI: 10.1088/0957-0233/24/1/012004
  8. 8
    Inoue, T.; De Zoysa, M.; Asano, T.; Noda, S. Filter-free nondispersive infrared sensing using narrow-bandwidth mid-infrared thermal emitters. Appl. Phys. Express 2014, 7, 012103,  DOI: 10.7567/APEX.7.012103
  9. 9
    Inoue, T.; De Zoysa, M.; Asano, T.; Noda, S. Realization of narrowband thermal emission with optical nanostructures. Optica 2015, 2, 2735,  DOI: 10.1364/OPTICA.2.000027
  10. 10
    De Zoysa, M.; Asano, T.; Mochizuki, K.; Oskooi, A.; Inoue, T.; Noda, S. Conversion of broadband to narrowband thermal emission through energy recycling. Nat. Photonics 2012, 6, 535539,  DOI: 10.1038/nphoton.2012.146
  11. 11
    Inoue, T.; De Zoysa, M.; Asano, T.; Noda, S. High-Q mid-infrared thermal emitters operating with high power-utilization efficiency. Opt. Express 2016, 24, 1510115109,  DOI: 10.1364/OE.24.015101
  12. 12
    Ikeda, K.; Miyazaki, H. T.; Kasaya, T.; Yamamoto, K.; Inoue, Y.; Fujimura, K.; Kanakugi, T.; Okada, M.; Hatade, K.; Kitagawa, S. Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities. Appl. Phys. Lett. 2008, 92, 021117,  DOI: 10.1063/1.2834903
  13. 13
    Liu, X.; Tyler, T.; Starr, T.; Starr, A. F.; Jokerst, N. M.; Padilla, W. J. Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett. 2011, 107, 045901,  DOI: 10.1103/PhysRevLett.107.045901
  14. 14
    Dao, T. D.; Chen, K.; Ishii, S.; Ohi, A.; Nabatame, T.; Kitajima, M.; Nagao, T. Infrared perfect absorbers fabricated by colloidal mask etching of Al–Al2O3–Al trilayers. ACS Photonics 2015, 2, 964970,  DOI: 10.1021/acsphotonics.5b00195
  15. 15
    Biener, G.; Dahan, N.; Niv, A.; Kleiner, V.; Hasman, E. Highly coherent thermal emission obtained by plasmonic bandgap structures. Appl. Phys. Lett. 2008, 92, 081913,  DOI: 10.1063/1.2883948
  16. 16
    Greffet, J. J.; Carminati, R.; Joulain, K.; Mulet, J. P.; Mainguy, S.; Chen, Y. Coherent emission of light by thermal sources. Nature 2002, 416, 6164,  DOI: 10.1038/416061a
  17. 17
    Dahan, N.; Niv, A.; Biener, G.; Gorodetski, Y.; Kleiner, V.; Hasman, E. Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves. Phys. Rev. B: Condens. Matter Mater. Phys. 2007, 76, 045427,  DOI: 10.1103/PhysRevB.76.045427
  18. 18
    Hasman, E.; Kleiner, V.; Dahan, N.; Gorodetski, Y.; Frischwasser, K.; Balin, I. Manipulation of thermal emission by use of micro and nanoscale structures. J. Heat Transfer 2012, 134, 031023,  DOI: 10.1115/1.4005160
  19. 19
    Arnold, C.; Marquier, F.; Garin, M.; Pardo, F.; Collin, S.; Bardou, N.; Pelouard, J. L.; Greffet, J. J. Coherent thermal infrared emission by two-dimensional silicon carbide gratings. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 86, 035316,  DOI: 10.1103/PhysRevB.86.035316
  20. 20
    Schuller, J. A.; Taubner, T.; Brongersma, M. L. Optical antenna thermal emitters. Nat. Photonics 2009, 3, 658661,  DOI: 10.1038/nphoton.2009.188
  21. 21
    Adachi, S. Optical Constants of Crystalline and Amorphous Semiconductors; Springer Science & Business Media: New York, 2013.
  22. 22
    Fox, M. Optical Properties of Solids; Oxford University Press: New York, 2010.
  23. 23
    Caldwell, J. D.; Glembocki, O. J.; Francescato, Y.; Sharac, N.; Giannini, V.; Bezares, F. J.; Long, J. P.; Owrutsky, J. C.; Vurgaftman, I.; Tischler, J. G.; Wheeler, V. D.; Bassim, N. D.; Shirey, L. M.; Kasica, R.; Maier, S. A. Low-loss, extreme subdiffraction photon confinement via silicon carbide localized surface phonon polariton resonators. Nano Lett. 2013, 13, 36903697,  DOI: 10.1021/nl401590g
  24. 24
    Chen, Y.; Francescato, Y.; Caldwell, J. D.; Giannini, V.; Maß, T. W.; Glembocki, O. J.; Bezares, F. J.; Taubner, T.; Kasica, R.; Hong, M.; Maier, S. A. Spectral tuning of localized surface phonon polariton resonators for low-loss mid-ir applications. ACS Photonics 2014, 1, 718724,  DOI: 10.1021/ph500143u
  25. 25
    Wang, T.; Li, P.; Hauer, B.; Chigrin, D. N.; Taubner, T. Optical properties of single infrared resonant circular microcavities for surface phonon polaritons. Nano Lett. 2013, 13, 50515055,  DOI: 10.1021/nl4020342
  26. 26
    Gubbin, C. R.; Martini, F.; Politi, A.; Maier, S. A.; De Liberato, S. Strong and coherent coupling between localized and propagating phonon polaritons. Phys. Rev. Lett. 2016, 116, 246402,  DOI: 10.1103/PhysRevLett.116.246402
  27. 27
    Caldwell, J. D.; Kretinin, A. V.; Chen, Y. G.; Giannini, V.; Fogler, M. M.; Francescato, Y.; Ellis, C. T.; Tischler, J. G.; Woods, C. R.; Giles, A. J.; Hong, M.; Watanabe, K.; Taniguchi, T.; Maier, S. A.; Novoselov, K. S. Sub-diffraction, volume-confined polaritons in the natural hyperbolic material: hexagonal boron nitride. Nat. Commun. 2014, 5, 5221,  DOI: 10.1038/ncomms6221
  28. 28
    Dai, S.; Fei, Z.; Ma, Q.; Rodin, A. S.; Wagner, M.; McLeod, A. S.; Liu, M. K.; Gannett, W.; Regan, W.; Watanabe, K.; Taniguchi, T.; Thiemens, M.; Dominguez, G.; Neto, A. H. C.; Zettl, A.; Keilmann, F.; Jarillo-Herrero, P.; Fogler, M. M.; Basov, D. N. Tunable phonon polaritons in atomically thin van der waals crystals of boron Nitride. Science 2014, 343, 1125,  DOI: 10.1126/science.1246833
  29. 29
    Dai, S.; Ma, Q.; Andersen, T.; Mcleod, A. S.; Fei, Z.; Liu, M. K.; Wagner, M.; Watanabe, K.; Taniguchi, T.; Thiemens, M.; Keilmann, F.; Jarillo-Herrero, P.; Fogler, M. M.; Basov, D. N. Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nat. Commun. 2015, 6, 6963,  DOI: 10.1038/ncomms7963
  30. 30
    Li, P.; Lewin, M.; Kretinin, A. V.; Caldwell, J. D.; Novoselov, K. S.; Taniguchi, T.; Watanabe, K.; Gaussmann, F.; Taubner, T. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging. Nat. Commun. 2015, 6, 7507,  DOI: 10.1038/ncomms8507
  31. 31
    Hafeli, A. K.; Rephaeli, E.; Fan, S. H.; Cahill, D. G.; Tiwald, T. E. Temperature dependence of surface phonon polaritons from a quartz grating. J. Appl. Phys. 2011, 110, 043517,  DOI: 10.1063/1.3624603
  32. 32
    Feng, K.; Streyer, W.; Islam, S. M.; Verma, J.; Jena, D.; Wasserman, D.; Hoffman, A. J. Localized surface phonon polariton resonances in polar gallium nitride. Appl. Phys. Lett. 2015, 107, 081108,  DOI: 10.1063/1.4929502
  33. 33
    Caldwell, J. D.; Lindsay, L.; Giannini, V.; Vurgaftman, I.; Reinecke, T. L.; Maier, S. A.; Glembocki, O. J. Low-loss, infrared and terahertz nanophotonics with surface phonon polaritons. Nanophotonics 2014, 4, 21928614,  DOI: 10.1515/nanoph-2014-0003
  34. 34
    Caldwell, J. D.; Vurgaftman, I.; Tischler, J. G.; Glembocki, O. J.; Owrutsky, J. C.; Reinecke, T. L. Atomic-scale photonic hybrids: towards designer and multifunctional nanophotonics. Nat. Nanotechnol. 2016, 11, 915,  DOI: 10.1038/nnano.2015.305
  35. 35
    Kinkhabwala, A.; Yu, Z.; Fan, S.; Avlasevich, Y.; Müllen, K.; Moerner, W. E. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics 2009, 3, 654657,  DOI: 10.1038/nphoton.2009.187
