ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES

Research Direction toward Theoretical Efficiency in Perovskite Solar Cells

  • Nam-Gyu Park*
    Nam-Gyu Park
    School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
    Department of General System Studies, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
    *E-mail: [email protected]
    More by Nam-Gyu Park
  •  and 
  • Hiroshi Segawa*
    Hiroshi Segawa
    Department of General System Studies, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
    *E-mail: [email protected]
Cite this: ACS Photonics 2018, 5, 8, 2970–2977
Publication Date (Web):July 2, 2018
https://doi.org/10.1021/acsphotonics.8b00124
Copyright © 2018 American Chemical Society
Article Views
4084
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (4 MB)

Abstract

Abstract Image

The recently certified efficiency of 22.7% makes perovskite solar cells (PSCs) rise to the top among the thin film technologies of photovoltaics. The research activities of PSCs have been triggered by the ground-breaking report on a 9.7% efficient and 500 h-stable solid-state perovskite solar cell employing methylammonium lead iodide adsorbed on mesoporous TiO2 film and an organic hole conducting layer in 2012. However, PSCs are facing issues on stability, current–voltage hysteresis, ion migration, and so on, which should be solved for commercialization. In addition, further improvement in power conversion efficiency is still needed for PSCs. In this Perspective, the Shockley–Queisser (S-Q) limit in PSCs is investigated, where the best performing state-of-the-art PSC is used for this study. Short-circuit photocurrent density (Jsc) is found to approach the S-Q limit, while open-circuit voltage (Voc) and fill factor (FF) are far below their S-Q limits. Thus, toward an S-Q limit efficiency of ∼30% for PSCs with a light absorber having a band gap of 1.6 eV, a strategy of reducing nonradiative recombination and interface recombination to achieve a theoretical Voc and FF is more important than finding a method to improve Jsc. To this end, types of defects should be sophisticatedly characterized and engineered, although organic–inorganic halide perovskites are known to be defect-tolerant and have a benign grain boundary.

Cited By

This article is cited by 105 publications.

  1. Seid Yimer Abate, Ziqi Yang, Surabhi Jha, Jada Emodogo, Guorong Ma, Zhongliang Ouyang, Shafi Muhammad, Nihar Pradhan, Xiaodan Gu, Derek Patton, Dawen Li, Jianfeng Cai, Qilin Dai. Promoting Large-Area Slot-Die-Coated Perovskite Solar Cell Performance and Reproducibility by Acid-Based Sulfono-γ-AApeptide. ACS Applied Materials & Interfaces 2023, Article ASAP.
  2. Bo Zhang, Jiyeon Oh, Zhe Sun, Yongjoon Cho, Seonghun Jeong, Xiao Chen, Kuan Sun, Feng Li, Changduk Yang, Shanshan Chen. Buried Guanidinium Passivator with Favorable Binding Energy for Perovskite Solar Cells. ACS Energy Letters 2023, 8 (4) , 1848-1856. https://doi.org/10.1021/acsenergylett.2c02881
  3. Nilesh G. Saykar, Muzahir Iqbal, Asim K. Ray, Santosh K. Mahapatra. Synergistic Effect of Crystallization Control and Defect Passivation Induced by a Multifunctional Primidone Additive for High-Performance Perovskite Solar Cells. Energy & Fuels 2023, 37 (1) , 675-683. https://doi.org/10.1021/acs.energyfuels.2c03191