  36. 36
    Koh, A. L.; Fernández-Domínguez, A. I.; McComb, D. W.; Maier, S. A.; Yang, J. K. W. High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures. Nano Lett. 2011, 11, 13231330,  DOI: 10.1021/nl104410t
  37. 37
    Duan, H.; Fernández-Domínguez, A. I.; Bosman, M.; Maier, S. A.; Yang, J. K. W. Nanoplasmonics: classical down to the nanometer scale. Nano Lett. 2012, 12, 16831689,  DOI: 10.1021/nl3001309
  38. 38
    Gonzalez, F. J.; Boreman, G. D. Comparison of dipole, bowtie, spiral and log-periodic IR antennas. Infrared Phys. Technol. 2005, 46, 418428,  DOI: 10.1016/j.infrared.2004.09.002
  39. 39
    Cuadrado, A.; Silva-López, M.; González, F. J.; Alda, J. Robustness of antenna-coupled distributed bolometers. Opt. Lett. 2013, 38, 37843787,  DOI: 10.1364/OL.38.003784
  40. 40
    Nordlander, P.; Oubre, C.; Prodan, E.; Li, K.; Stockman, M. I. Plasmon hybridization in nanoparticle dimers. Nano Lett. 2014, 4, 899903,  DOI: 10.1021/nl049681c
  41. 41
    Halas, N. J.; Lal, S.; Chang, W. S.; Link, S.; Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 2011, 111, 39133961,  DOI: 10.1021/cr200061k
  42. 42
    Wiener, A.; Duan, H.; Bosman, M.; Horsfield, A. P.; Pendry, J. B.; Yang, J. K. W.; Maier, S. A.; Fernandez-Dominguez, A. I. Electron-energy loss study of nonlocal effects in connected plasmonic nanoprisms. ACS Nano 2013, 7, 62876296,  DOI: 10.1021/nn402323t
  43. 43
    Tan, S. F.; Wu, L.; Yang, J. K. W.; Bai, P.; Bosman, M.; Nijhuis, C. A. Quantum plasmon resonances controlled by molecular tunnel junctions. Science 2014, 343, 14961499,  DOI: 10.1126/science.1248797
  44. 44
    Zhu, W.; Esteban, R.; Borisov, A. G.; Baumberg, J. J.; Nordlander, P.; Lezec, H. J.; Aizpurua, J.; Crozier, K. B. Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nat. Commun. 2016, 7, 11495,  DOI: 10.1038/ncomms11495
  45. 45
    García-Etxarri, A.; Romero, I.; de Abajo, F. J. G.; Hillenbrand, R.; Aizpurua, J. Influence of the tip in near-field imaging of nanoparticle plasmonic modes: Weak and strong coupling regimes. Phys. Rev. B: Condens. Matter Mater. Phys. 2009, 79, 125439,  DOI: 10.1103/PhysRevB.79.125439
  46. 46
    Schnell, M.; Garcia-Etxarri, A.; Huber, A. J.; Crozier, K.; Aizpurua, J.; Hillenbrand, R. Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nat. Photonics 2009, 3, 287291,  DOI: 10.1038/nphoton.2009.46
  47. 47
    Alonso-González, P.; Albella, P.; Golmar, F.; Arzubiaga, L.; Casanova, F.; Hueso, L. E.; Aizpurua, J.; Hillenbrand, R. Visualizing the near-field coupling and interference of bonding and anti-bonding modes in infrared dimer nanoantennas. Opt. Express 2013, 21, 12701280,  DOI: 10.1364/OE.21.001270
  48. 48
    Spann, B. T.; Compton, R.; Ratchford, D.; Long, J. P.; Dunkelberger, A. D.; Klein, P. B.; Giles, A. J.; Caldwell, J. D.; Owrutsky, J. C. Photoinduced tunability of the reststrahlen band in 4H–SiC. Phys. Rev. B: Condens. Matter Mater. Phys. 2016, 93, 085205,  DOI: 10.1103/PhysRevB.93.085205
  49. 49
    Li, P.; Yang, X.; Maß, T. W.; Hanss, J.; Lewin, M.; Michel, A. K. U.; Wuttig, M.; Taubner, T. Optically reversible switching of ultra-confined phonon polaritons with an ultra-thin phase change material. Nat. Mater. 2016, 15, 870875,  DOI: 10.1038/nmat4649
  50. 50
    Tiwald, T. E.; Woollam, J. A.; Zollner, S.; Christiansen, J.; Gregory, R. B.; Wetteroth, T.; Wilson, S. R.; Powell, A. R. Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry. Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 60, 1146411474,  DOI: 10.1103/PhysRevB.60.11464

Cited By

ARTICLE SECTIONS
Jump To

This article is cited by 109 publications.

  1. Ashutosh Giri, Scott G. Walton, John Tomko, Niraj Bhatt, Michael J. Johnson, David R. Boris, Guanyu Lu, Joshua D. Caldwell, Oleg V. Prezhdo, Patrick E. Hopkins. Ultrafast and Nanoscale Energy Transduction Mechanisms and Coupled Thermal Transport across Interfaces. ACS Nano 2023, 17 (15) , 14253-14282. https://doi.org/10.1021/acsnano.3c02417
  2. Vishal Kumar, Andrew W. Rossi, Zachary R. Lawson, Robert D. Neal, Jordan A. Hachtel, Svetlana Neretina, David J. Masiello, Jon P. Camden. Infrared Near-Field Spectroscopy of Gold Nanotriangle Fabry-Pérot Resonances. The Journal of Physical Chemistry C 2023, 127 (14) , 6777-6784. https://doi.org/10.1021/acs.jpcc.3c00753
  3. Saman Zare, Ramin Pouria, Philippe K. Chow, Tom Tiwald, Carl P. Tripp, Sheila Edalatpour. Probing Near-Field Thermal Emission of Localized Surface Phonons from Silicon Carbide Nanopillars. ACS Photonics 2023, 10 (2) , 401-411. https://doi.org/10.1021/acsphotonics.2c01310
  4. Andrea Mancini, Lin Nan, Fedja J. Wendisch, Rodrigo Berté, Haoran Ren, Emiliano Cortés, Stefan A. Maier. Near-Field Retrieval of the Surface Phonon Polariton Dispersion in Free-Standing Silicon Carbide Thin Films. ACS Photonics 2022, 9 (11) , 3696-3704. https://doi.org/10.1021/acsphotonics.2c01270
  5. Emiliano Cortés, Fedja J. Wendisch, Luca Sortino, Andrea Mancini, Simone Ezendam, Seryio Saris, Leonardo de S. Menezes, Andreas Tittl, Haoran Ren, Stefan A. Maier. Optical Metasurfaces for Energy Conversion. Chemical Reviews 2022, 122 (19) , 15082-15176. https://doi.org/10.1021/acs.chemrev.2c00078
  6. John Andris Roberts, Po-Hsun Ho, Shang-Jie Yu, Jonathan A. Fan. Electrically Driven Hyperbolic Nanophotonic Resonators as High Speed, Spectrally Selective Thermal Radiators. Nano Letters 2022, 22 (14) , 5832-5840. https://doi.org/10.1021/acs.nanolett.2c01579
  7. Krishna Chand Maurya, Dheemahi Rao, Shashidhara Acharya, Pavithra Rao, Ashalatha Indiradevi Kamalasanan Pillai, Shankar Kumar Selvaraja, Magnus Garbrecht, Bivas Saha. Polar Semiconducting Scandium Nitride as an Infrared Plasmon and Phonon–Polaritonic Material. Nano Letters 2022, 22 (13) , 5182-5190. https://doi.org/10.1021/acs.nanolett.2c00912
  8. Mingze He, Thomas G. Folland, Jiahua Duan, Pablo Alonso-González, Simone De Liberato, Alexander Paarmann, Joshua D. Caldwell. Anisotropy and Modal Hybridization in Infrared Nanophotonics Using Low-Symmetry Materials. ACS Photonics 2022, 9 (4) , 1078-1095. https://doi.org/10.1021/acsphotonics.1c01486
  9. Shang-Jie Yu, Yue Jiang, John A. Roberts, Markus A. Huber, Helen Yao, Xinjian Shi, Hans A. Bechtel, Stephanie N. Gilbert Corder, Tony F. Heinz, Xiaolin Zheng, Jonathan A. Fan. Ultrahigh-Quality Infrared Polaritonic Resonators Based on Bottom-Up-Synthesized van der Waals Nanoribbons. ACS Nano 2022, 16 (2) , 3027-3035. https://doi.org/10.1021/acsnano.1c10489
  10. Guanyu Lu, Christopher R. Gubbin, J. Ryan Nolen, Thomas G. Folland, Katja Diaz-Granados, Ivan I. Kravchenko, Joseph A. Spencer, Marko J. Tadjer, Orest. J. Glembocki, Simone De Liberato, Joshua D. Caldwell. Collective Phonon–Polaritonic Modes in Silicon Carbide Subarrays. ACS Nano 2022, 16 (1) , 963-973. https://doi.org/10.1021/acsnano.1c08557
  11. Guanyu Lu, Christopher R. Gubbin, J. Ryan Nolen, Thomas Folland, Marko J. Tadjer, Simone De Liberato, Joshua D. Caldwell. Engineering the Spectral and Spatial Dispersion of Thermal Emission via Polariton–Phonon Strong Coupling. Nano Letters 2021, 21 (4) , 1831-1838. https://doi.org/10.1021/acs.nanolett.0c04767
  12. Alyssa Livingood, J. Ryan Nolen, Thomas G. Folland, Lauren Potechin, Guanyu Lu, Scott Criswell, Jon-Paul Maria, Christopher T. Shelton, Edward Sachet, Joshua D. Caldwell. Filterless Nondispersive Infrared Sensing using Narrowband Infrared Emitting Metamaterials. ACS Photonics 2021, 8 (2) , 472-480. https://doi.org/10.1021/acsphotonics.0c01432
  13. Nelson W. Pech-May, Tobias Lauster, Markus Retsch. Design of Multimodal Absorption in the Mid-IR: A Metal Dielectric Metal Approach. ACS Applied Materials & Interfaces 2021, 13 (1) , 1921-1929. https://doi.org/10.1021/acsami.0c18160
  14. Andrea Mancini, Christopher R. Gubbin, Rodrigo Berté, Francesco Martini, Alberto Politi, Emiliano Cortés, Yi Li, Simone De Liberato, Stefan A. Maier. Near-Field Spectroscopy of Cylindrical Phonon-Polariton Antennas. ACS Nano 2020, 14 (7) , 8508-8517. https://doi.org/10.1021/acsnano.0c02784
  15. Zhigao Dai, Guangwei Hu, Qingdong Ou, Lei Zhang, Fengnian Xia, Francisco J. Garcia-Vidal, Cheng-Wei Qiu, Qiaoliang Bao. Artificial Metaphotonics Born Naturally in Two Dimensions. Chemical Reviews 2020, 120 (13) , 6197-6246. https://doi.org/10.1021/acs.chemrev.9b00592
  16. Guanyu Lu, Joshua Ryan Nolen, Thomas G. Folland, Marko J. Tadjer, Don Greg Walker, Joshua D. Caldwell. Narrowband Polaritonic Thermal Emitters Driven by Waste Heat. ACS Omega 2020, 5 (19) , 10900-10908. https://doi.org/10.1021/acsomega.0c00600
  17. Thomas G. Folland, Guanyu Lu, Autumn Bruncz, J. Ryan Nolen, Marko Tadjer, Joshua D. Caldwell. Vibrational Coupling to Epsilon-Near-Zero Waveguide Modes. ACS Photonics 2020, 7 (3) , 614-621. https://doi.org/10.1021/acsphotonics.0c00071
  18. Adam D. Dunkelberger, Daniel C. Ratchford, Andrea B. Grafton, Vanessa M. Breslin, Elizabeth S. Ryland, D. Scott Katzer, Kenan P. Fears, R. Joseph Weiblen, Igor Vurgaftman, Alexander J. Giles, Chase T. Ellis, Joseph G. Tischler, Joshua D. Caldwell, Jeffrey C. Owrutsky. Ultrafast Active Tuning of the Berreman Mode. ACS Photonics 2020, 7 (1) , 279-287. https://doi.org/10.1021/acsphotonics.9b01578
  19. Roberto Fenollosa, Fernando Ramiro-Manzano, Moisés Garín, Ramón Alcubilla. Thermal Emission of Silicon at Near-Infrared Frequencies Mediated by Mie Resonances. ACS Photonics 2019, 6 (12) , 3174-3179. https://doi.org/10.1021/acsphotonics.9b01513
  20. Riko Kiessling, Yujin Tong, Alexander J. Giles, Sandy Gewinner, Wieland Schöllkopf, Joshua D. Caldwell, Martin Wolf, Alexander Paarmann. Surface Phonon Polariton Resonance Imaging Using Long-Wave Infrared-Visible Sum-Frequency Generation Microscopy. ACS Photonics 2019, 6 (11) , 3017-3023. https://doi.org/10.1021/acsphotonics.9b01335
  21. Marta Autore, Lars Mester, Monika Goikoetxea, R. Hillenbrand. Substrate Matters: Surface-Polariton Enhanced Infrared Nanospectroscopy of Molecular Vibrations. Nano Letters 2019, 19 (11) , 8066-8073. https://doi.org/10.1021/acs.nanolett.9b03257
  22. Cassandra Phillips, Leonid Gilburd, Xiaoji G. Xu, Gilbert C. Walker. Surface and Volume Phonon Polaritons in Boron Nitride Nanotubes. The Journal of Physical Chemistry Letters 2019, 10 (17) , 4851-4856. https://doi.org/10.1021/acs.jpclett.9b01829
  23. Chih-Feng Wang, Terefe G. Habteyes, Ting Shan Luk, John F. Klem, Igal Brener, Hou-Tong Chen, Oleg Mitrofanov. Observation of Intersubband Polaritons in a Single Nanoantenna Using Nano-FTIR Spectroscopy. Nano Letters 2019, 19 (7) , 4620-4626. https://doi.org/10.1021/acs.nanolett.9b01623
  24. Daniel C. Ratchford, Christopher J. Winta, Ioannis Chatzakis, Chase T. Ellis, Nikolai C. Passler, Jonathan Winterstein, Pratibha Dev, Ilya Razdolski, Joseph R. Matson, Joshua R. Nolen, Joseph G. Tischler, Igor Vurgaftman, Michael B. Katz, Neeraj Nepal, Matthew T. Hardy, Jordan A. Hachtel, Juan-Carlos Idrobo, Thomas L. Reinecke, Alexander J. Giles, D. Scott Katzer, Nabil D. Bassim, Rhonda M. Stroud, Martin Wolf, Alexander Paarmann, Joshua D. Caldwell. Controlling the Infrared Dielectric Function through Atomic-Scale Heterostructures. ACS Nano 2019, 13 (6) , 6730-6741. https://doi.org/10.1021/acsnano.9b01275
  25. Ioannis Chatzakis, Roderick B. Davidson, II, Adam D. Dunkelberger, Song Liu, Jaime Freitas, James Culbertson, J. H. Edgar, Daniel C. Ratchford, Chase T. Ellis, Andrea B. Grafton, Alexander J. Giles, Joseph G. Tischler, Joshua D. Caldwell, Jeffrey C. Owrutsky. Rapid Bimolecular and Defect-Assisted Carrier Recombination in Hexagonal Boron Nitride. The Journal of Physical Chemistry C 2019, 123 (23) , 14689-14695. https://doi.org/10.1021/acs.jpcc.9b04118
  26. Hisashi Sumikura, Tao Wang, Peining Li, Ann-Katrin U. Michel, Andreas Heßler, Lena Jung, Martin Lewin, Matthias Wuttig, Dmitry N. Chigrin, Thomas Taubner. Highly Confined and Switchable Mid-Infrared Surface Phonon Polariton Resonances of Planar Circular Cavities with a Phase Change Material. Nano Letters 2019, 19 (4) , 2549-2554. https://doi.org/10.1021/acs.nanolett.9b00304
  27. Evan L. Runnerstrom, Kyle P. Kelley, Thomas G. Folland, J. Ryan Nolen, Nader Engheta, Joshua D. Caldwell, Jon-Paul Maria. Polaritonic Hybrid-Epsilon-near-Zero Modes: Beating the Plasmonic Confinement vs Propagation-Length Trade-Off with Doped Cadmium Oxide Bilayers. Nano Letters 2019, 19 (2) , 948-957. https://doi.org/10.1021/acs.nanolett.8b04182
  28. Martin Wagner, Devon S. Jakob, Steve Horne, Henry Mittel, Sergey Osechinskiy, Cassandra Phillips, Gilbert C. Walker, Chanmin Su, Xiaoji G. Xu. Ultrabroadband Nanospectroscopy with a Laser-Driven Plasma Source. ACS Photonics 2018, 5 (4) , 1467-1475. https://doi.org/10.1021/acsphotonics.7b01484
  29. Lisa V. Brown, Marcelo Davanco, Zhiyuan Sun, Andrey Kretinin, Yiguo Chen, Joseph R. Matson, Igor Vurgaftman, Nicholas Sharac, Alexander J. Giles, Michael M. Fogler, Takashi Taniguchi, Kenji Watanabe, Kostya S. Novoselov, Stefan A. Maier, Andrea Centrone, Joshua D. Caldwell. Nanoscale Mapping and Spectroscopy of Nonradiative Hyperbolic Modes in Hexagonal Boron Nitride Nanostructures. Nano Letters 2018, 18 (3) , 1628-1636. https://doi.org/10.1021/acs.nanolett.7b04476
  30. Christopher R. Gubbin and Simone De Liberato . Theory of Four-Wave-Mixing in Phonon Polaritons. ACS Photonics 2018, 5 (2) , 284-288. https://doi.org/10.1021/acsphotonics.7b00863
  31. Qiongqiong Chu, Fan Zhong, Xiaohe Shang, Ye Zhang, Shining Zhu, Hui Liu. Controlling thermal emission with metasurfaces and its applications. Nanophotonics 2024, Article ASAP.