  4. Weiyi Zhang, Quan-Song Li, Ze-Sheng Li. Atomistic Mechanism of Surface-Defect Passivation: Toward Stable and Efficient Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2022, 13 (29) , 6686-6693. https://doi.org/10.1021/acs.jpclett.2c01762
  5. Tianshu Ma, Yidan An, Sheng Li, Yue Zhao, Huayang Wang, Changlei Wang, Stefan A. Maier, Xiaofeng Li. Low Band Gap Perovskite Concentrator Solar Cells: Physics, Device Simulation, and Experiment. ACS Applied Materials & Interfaces 2022, 14 (26) , 29856-29866. https://doi.org/10.1021/acsami.2c06393
  6. Dong-Ho Kang, Chunqing Ma, Nam-Gyu Park. Antiseptic Povidone–Iodine Heals the Grain Boundary of Perovskite Solar Cells. ACS Applied Materials & Interfaces 2022, 14 (7) , 8984-8991. https://doi.org/10.1021/acsami.1c21479
  7. Hyungwoo Kim, Ji Hoon Seo, Srikanta Palei, Kwanyong Seo. Solvent-Additive Coordination Effect on Lead-Iodide Precursor for Enlarging Grain Size of Perovskite Film. ACS Applied Energy Materials 2022, 5 (1) , 27-34. https://doi.org/10.1021/acsaem.1c03249
  8. Wenjun Wu, Dongze Li, Yuehua Xu, Xiao Cheng Zeng. Two-Dimensional GeC2 with Tunable Electronic and Carrier Transport Properties and a High Current ON/OFF Ratio. The Journal of Physical Chemistry Letters 2021, 12 (47) , 11488-11496. https://doi.org/10.1021/acs.jpclett.1c03477
  9. Shukun Weng, Asman Tamang, Alberto Salleo, Hiroyuki Fujiwara, Masakazu Nakamura, Yiwen Zhang, Dietmar Knipp. Band-Gap-Engineered Transparent Perovskite Solar Modules to Combine Photovoltaics with Photosynthesis. ACS Applied Materials & Interfaces 2021, 13 (33) , 39230-39238. https://doi.org/10.1021/acsami.1c08367
  10. Youhei Numata, Yoshitaka Sanehira, Tsutomu Miyasaka. Drastic Change of Surface Morphology of Cesium–Formamidinium Perovskite Solar Cells by Antisolvent Processing. ACS Applied Energy Materials 2021, 4 (2) , 1069-1077. https://doi.org/10.1021/acsaem.0c01717
  11. Jialin Dang, Zhi Yang, Wei Guo, Jinjuan Dou, Hui Wang, Minqiang Wang. Revealing Energy Loss and Nonradiative Recombination Pathway in Mixed-Ion Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2020, 11 (19) , 8100-8107. https://doi.org/10.1021/acs.jpclett.0c02232
  12. Yoshitaka Sanehira, Naoyuki Shibayama, Youhei Numata, Masashi Ikegami, Tsutomu Miyasaka. Low-Temperature Synthesized Nb-Doped TiO2 Electron Transport Layer Enabling High-Efficiency Perovskite Solar Cells by Band Alignment Tuning. ACS Applied Materials & Interfaces 2020, 12 (13) , 15175-15182. https://doi.org/10.1021/acsami.9b23485
  13. Zhenhua Xu, Liang Wang, Qianji Han, Yusuke Kamata, Tingli Ma. Suppression of Iodide Ion Migration via Sb2S3 Interfacial Modification for Stable Inorganic Perovskite Solar Cells. ACS Applied Materials & Interfaces 2020, 12 (11) , 12867-12873. https://doi.org/10.1021/acsami.9b23630
  14. Yong Zhang, Seongrok Seo, Soo Yeon Lim, Younghoon Kim, Seul-Gi Kim, Do-Kyoung Lee, Sun-Ho Lee, Hyunjung Shin, Hyeonsik Cheong, Nam-Gyu Park. Achieving Reproducible and High-Efficiency (>21%) Perovskite Solar Cells with a Presynthesized FAPbI3 Powder. ACS Energy Letters 2020, 5 (2) , 360-366. https://doi.org/10.1021/acsenergylett.9b02348
  15. Dmitry S. Muratov, Artur R. Ishteev, Dmitry A. Lypenko, Vladislav O. Vanyushin, Pavel Gostishev, Svetlana Perova, Danila S. Saranin, Daniele Rossi, Matthias Auf der Maur, George Volonakis, Feliciano Giustino, Per. O. Å. Persson, Denis V. Kuznetsov, Alexander Sinitskii, Aldo Di Carlo. Slot-Die-Printed Two-Dimensional ZrS3 Charge Transport Layer for Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces 2019, 11 (51) , 48021-48028. https://doi.org/10.1021/acsami.9b16457