  32. Bojin Lin, Hnin Lai Lai Aye, Kohei Ueno, Hiroshi Fujioka, Hideto Miyake, Yoshihiro Ishitani. Mid-infrared thermal radiation resonating with longitudinal-optical like phonon from n ++ -doped GaN–semi-insulating GaN grating structure. Journal of Physics D: Applied Physics 2024, 57 (3) , 035102. https://doi.org/10.1088/1361-6463/ad015e
  33. Bojin Lin, Hnin Lai Lai Aye, Koichi Seimiya, Thee Ei Khaing Shwe, Tatsuya Asaji, Yoshihiro Ishitani. Damping effect of longitudinal optical phonon—plasmon coupling on thermal radiation from surface micro-gratings on direct and indirect electronic transition type semiconductors. Applied Physics Letters 2024, 124 (3) https://doi.org/10.1063/5.0167702
  34. Hongjie Zhang, Xiang Li, Tianwei Qin, Lan Zhang, Wei Du, Peining Li, Tao Wang. In‐Plane Anisotropic Phonon Polaritonic Resonances with α‐MoO 3 Microdisks. physica status solidi (RRL) – Rapid Research Letters 2024, 18 (1) https://doi.org/10.1002/pssr.202300302
  35. Wuchao Huang, Thomas G. Folland, Fengsheng Sun, Zebo Zheng, Ningsheng Xu, Qiaoxia Xing, Jingyao Jiang, Huanjun Chen, Joshua D. Caldwell, Hugen Yan, Shaozhi Deng. In-plane hyperbolic polariton tuners in terahertz and long-wave infrared regimes. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-38214-0
  36. Hnin Lai Lai Aye, Bojin Lin, Yoshihiro Ishitani. Longitudinal-optical-phonon resonant thermal emission efficiency and spectrum control of metal-GaAs surface micro-stripe structures. Infrared Physics & Technology 2023, 134 , 104924. https://doi.org/10.1016/j.infrared.2023.104924
  37. Dong-min Kim, Jeongmin Nam, Bong Jae Lee. Plasmon thermal conductivity of thin Au and Ag films. Physical Review B 2023, 108 (20) https://doi.org/10.1103/PhysRevB.108.205418
  38. Liangliang Zhu, Liang Tian, Siyi Jiang, Lihua Han, Yunzheng Liang, Qing Li, Su Chen. Advances in photothermal regulation strategies: from efficient solar heating to daytime passive cooling. Chemical Society Reviews 2023, 52 (21) , 7389-7460. https://doi.org/10.1039/D3CS00500C
  39. Aurelian John‐Herpin, Andreas Tittl, Lucca Kühner, Felix Richter, Steven H. Huang, Gennady Shvets, Sang‐Hyun Oh, Hatice Altug. Metasurface‐Enhanced Infrared Spectroscopy: An Abundance of Materials and Functionalities. Advanced Materials 2023, 35 (34) https://doi.org/10.1002/adma.202110163
  40. Katja Diaz-Granados, Weiliang Ma, Guanyu Lu, Joseph Matson, Peining Li, Joshua D. Caldwell. Tailored thermal emission in bulk calcite through optic axis reorientation. Nanophotonics 2023, 12 (14) , 2929-2936. https://doi.org/10.1515/nanoph-2023-0005
  41. Mingze He, Joshua Ryan Nolen, Josh Nordlander, Angela Cleri, Guanyu Lu, Thiago Arnaud, Nathaniel S. McIlwaine, Katja Diaz‐Granados, Eli Janzen, Thomas G. Folland, James H. Edgar, Jon‐Paul Maria, Joshua D. Caldwell. Coupled Tamm Phonon and Plasmon Polaritons for Designer Planar Multiresonance Absorbers. Advanced Materials 2023, 35 (20) https://doi.org/10.1002/adma.202209909
  42. Hnin Lai Lai Aye, Kotaro Hayashi, Haruki Orito, Bojin Lin, Ikuya Suzuki, Bei Ma, Yoshihiro Ishitani. Structure‐Dependent Spectrum Characteristics of Infrared Radiation from Metal–Semiconductor Surface Microstructures. physica status solidi (a) 2023, 220 (8) https://doi.org/10.1002/pssa.202200538
  43. Shenyang Huang, Chong Wang, Yuangang Xie, Boyang Yu, Hugen Yan. Optical properties and polaritons of low symmetry 2D materials. Photonics Insights 2023, 2 (1) , R03. https://doi.org/10.3788/PI.2023.R03
  44. Hakan Salihoglu, Zhuo Li, Sheng Shen. Theory of thermal radiation from a nanoparticle array. Applied Physics Letters 2022, 121 (24) https://doi.org/10.1063/5.0117131
  45. J. Ryan Nolen, Angela Cleri, Kyle Kelley, Evan L. Runnerstrom, Josh Nordlander, Thomas G. Folland, Jon-Paul Maria, Joshua D. Caldwell. Engineering the Dispersion of Surface Plasmon Polariton/Epsilon‐Near‐Zero Modes through Modal Separation and Optical Confinement. Advanced Photonics Research 2022, 3 (12) https://doi.org/10.1002/adpr.202200146
  46. Irene Dolado, Carlos Maciel-Escudero, Elizaveta Nikulina, Evgenii Modin, Francesco Calavalle, Shu Chen, Andrei Bylinkin, Francisco Javier Alfaro-Mozaz, Jiahan Li, James H. Edgar, Fèlix Casanova, Saül Vélez, Luis E. Hueso, Ruben Esteban, Javier Aizpurua, Rainer Hillenbrand. Remote near-field spectroscopy of vibrational strong coupling between organic molecules and phononic nanoresonators. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-34393-4
  47. Tianji Liu, Cheng Guo, Wei Li, Shanhui Fan. Thermal photonics with broken symmetries. eLight 2022, 2 (1) https://doi.org/10.1186/s43593-022-00025-z
  48. Zahra Rahimian Omam, Amir Ghobadi, Bahram Khalichi, Ekmel Ozbay. Fano resonance in a dolomite phase-change multilayer design for dynamically tunable omnidirectional monochromatic thermal emission. Optics Letters 2022, 47 (22) , 5781. https://doi.org/10.1364/OL.475253
  49. Marcel Kohlmann, Christian Denker, Nikolai C. Passler, Jana Kredl, Martin Wolf, Markus Münzenberg, Alexander Paarmann. Second harmonic generation from grating-coupled hybrid plasmon–phonon polaritons. Applied Physics Letters 2022, 121 (19) https://doi.org/10.1063/5.0113000
  50. Maoning Wang, Tao Wang, Oluwafemi S. Ojambati, Thorin Jake Duffin, Keehoon Kang, Takhee Lee, Elke Scheer, Dong Xiang, Christian A. Nijhuis. Plasmonic phenomena in molecular junctions: principles and applications. Nature Reviews Chemistry 2022, 6 (10) , 681-704. https://doi.org/10.1038/s41570-022-00423-4
  51. Ramin Pouria, Philippe K. Chow, Tom Tiwald, Saman Zare, Sheila Edalatpour. Far-field thermal radiation from short-pitch silicon-carbide nanopillar arrays. Applied Physics Letters 2022, 121 (13) https://doi.org/10.1063/5.0109819
  52. Weixiang Xia, Gaige Zheng. Spectral analysis of localized surface phonon polaritons in resonant silicon carbide hollow cylinder array. Journal of Optics 2022, 24 (9) , 095101. https://doi.org/10.1088/2040-8986/ac83d7
  53. Bojin Lin, Hnin Lai Lai Aye, Yuto Imae, Kotaro Hayashi, Haruki Orito, Bei Ma, Shigeyuki Kuboya, Hideto Miyake, Yoshihiro Ishitani. Thermal radiation resonating with longitudinal optical phonon from surface micro-stripe structures on metal-gallium nitride and sapphire. Materials Science in Semiconductor Processing 2022, 147 , 106726. https://doi.org/10.1016/j.mssp.2022.106726
  54. Hodjat Hajian, Ivan D. Rukhlenko, George W. Hanson, Ekmel Ozbay. Anisotropic absorber and tunable source of MIR radiation based on a black phosphorus-SiC metasurface. Photonics and Nanostructures - Fundamentals and Applications 2022, 50 , 101020. https://doi.org/10.1016/j.photonics.2022.101020
  55. Xin Hu, Tsz Wing Lo, Andrea Mancini, Christopher R. Gubbin, Francesco Martini, Jian Zhang, Zhongmiao Gong, Alberto Politi, Simone De Liberato, Xuefeng Zhang, Dangyuan Lei, Stefan A. Maier. Near-field nano-spectroscopy of strong mode coupling in phonon-polaritonic crystals. Applied Physics Reviews 2022, 9 (2) https://doi.org/10.1063/5.0087489
  56. Dheeraj Pratap, Jitendra Kumar Pradhan, S. Anantha Ramakrishna. Experimental observation of Berreman modes in an uniaxial anisotropic nanoporous alumina film on aluminum substrate. Optics Letters 2022, 47 (10) , 2554. https://doi.org/10.1364/OL.456109
  57. Kaizhen Liu, Guangyan Huang, Xiang Li, Guangpeng Zhu, Wei Du, Tao Wang. Vibrational Strong Coupling between Surface Phonon Polaritons and Organic Molecules via Single Quartz Micropillars. Advanced Materials 2022, 34 (8) https://doi.org/10.1002/adma.202109088
  58. Christopher R. Gubbin, Simone De Liberato, Thomas G. Folland. Surface phonon polaritons for infrared optoelectronics. Journal of Applied Physics 2022, 131 (3) https://doi.org/10.1063/5.0064234
  59. Yoshiaki Nishijima, Shinya Morimoto, Armandas Balčytis, Tomoki Hashizume, Ryosuke Matsubara, Atsushi Kubono, Naoki To, Meguya Ryu, Junko Morikawa, Saulius Juodkazis. Coupling of molecular vibration and metasurface modes for efficient mid-infrared emission. Journal of Materials Chemistry C 2022, 10 (2) , 451-462. https://doi.org/10.1039/D1TC04519A
  60. Christopher R. Gubbin, Simone De Liberato. Quantum Theory of Longitudinal-Transverse Polaritons in Nonlocal Thin Films. Physical Review Applied 2022, 17 (1) https://doi.org/10.1103/PhysRevApplied.17.014037
  61. Zhongjun Jiang, Yingjian Liu, Liang Wang, . Applications of optically and electrically driven nanoscale bowtie antennas. Opto-Electronic Science 2022, 1 (4) , 210004-210004. https://doi.org/10.29026/oes.2022.210004
  62. Mingze He, J. Ryan Nolen, Josh Nordlander, Angela Cleri, Nathaniel S. McIlwaine, Yucheng Tang, Guanyu Lu, Thomas G. Folland, Bennett A. Landman, Jon-Paul Maria, Joshua D. Caldwell. Deterministic inverse design of Tamm plasmon thermal emitters with multi-resonant control. Nature Materials 2021, 20 (12) , 1663-1669. https://doi.org/10.1038/s41563-021-01094-0
  63. Mingze He, Lucas Lindsay, Thomas E. Beechem, Thomas Folland, Joseph Matson, Kenji Watanabe, Andrey Zavalin, Akira Ueda, Warren. E. Collins, Takashi Taniguchi, Joshua D. Caldwell. Phonon engineering of boron nitride via isotopic enrichment. Journal of Materials Research 2021, 36 (21) , 4394-4403. https://doi.org/10.1557/s43578-021-00426-9
  64. Isobel Bicket, Connor Wong, Joshua Tefal, Nabil Bassim, Maureen Joel Lagos. Probing Phonon Polaritons Across Nanoscale Gaps. Microscopy and Microanalysis 2021, 27 (S1) , 702-704. https://doi.org/10.1017/S1431927621002877
  65. Qiong Wu, Lingfei Wang, Xianyu Ao. Narrowband mid-infrared absorber based on a mirror-backed low-index dielectric lattice. Journal of the Optical Society of America B 2021, 38 (8) , 2306. https://doi.org/10.1364/JOSAB.424288
  66. Adam C. Overvig, Sander A. Mann, Andrea Alù. Thermal Metasurfaces: Complete Emission Control by Combining Local and Nonlocal Light-Matter Interactions. Physical Review X 2021, 11 (2) https://doi.org/10.1103/PhysRevX.11.021050
  67. Bo Qiang, Alexander M. Dubrovkin, Harish N. S. Krishnamoorthy, Qian Wang, Nikolay I. Zheludev, Qi Jie Wang. Germanium‐on‐Carborundum Surface Phonon‐Polariton Infrared Metamaterial. Advanced Optical Materials 2021, 9 (5) https://doi.org/10.1002/adom.202001652
  68. En-Ming You, Yiqin Chen, Jun Yi, Zhao-Dong Meng, Qian Chen, Song-Yuan Ding, Huigao Duan, Martin Moskovits, Zhong-Qun Tian, , , . Nanobridged rhombic antennas supporting both dipolar and high-order plasmonic modes with spatially superimposed hotspots in the mid-infrared. Opto-Electronic Advances 2021, 4 (12) , 210076-210076. https://doi.org/10.29026/oea.2021.210076
  69. Alexander M. Dubrovkin, Bo Qiang, Teddy Salim, Donguk Nam, Nikolay I. Zheludev, Qi Jie Wang. Resonant nanostructures for highly confined and ultra-sensitive surface phonon-polaritons. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-15767-y
  70. Christopher R. Gubbin, Simone De Liberato. Nonlocal scattering matrix description of anisotropic polar heterostructures. Physical Review B 2020, 102 (23) https://doi.org/10.1103/PhysRevB.102.235301
  71. Weikang Dong, Ruishi Qi, Tiansheng Liu, Yi Li, Ning Li, Ze Hua, Zirui Gao, Shuyuan Zhang, Kaihui Liu, Jiandong Guo, Peng Gao. Broad‐Spectral‐Range Sustainability and Controllable Excitation of Hyperbolic Phonon Polaritons in α‐MoO 3. Advanced Materials 2020, 32 (46) https://doi.org/10.1002/adma.202002014
  72. Angela Vasanelli, Yanko Todorov, Baptiste Dailly, Sébastien Cosme, Djamal Gacemi, Andrew Haky, Isabelle Sagnes, Carlo Sirtori. Semiconductor quantum plasmons for high frequency thermal emission. Nanophotonics 2020, 10 (1) , 607-615. https://doi.org/10.1515/nanoph-2020-0413
  73. Takuhiro Kumagai, Naoki To, Armandas Balčytis, Gediminas Seniutinas, Saulius Juodkazis, Yoshiaki Nishijima. Kirchhoff’s Thermal Radiation from Lithography-Free Black Metals. Micromachines 2020, 11 (9) , 824. https://doi.org/10.3390/mi11090824
  74. Marco Centini, Maria Cristina Larciprete, Roberto Li Voti, Mario Bertolotti, Concita Sibilia, Mauro Antezza. Hybrid thermal Yagi-Uda nanoantennas for directional and narrow band long-wavelength IR radiation sources. Optics Express 2020, 28 (13) , 19334. https://doi.org/10.1364/OE.389837
  75. Bin Wang, Yuting Zou, Huanyu Lu, Wenchi Kong, Subhash C. Singh, Chen Zhao, Chaonan Yao, Jun Xing, Xin Zheng, Zhi Yu, Cunzhu Tong, Wei Xin, Weili Yu, Bo Zhao, Chunlei Guo. Boosting Perovskite Photodetector Performance in NIR Using Plasmonic Bowtie Nanoantenna Arrays. Small 2020, 16 (24) https://doi.org/10.1002/smll.202001417
  76. Thomas G. Mayerhöfer, Susanne Pahlow, Jürgen Popp. Structures for surface-enhanced nonplasmonic or hybrid spectroscopy. Nanophotonics 2020, 9 (4) , 741-760. https://doi.org/10.1515/nanoph-2020-0037
  77. Vytautas Janonis, Saulius Tumėnas, Pawel Prystawko, Jacek Kacperski, Irmantas Kašalynas. Investigation of n -type gallium nitride grating for applications in coherent thermal sources. Applied Physics Letters 2020, 116 (11) https://doi.org/10.1063/1.5143220
  78. Benedikt Hauer, Claire E. Marvinney, Martin Lewin, Nadeemullah A. Mahadik, Jennifer K. Hite, Nabil Bassim, Alexander J. Giles, Robert E. Stahlbush, Joshua D. Caldwell, Thomas Taubner. Exploiting Phonon‐Resonant Near‐Field Interaction for the Nanoscale Investigation of Extended Defects. Advanced Functional Materials 2020, 30 (10) https://doi.org/10.1002/adfm.201907357
  79. Austin Howes, Joshua R. Nolen, Joshua D. Caldwell, Jason Valentine. Near‐Unity and Narrowband Thermal Emissivity in Balanced Dielectric Metasurfaces. Advanced Optical Materials 2020, 8 (4) https://doi.org/10.1002/adom.201901470
  80. J. Ryan Nolen, Evan L. Runnerstrom, Kyle P. Kelley, Ting S. Luk, Thomas G. Folland, Angela Cleri, Jon-Paul Maria, Joshua D. Caldwell. Ultraviolet to far-infrared dielectric function of n -doped cadmium oxide thin films. Physical Review Materials 2020, 4 (2) https://doi.org/10.1103/PhysRevMaterials.4.025202
  81. Stavroula Foteinopoulou, Ganga Chinna Rao Devarapu, Ganapathi S. Subramania, Sanjay Krishna, Daniel Wasserman. Phonon-polaritonics: enabling powerful capabilities for infrared photonics. Nanophotonics 2019, 8 (12) , 2129-2175. https://doi.org/10.1515/nanoph-2019-0232