  16. Nam-Gyu Park (Senior Editor). Perovskite Solar Cell: Research Direction for Next 10 Years. ACS Energy Letters 2019, 4 (12) , 2983-2985. https://doi.org/10.1021/acsenergylett.9b02442
  17. Deyu Xin, Shujie Tie, Ruihan Yuan, Xiaojia Zheng, Jianguo Zhu, Wen-Hua Zhang. Defect Passivation in Hybrid Perovskite Solar Cells by Tailoring the Electron Density Distribution in Passivation Molecules. ACS Applied Materials & Interfaces 2019, 11 (47) , 44233-44240. https://doi.org/10.1021/acsami.9b15166
  18. Dong-Nyuk Jeong, Do-Kyoung Lee, Seongrok Seo, Soo Yeon Lim, Yong Zhang, Hyunjung Shin, Hyeonsik Cheong, Nam-Gyu Park. Perovskite Cluster-Containing Solution for Scalable D-Bar Coating toward High-Throughput Perovskite Solar Cells. ACS Energy Letters 2019, 4 (5) , 1189-1195. https://doi.org/10.1021/acsenergylett.9b00042
  19. Ajay Kumar Jena, Ashish Kulkarni, Tsutomu Miyasaka. Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chemical Reviews 2019, 119 (5) , 3036-3103. https://doi.org/10.1021/acs.chemrev.8b00539
  20. Aleksandra Oranskaia, Jun Yin, Osman M. Bakr, Jean-Luc Brédas, Omar F. Mohammed. Halogen Migration in Hybrid Perovskites: The Organic Cation Matters. The Journal of Physical Chemistry Letters 2018, 9 (18) , 5474-5480. https://doi.org/10.1021/acs.jpclett.8b02522
  21. Tae-Gyun Kwon, Taesu Kim, Younghoon Kim. Enhanced Open-Circuit Voltage of Eco-Friendly Silver Bismuth Iodide Thin-Film Photovoltaics with PTB7 Polymer-Based Hole Transport Layer. Electronic Materials Letters 2023, 131 https://doi.org/10.1007/s13391-023-00437-0
  22. Ya Wang, Meidouxue Han, Rongbo Wang, Juntao Zhao, Jiawei Zhang, Huizhi Ren, Guofu Hou, Yi Ding, Ying Zhao, Xiaodan Zhang. Buried interface passivation strategies for high-performance perovskite solar cells. Journal of Materials Chemistry A 2023, 11 (16) , 8573-8598. https://doi.org/10.1039/D3TA00750B
  23. Yinyi Ma, Chengsong Zeng, Peng Zeng, Yuchao Hu, Faming Li, Zhonghao Zheng, Minchao Qin, Xinhui Lu, Mingzhen Liu. How Do Surface Polar Molecules Contribute to High Open‐Circuit Voltage in Perovskite Solar Cells?. Advanced Science 2023, 70 https://doi.org/10.1002/advs.202205072
  24. Yoonhoo Ha, Yoosang Son, Dooam Paik, Ki-Ha Hong, Hyungjun Kim. Effect of Surface Termination on Carrier Dynamics of Metal Halide Perovskites: Ab Initio Quantum Dynamics Study. Electronic Materials Letters 2023, 5 https://doi.org/10.1007/s13391-023-00428-1
  25. Chongzhu Hu, Zhuangzhuang Zhang, Jun Chen, Peng Gao. Surface Passivation of Organic-Inorganic Hybrid Perovskites with Methylhydrazine Iodide for Enhanced Photovoltaic Device Performance. Inorganics 2023, 11 (4) , 168. https://doi.org/10.3390/inorganics11040168
  26. Katherine Lochhead, Eric Johlin, Dongfang Yang. Encapsulation of Perovskite Solar Cells with Thin Barrier Films. 2023https://doi.org/10.5772/intechopen.107189
  27. Do-Kyoung Lee, Nam-Gyu Park. Additive engineering for highly efficient and stable perovskite solar cells. Applied Physics Reviews 2023, 10 (1) , 011308. https://doi.org/10.1063/5.0097704