  82. Christopher R. Gubbin, Rodrigo Berte, Michael A. Meeker, Alexander J. Giles, Chase T. Ellis, Joseph G. Tischler, Virginia D. Wheeler, Stefan A. Maier, Joshua D. Caldwell, Simone De Liberato. Hybrid longitudinal-transverse phonon polaritons. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-09414-4
  83. Thomas E. Beechem, Christopher B. Saltonstall, Tristan Gilbert, Joseph Matson, Fabian Ugwu, Richard Kasica, Francisco J. Bezares, Jason Valentine, Joshua D. Caldwell. Influence of spatial dispersion on spectral tuning of phonon-polaritons. Physical Review B 2019, 100 (20) https://doi.org/10.1103/PhysRevB.100.205419
  84. Xingxing Liu, Zhiwei Li, Zhengji Wen, Mingfei Wu, Jialiang Lu, Xu Chen, Xinchao Zhao, Tao Wang, Ruonan Ji, Yafeng Zhang, Liaoxin Sun, Bo Zhang, Hao Xu, Jing Zhou, Jiaming Hao, Shaowei Wang, Xiaoshuang Chen, Ning Dai, Wei Lu, Xuechu Shen. Large-area, lithography-free, narrow-band and highly directional thermal emitter. Nanoscale 2019, 11 (42) , 19742-19750. https://doi.org/10.1039/C9NR06181A
  85. Yuepei Cai, Yong Huang, Keyong Zhu, Huihai Wu. Direction-independent dual-band perfect absorption induced by fundamental magnetic polaritons. Optics Express 2019, 27 (20) , A1431. https://doi.org/10.1364/OE.27.0A1431
  86. Qing Ding, Kimani C Toussaint. Relaying of the local enhanced electric-field using stacked gold bowtie nanoantennas. Nanotechnology 2019, 30 (36) , 365202. https://doi.org/10.1088/1361-6528/ab2606
  87. Yoshihiro Ishitani, Keisuke Ebisawa, Daichi Tanaka, Nozomi Aihara, Bei Ma, Ken Morita. Longitudinal Optical Phonon Resonating Dipole Radiation from Metal-Semiconductor Composite Structures and Quantum Interference. 2019, 1-2. https://doi.org/10.1109/IRMMW-THz.2019.8874466
  88. Lu Cai, Qiang Li, Jianbo Yu, Hao Luo, Kaikai Du, Min Qiu. Simultaneous single-peak and narrowband thermal emission enabled by hybrid metal-polar dielectric structures. Applied Physics Letters 2019, 115 (9) https://doi.org/10.1063/1.5100938
  89. Joshua D. Caldwell, Igor Aharonovich, Guillaume Cassabois, James H. Edgar, Bernard Gil, D. N. Basov. Photonics with hexagonal boron nitride. Nature Reviews Materials 2019, 4 (8) , 552-567. https://doi.org/10.1038/s41578-019-0124-1
  90. T. G. Folland, L. Nordin, D. Wasserman, J. D. Caldwell. Probing polaritons in the mid- to far-infrared. Journal of Applied Physics 2019, 125 (19) https://doi.org/10.1063/1.5090777
  91. Dario Ballarini, Simone De Liberato. Polaritonics: from microcavities to sub-wavelength confinement. Nanophotonics 2019, 8 (4) , 641-654. https://doi.org/10.1515/nanoph-2018-0188
  92. Bo Qiang, Alexander M. Dubrovkin. High Q-factor controllable phononic modes in hybrid phononic–dielectric structures. Advanced Photonics 2019, 1 (02) , 1. https://doi.org/10.1117/1.AP.1.2.026001
  93. Jiahua Duan, Yafeng Li, Yixi Zhou, Yuan Cheng, Jianing Chen. Near-field optics on flatland: from noble metals to van der Waals materials. Advances in Physics: X 2019, 4 (1) , 1593051. https://doi.org/10.1080/23746149.2019.1593051
  94. Haomin Wang, Le Wang, Devon S. Jakob, Xiaoji G. Xu. Tomographic and multimodal scattering-type scanning near-field optical microscopy with peak force tapping mode. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-04403-5
  95. Claire Li, Valentina Krachmalnicoff, Patrick Bouchon, Julien Jaeck, Nathalie Bardou, Riad Haïdar, Yannick De Wilde. Near-Field and Far-Field Thermal Emission of an Individual Patch Nanoantenna. Physical Review Letters 2018, 121 (24) https://doi.org/10.1103/PhysRevLett.121.243901
  96. Yoshihiro Ishitani, Tomoyuki Aoki, Hidenori Funabashi, Ken Morita. Selective thermal radiation at longitudinal optical phonon energy under geometric condition of metal-semiconductor mesa stripe structures. Applied Physics Letters 2018, 113 (19) https://doi.org/10.1063/1.5047458
  97. Gokhan Bakan, Sencer Ayas, Murat Serhatlioglu, Caglar Elbuken, Aykutlu Dana. Invisible Thin‐Film Patterns with Strong Infrared Emission as an Optical Security Feature. Advanced Optical Materials 2018, 6 (21) https://doi.org/10.1002/adom.201800613
  98. Nicholas Sharac, Alexander J. Giles, Keith Perkins, Joseph Tischler, Francisco Bezares, Sharka M. Prokes, Thomas G. Folland, Orest J. Glembocki, Joshua D. Caldwell. Implementation of plasmonic band structure to understand polariton hybridization within metamaterials. Optics Express 2018, 26 (22) , 29363. https://doi.org/10.1364/OE.26.029363
  99. Takuya Okamoto, Toshio Sugaya, Naoki Fujimura, Kou Ishikawa, Yukio Kawano. Near-field infrared investigations of an arm-terminated spiral structure with bow-tie probe. Journal of Physics Communications 2018, 2 (10) , 105004. https://doi.org/10.1088/2399-6528/aadec3
  100. Ioannis Chatzakis, Athith Krishna, James Culbertson, Nicholas Sharac, Alexander J. Giles, Michael G. Spencer, Joshua D. Caldwell. Strong confinement of optical fields using localized surface phonon polaritons in cubic boron nitride. Optics Letters 2018, 43 (9) , 2177. https://doi.org/10.1364/OL.43.002177
Load all citations
  • Abstract

    Figure 1

    Figure 1. Array of low-loss SiC-bowtie nanoantennas. (a) Dielectric permittivity (ε = ε1 + iε2) of the used 4H-SiC substrate: black lines, εo for the o-axis, red lines, εe for the e-axis (Supporting Information S1). The ratio η (η = |ε21|) is provided in the inset. (b) Sketch of one unit cell of the SiC bowtie array. (c) SEM image of an array of nanoantennas with a large gap size, taken at 45°. (d) SEM image of an array of nanoantennas with a small gap size, taken at 0°. All the scale bars indicate 1 μm.

    Figure 2

    Figure 2. IR reflectance and thermal emission spectra of the SiC bowtie nanoantennas. (a) Room-temperature (20 °C), high-temperature (350 °C) reflectance, and high-temperature (350 °C) thermal emittance spectrum with four distinct modes (A1 to A4). The gap g is ∼50 nm. (b) Thermal emittance spectra for all fabricated gap sizes. In all measurements, the electric field is parallel to the antenna axis.

    Figure 3

    Figure 3. Reflectance spectra of the SiC bowtie nanoantenna arrays. (a) Experimentally obtained FTIR reflectance spectra (at room temperature) of arrays of the SiC-bowtie nanoantennas with different gap sizes, by keeping the antenna width W = 600 nm and length L = 600 nm. During the measurements, an electric field parallel to the antenna axis has been used (TM polarization, as indicated in the inset). Four major dips (A1–A4) are found in the measured spectra. (b) Simulated gap-dependent reflectance spectra of SiC-bowtie nanoantenna arrays. (c) Resonance peaks of mode A1 to A4 as a function of bowtie gap g. Open (closed) scatter points indicate the simulated (experimental) results. The dashed lines are a guide for the eye. (d) Simulated surface-charge density distribution of the SiC bowtie array with the gap size g = 50 nm at the A1 to A4 frequency modes, respectively.

    Figure 4

    Figure 4. Calculated (a) and experimentally measured (b–d) near-field patterns of resonant modes in SiC bowties: (a) Calculated z-axis component of total electric fields (top, amplitude |Ez|; bottom, phase Arg(Ez)) calculated at a plane 10 nm above the bowtie (g = 50 nm). All the images are normalized to the same scale. For highlighting the fields on the bowtie top surfaces, the outer area is covered by a mask. Calculations are for three frequencies: 886 cm–1 (A2), 910 cm–1 (A3), 954 cm–1 (A4), corresponding to the numerical values of mode resonant frequencies. (b) Measured distribution of optical near fields (amplitude s2 and phase φ2; see Methods) on the top surface of representative bowtie antennas with g ≈ 50 nm at three wavelengths: 888 cm–1 (close to A2), 905 cm–1 (close to A3), 954 cm–1 (close to A4). The incident (p-polarized) light is from a line-tunable mid-infrared CO2 laser. These images are recorded using a dielectric Si tip to suppress the potential tip influence as much as possible. The recorded images reveal distinct mode behaviors in the bowtie antennas. (c, d) Near-field amplitude s2 (c) and phase φ2 (d) of a bowtie antenna array with g ≈ 50 nm at the wavenumber of 888 cm–1. In (b)–(d), the white arrows indicate the direction of electric fields. All the white scale bars indicate 1 μm. The I and II in c indicate two bowtie antennas with different resonance patterns.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 50 other publications.

    1. 1
      Kraemer, D.; Poudel, B.; Feng, H.-P.; Caylor, J. C.; Yu, B.; Yan, X.; Ma, Y.; Wang, X.; Wang, D.; Muto, A.; McEnaney, K.; Chiesa, M.; Ren, Z.; Chen, G. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 2011, 10, 532538,  DOI: 10.1038/nmat3013
    2. 2
      Lenert, A.; Bierman, D. M.; Nam, Y.; Chan, W. R.; Celanović, I.; Soljačić, M.; Wang, E. N. A nanophotonic solar thermophotovoltaic device. Nat. Nanotechnol. 2014, 9, 126130,  DOI: 10.1038/nnano.2013.286
    3. 3
      Huth, F.; Schnell, M.; Wittborn, J.; Ocelic, N.; Hillenbrand, R. Infrared-spectroscopic nanoimaging with a thermal source. Nat. Mater. 2011, 10, 352356,  DOI: 10.1038/nmat3006
    4. 4
      Huth, F.; Govyadinov, A.; Amarie, S.; Nuansing, W.; Keilmann, F.; Hillenbrand, R. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Lett. 2012, 12, 39733978,  DOI: 10.1021/nl301159v
    5. 5
      Amenabar, I.; Poly, S.; Nuansing, W.; Hubrich, E. H.; Govyadinov, A. A.; Huth, F.; Krutokhvostov, R.; Zhang, L.; Knez, M.; Heberle, J.; Bittner, A. M.; Hillenbrand, R. Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nat. Commun. 2013, 4, 2890,  DOI: 10.1038/ncomms3890
    6. 6
      Rogalski, A. History of infrared detectors. Opto-Electron. Rev. 2012, 20, 279308,  DOI: 10.2478/s11772-012-0037-7
    7. 7
      Hodgkinson, J.; Tatam, R. P. Optical gas sensing: a review. Meas. Sci. Technol. 2013, 24, 012004,  DOI: 10.1088/0957-0233/24/1/012004
    8. 8
      Inoue, T.; De Zoysa, M.; Asano, T.; Noda, S. Filter-free nondispersive infrared sensing using narrow-bandwidth mid-infrared thermal emitters. Appl. Phys. Express 2014, 7, 012103,  DOI: 10.7567/APEX.7.012103
    9. 9
      Inoue, T.; De Zoysa, M.; Asano, T.; Noda, S. Realization of narrowband thermal emission with optical nanostructures. Optica 2015, 2, 2735,  DOI: 10.1364/OPTICA.2.000027
    10. 10
      De Zoysa, M.; Asano, T.; Mochizuki, K.; Oskooi, A.; Inoue, T.; Noda, S. Conversion of broadband to narrowband thermal emission through energy recycling. Nat. Photonics 2012, 6, 535539,  DOI: 10.1038/nphoton.2012.146
    11. 11
      Inoue, T.; De Zoysa, M.; Asano, T.; Noda, S. High-Q mid-infrared thermal emitters operating with high power-utilization efficiency. Opt. Express 2016, 24, 1510115109,  DOI: 10.1364/OE.24.015101
    12. 12
      Ikeda, K.; Miyazaki, H. T.; Kasaya, T.; Yamamoto, K.; Inoue, Y.; Fujimura, K.; Kanakugi, T.; Okada, M.; Hatade, K.; Kitagawa, S. Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities. Appl. Phys. Lett. 2008, 92, 021117,  DOI: 10.1063/1.2834903
    13. 13
      Liu, X.; Tyler, T.; Starr, T.; Starr, A. F.; Jokerst, N. M.; Padilla, W. J. Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett. 2011, 107, 045901,  DOI: 10.1103/PhysRevLett.107.045901
    14. 14
      Dao, T. D.; Chen, K.; Ishii, S.; Ohi, A.; Nabatame, T.; Kitajima, M.; Nagao, T. Infrared perfect absorbers fabricated by colloidal mask etching of Al–Al2O3–Al trilayers. ACS Photonics 2015, 2, 964970,  DOI: 10.1021/acsphotonics.5b00195
    15. 15
      Biener, G.; Dahan, N.; Niv, A.; Kleiner, V.; Hasman, E. Highly coherent thermal emission obtained by plasmonic bandgap structures. Appl. Phys. Lett. 2008, 92, 081913,  DOI: 10.1063/1.2883948
    16. 16
      Greffet, J. J.; Carminati, R.; Joulain, K.; Mulet, J. P.; Mainguy, S.; Chen, Y. Coherent emission of light by thermal sources. Nature 2002, 416, 6164,  DOI: 10.1038/416061a
    17. 17
      Dahan, N.; Niv, A.; Biener, G.; Gorodetski, Y.; Kleiner, V.; Hasman, E. Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves. Phys. Rev. B: Condens. Matter Mater. Phys. 2007, 76, 045427,  DOI: 10.1103/PhysRevB.76.045427
    18. 18
      Hasman, E.; Kleiner, V.; Dahan, N.; Gorodetski, Y.; Frischwasser, K.; Balin, I. Manipulation of thermal emission by use of micro and nanoscale structures. J. Heat Transfer 2012, 134, 031023,  DOI: 10.1115/1.4005160
    19. 19
      Arnold, C.; Marquier, F.; Garin, M.; Pardo, F.; Collin, S.; Bardou, N.; Pelouard, J. L.; Greffet, J. J. Coherent thermal infrared emission by two-dimensional silicon carbide gratings. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 86, 035316,  DOI: 10.1103/PhysRevB.86.035316
    20. 20
      Schuller, J. A.; Taubner, T.; Brongersma, M. L. Optical antenna thermal emitters. Nat. Photonics 2009, 3, 658661,  DOI: 10.1038/nphoton.2009.188
    21. 21
      Adachi, S. Optical Constants of Crystalline and Amorphous Semiconductors; Springer Science & Business Media: New York, 2013.
    22. 22
      Fox, M. Optical Properties of Solids; Oxford University Press: New York, 2010.