  28. Min Shi, Tiancheng Bai, Shushu Du, Huimin Sha, Hao Chen, Xiaohu Ma, Yudong Xu, Yiqing Chen. Impact of concentration of DMF and H2O on photovoltaic properties of SnO2-based planar perovskite solar cells. Electrochimica Acta 2023, 444 , 141985. https://doi.org/10.1016/j.electacta.2023.141985
  29. Jinho Lee. Perovskite and organic bulk heterojunction integrated solar cells: a mini review. Journal of the Korean Physical Society 2023, 82 (3) , 229-235. https://doi.org/10.1007/s40042-023-00733-w
  30. Gourav, K. Ramachndran. Identification of lead-free double halide perovskites for promising photovoltaic applications: first-principles calculations. The European Physical Journal Plus 2023, 138 (2) https://doi.org/10.1140/epjp/s13360-023-03790-z
  31. Junjie Lou, Jiangshan Feng, Shengzhong (Frank) Liu, Yong Qin. Semitransparent Perovskite Solar Cells for Photovoltaic Application. Solar RRL 2023, 7 (1) , 2200708. https://doi.org/10.1002/solr.202200708
  32. Ranbir Singh, Mohammed Nazim, Gururaj P. Kini, Zhipeng Kan. Perovskite‐Based Photovoltaics for Artificial Indoor Light Harvesting: A Critical Review. Solar RRL 2023, 7 (1) , 2200953. https://doi.org/10.1002/solr.202200953
  33. Nasir Ali, Xiaoyu Wang, Huizhen Wu. Lower dimensional nontoxic perovskites: Structures, optoelectronic properties, and applications. 2023, 437-466. https://doi.org/10.1016/B978-0-12-819905-3.00016-6
  34. Jeongbeom Cha, Mi Kyong Kim, Wonjong Lee, Haedam Jin, Hyemi Na, Dinh Cung Tien Nguyen, Soo-Hyoung Lee, Jongchul Lim, Min Kim. Perovskite nanowires as defect passivators and charge transport networks for efficient and stable perovskite solar cells. Chemical Engineering Journal 2023, 451 , 138920. https://doi.org/10.1016/j.cej.2022.138920
  35. Xueyuan Wei, Pengxiang Zhang, Tailai Xu, Huanping Zhou, Yang Bai, Qi Chen. Chemical approaches for electronic doping in photovoltaic materials beyond crystalline silicon. Chemical Society Reviews 2022, 51 (24) , 10016-10063. https://doi.org/10.1039/D2CS00110A
  36. Kyu‐Woong Yeom, Do‐Kyoung Lee, Nam‐Gyu Park. Hard and Soft Acid and Base (HSAB) Engineering for Efficient and Stable Sn‐Pb Perovskite Solar Cells. Advanced Energy Materials 2022, 12 (48) , 2202496. https://doi.org/10.1002/aenm.202202496
  37. D.Y. Heo, W.J. Jang, S.Y. Kim. Recent review of interfacial engineering for perovskite solar cells: effect of functional groups on the stability and efficiency. Materials Today Chemistry 2022, 26 , 101224. https://doi.org/10.1016/j.mtchem.2022.101224
  38. Mu Xiao, Yurou Zhang, Jiakang You, Zhiliang Wang, Jun-Ho Yun, Muxina Konarova, Gang Liu, Lianzhou Wang. Addressing the stability challenge of metal halide perovskite based photocatalysts for solar fuel production. Journal of Physics: Energy 2022, 4 (4) , 042005. https://doi.org/10.1088/2515-7655/ac93b3
  39. Mukaddar Sk, Saurabh Ghosh. 16.35 % efficient Cs2GeSnCl6 based heterojunction solar cell with hole-blocking SnO2 layer: DFT and SCAPS-1D simulation. Optik 2022, 267 , 169608. https://doi.org/10.1016/j.ijleo.2022.169608
  40. Pengyu Yan, Daobin Yang, Hongqian Wang, Shuncheng Yang, Ziyi Ge. Recent advances in dopant-free organic hole-transporting materials for efficient, stable and low-cost perovskite solar cells. Energy & Environmental Science 2022, 15 (9) , 3630-3669. https://doi.org/10.1039/D2EE01256A
  41. Rushi Jani, Kshitij Bhargava. Efficiency and Reproducibility Enhancement in Perovskite Solar Cell With MoS₂ as Electron Transport Layer: A Computational Finding. IEEE Transactions on Electron Devices 2022, 69 (8) , 4349-4354. https://doi.org/10.1109/TED.2022.3181533
  42. Sisi He, Sibo Li, Anning Zhang, Guanshui Xie, Xin Wang, Jun Fang, Yabing Qi, Longbin Qiu. Residual strain reduction leads to efficiency and operational stability improvements in flexible perovskite solar cells. Materials Advances 2022, 3 (15) , 6316-6323. https://doi.org/10.1039/D2MA00431C
  43. Gourav, Mukaddar Sk, Krishnamoorthy Ramachandran, Saurabh Ghosh. First‐principles investigation of Rb 2 Ag (Ga/In)Br 6 for thermoelectric and photovoltaic applications. International Journal of Quantum Chemistry 2022, 122 (14) https://doi.org/10.1002/qua.26910
  44. Mahdi Malekshahi Byranvand, Clara Otero‐Martínez, Junzhi Ye, Weiwei Zuo, Liberato Manna, Michael Saliba, Robert L. Z. Hoye, Lakshminarayana Polavarapu. Recent Progress in Mixed A‐Site Cation Halide Perovskite Thin‐Films and Nanocrystals for Solar Cells and Light‐Emitting Diodes. Advanced Optical Materials 2022, 10 (14) , 2200423. https://doi.org/10.1002/adom.202200423
  45. A. B. Nikolskaia, S. S. Kozlov, O. K. Karyagina, O. V. Alexeeva, O. V. Almjasheva, D. D. Averkiev, P. V. Kozhuhovskaya, O. I. Shevaleevskiy. Cation Doping of La2NiMnO6 Complex Oxide with the Double Perovskite Structure for Photovoltaic Applications. Russian Journal of Inorganic Chemistry 2022, 67 (6) , 921-925. https://doi.org/10.1134/S003602362206016X
  46. Rengasamy Dhanabal, Suhash Ranjan Dey. Perovskite solar cells: recent progress and strategies developed for minimizing interfacial recombination. Frontiers of Materials Science 2022, 16 (2) https://doi.org/10.1007/s11706-022-0595-7
  47. Mukaddar Sk. Recent progress of lead-free halide double perovskites for green energy and other applications. Applied Physics A 2022, 128 (5) https://doi.org/10.1007/s00339-022-05596-9
  48. Zhi‐Wen Gao, Yong Wang, Wallace C. H. Choy. Buried Interface Modification in Perovskite Solar Cells: A Materials Perspective. Advanced Energy Materials 2022, 12 (20) , 2104030. https://doi.org/10.1002/aenm.202104030
  49. Angelica Simbula, Riccardo Pau, Fang Liu, Luyan Wu, Stefano Lai, Alessandra Geddo-Lehmann, Alessio Filippetti, Maria A. Loi, Daniela Marongiu, Francesco Quochi, Michele Saba, Andrea Mura, Giovanni Bongiovanni. Direct measurement of radiative decay rates in metal halide perovskites. Energy & Environmental Science 2022, 15 (3) , 1211-1221. https://doi.org/10.1039/D1EE03426J
  50. Do-Kyoung Lee, Nam-Gyu Park. Materials and Methods for High‐Efficiency Perovskite Solar Modules. Solar RRL 2022, 6 (3) , 2100455. https://doi.org/10.1002/solr.202100455
  51. Jung Hwan Lee, Taehee Kim, Seulki Song, Yongchul Kim, Sooeun Shin, SunJe Lee, Younghoon Kim, Young Jin Choi, Sungsoon Kim, Kan Zhang, Jeong Ho Cho, Hyunjung Shin, Geunsik Lee, Nam-Gyu Park, Dongho Kim, Jangwon Seo, Jong Hyeok Park. Enhanced band-filling effect in halide perovskites via hydrophobic conductive linkers. Cell Reports Physical Science 2022, 3 (3) , 100800. https://doi.org/10.1016/j.xcrp.2022.100800
  52. Sushu Wan, Yajie Zhu, Daocheng Hong, Yuxi Tian. Controllable Introduction of Surface Defects on CH3NH3PbI3 Perovskite. Nanomaterials 2022, 12 (6) , 1002. https://doi.org/10.3390/nano12061002
  53. Umar Farooq, Muhammad Ishaq, Usman Ali