    23. 23
      Caldwell, J. D.; Glembocki, O. J.; Francescato, Y.; Sharac, N.; Giannini, V.; Bezares, F. J.; Long, J. P.; Owrutsky, J. C.; Vurgaftman, I.; Tischler, J. G.; Wheeler, V. D.; Bassim, N. D.; Shirey, L. M.; Kasica, R.; Maier, S. A. Low-loss, extreme subdiffraction photon confinement via silicon carbide localized surface phonon polariton resonators. Nano Lett. 2013, 13, 36903697,  DOI: 10.1021/nl401590g
    24. 24
      Chen, Y.; Francescato, Y.; Caldwell, J. D.; Giannini, V.; Maß, T. W.; Glembocki, O. J.; Bezares, F. J.; Taubner, T.; Kasica, R.; Hong, M.; Maier, S. A. Spectral tuning of localized surface phonon polariton resonators for low-loss mid-ir applications. ACS Photonics 2014, 1, 718724,  DOI: 10.1021/ph500143u
    25. 25
      Wang, T.; Li, P.; Hauer, B.; Chigrin, D. N.; Taubner, T. Optical properties of single infrared resonant circular microcavities for surface phonon polaritons. Nano Lett. 2013, 13, 50515055,  DOI: 10.1021/nl4020342
    26. 26
      Gubbin, C. R.; Martini, F.; Politi, A.; Maier, S. A.; De Liberato, S. Strong and coherent coupling between localized and propagating phonon polaritons. Phys. Rev. Lett. 2016, 116, 246402,  DOI: 10.1103/PhysRevLett.116.246402
    27. 27
      Caldwell, J. D.; Kretinin, A. V.; Chen, Y. G.; Giannini, V.; Fogler, M. M.; Francescato, Y.; Ellis, C. T.; Tischler, J. G.; Woods, C. R.; Giles, A. J.; Hong, M.; Watanabe, K.; Taniguchi, T.; Maier, S. A.; Novoselov, K. S. Sub-diffraction, volume-confined polaritons in the natural hyperbolic material: hexagonal boron nitride. Nat. Commun. 2014, 5, 5221,  DOI: 10.1038/ncomms6221
    28. 28
      Dai, S.; Fei, Z.; Ma, Q.; Rodin, A. S.; Wagner, M.; McLeod, A. S.; Liu, M. K.; Gannett, W.; Regan, W.; Watanabe, K.; Taniguchi, T.; Thiemens, M.; Dominguez, G.; Neto, A. H. C.; Zettl, A.; Keilmann, F.; Jarillo-Herrero, P.; Fogler, M. M.; Basov, D. N. Tunable phonon polaritons in atomically thin van der waals crystals of boron Nitride. Science 2014, 343, 1125,  DOI: 10.1126/science.1246833
    29. 29
      Dai, S.; Ma, Q.; Andersen, T.; Mcleod, A. S.; Fei, Z.; Liu, M. K.; Wagner, M.; Watanabe, K.; Taniguchi, T.; Thiemens, M.; Keilmann, F.; Jarillo-Herrero, P.; Fogler, M. M.; Basov, D. N. Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nat. Commun. 2015, 6, 6963,  DOI: 10.1038/ncomms7963
    30. 30
      Li, P.; Lewin, M.; Kretinin, A. V.; Caldwell, J. D.; Novoselov, K. S.; Taniguchi, T.; Watanabe, K.; Gaussmann, F.; Taubner, T. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging. Nat. Commun. 2015, 6, 7507,  DOI: 10.1038/ncomms8507
    31. 31
      Hafeli, A. K.; Rephaeli, E.; Fan, S. H.; Cahill, D. G.; Tiwald, T. E. Temperature dependence of surface phonon polaritons from a quartz grating. J. Appl. Phys. 2011, 110, 043517,  DOI: 10.1063/1.3624603
    32. 32
      Feng, K.; Streyer, W.; Islam, S. M.; Verma, J.; Jena, D.; Wasserman, D.; Hoffman, A. J. Localized surface phonon polariton resonances in polar gallium nitride. Appl. Phys. Lett. 2015, 107, 081108,  DOI: 10.1063/1.4929502
    33. 33
      Caldwell, J. D.; Lindsay, L.; Giannini, V.; Vurgaftman, I.; Reinecke, T. L.; Maier, S. A.; Glembocki, O. J. Low-loss, infrared and terahertz nanophotonics with surface phonon polaritons. Nanophotonics 2014, 4, 21928614,  DOI: 10.1515/nanoph-2014-0003
    34. 34
      Caldwell, J. D.; Vurgaftman, I.; Tischler, J. G.; Glembocki, O. J.; Owrutsky, J. C.; Reinecke, T. L. Atomic-scale photonic hybrids: towards designer and multifunctional nanophotonics. Nat. Nanotechnol. 2016, 11, 915,  DOI: 10.1038/nnano.2015.305
    35. 35
      Kinkhabwala, A.; Yu, Z.; Fan, S.; Avlasevich, Y.; Müllen, K.; Moerner, W. E. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics 2009, 3, 654657,  DOI: 10.1038/nphoton.2009.187
    36. 36
      Koh, A. L.; Fernández-Domínguez, A. I.; McComb, D. W.; Maier, S. A.; Yang, J. K. W. High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures. Nano Lett. 2011, 11, 13231330,  DOI: 10.1021/nl104410t
    37. 37
      Duan, H.; Fernández-Domínguez, A. I.; Bosman, M.; Maier, S. A.; Yang, J. K. W. Nanoplasmonics: classical down to the nanometer scale. Nano Lett. 2012, 12, 16831689,  DOI: 10.1021/nl3001309
    38. 38
      Gonzalez, F. J.; Boreman, G. D. Comparison of dipole, bowtie, spiral and log-periodic IR antennas. Infrared Phys. Technol. 2005, 46, 418428,  DOI: 10.1016/j.infrared.2004.09.002
    39. 39
      Cuadrado, A.; Silva-López, M.; González, F. J.; Alda, J. Robustness of antenna-coupled distributed bolometers. Opt. Lett. 2013, 38, 37843787,  DOI: 10.1364/OL.38.003784
    40. 40
      Nordlander, P.; Oubre, C.; Prodan, E.; Li, K.; Stockman, M. I. Plasmon hybridization in nanoparticle dimers. Nano Lett. 2014, 4, 899903,  DOI: 10.1021/nl049681c
    41. 41
      Halas, N. J.; Lal, S.; Chang, W. S.; Link, S.; Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 2011, 111, 39133961,  DOI: 10.1021/cr200061k
    42. 42
      Wiener, A.; Duan, H.; Bosman, M.; Horsfield, A. P.; Pendry, J. B.; Yang, J. K. W.; Maier, S. A.; Fernandez-Dominguez, A. I. Electron-energy loss study of nonlocal effects in connected plasmonic nanoprisms. ACS Nano 2013, 7, 62876296,  DOI: 10.1021/nn402323t
    43. 43
      Tan, S. F.; Wu, L.; Yang, J. K. W.; Bai, P.; Bosman, M.; Nijhuis, C. A. Quantum plasmon resonances controlled by molecular tunnel junctions. Science 2014, 343, 14961499,  DOI: 10.1126/science.1248797
    44. 44
      Zhu, W.; Esteban, R.; Borisov, A. G.; Baumberg, J. J.; Nordlander, P.; Lezec, H. J.; Aizpurua, J.; Crozier, K. B. Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nat. Commun. 2016, 7, 11495,  DOI: 10.1038/ncomms11495
    45. 45
      García-Etxarri, A.; Romero, I.; de Abajo, F. J. G.; Hillenbrand, R.; Aizpurua, J. Influence of the tip in near-field imaging of nanoparticle plasmonic modes: Weak and strong coupling regimes. Phys. Rev. B: Condens. Matter Mater. Phys. 2009, 79, 125439,  DOI: 10.1103/PhysRevB.79.125439
    46. 46
      Schnell, M.; Garcia-Etxarri, A.; Huber, A. J.; Crozier, K.; Aizpurua, J.; Hillenbrand, R. Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nat. Photonics 2009, 3, 287291,  DOI: 10.1038/nphoton.2009.46
    47. 47
      Alonso-González, P.; Albella, P.; Golmar, F.; Arzubiaga, L.; Casanova, F.; Hueso, L. E.; Aizpurua, J.; Hillenbrand, R. Visualizing the near-field coupling and interference of bonding and anti-bonding modes in infrared dimer nanoantennas. Opt. Express 2013, 21, 12701280,  DOI: 10.1364/OE.21.001270
    48. 48
      Spann, B. T.; Compton, R.; Ratchford, D.; Long, J. P.; Dunkelberger, A. D.; Klein, P. B.; Giles, A. J.; Caldwell, J. D.; Owrutsky, J. C. Photoinduced tunability of the reststrahlen band in 4H–SiC. Phys. Rev. B: Condens. Matter Mater. Phys. 2016, 93, 085205,  DOI: 10.1103/PhysRevB.93.085205
    49. 49
      Li, P.; Yang, X.; Maß, T. W.; Hanss, J.; Lewin, M.; Michel, A. K. U.; Wuttig, M.; Taubner, T. Optically reversible switching of ultra-confined phonon polaritons with an ultra-thin phase change material. Nat. Mater. 2016, 15, 870875,  DOI: 10.1038/nmat4649
    50. 50
      Tiwald, T. E.; Woollam, J. A.; Zollner, S.; Christiansen, J.; Gregory, R. B.; Wetteroth, T.; Wilson, S. R.; Powell, A. R. Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry. Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 60, 1146411474,  DOI: 10.1103/PhysRevB.60.11464
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsphotonics.7b00321.

    • (S1) Dielectric constants of 4H-SiC; (S2) emittance ratio between the A2 and A3 modes; (S3) simulated absorption spectra of the SiC bowtie nanoantennas; (S4) thermal emission spectra with a single resonance peak from the SiC nanopillars; (S5) SNOM image with and without mask (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect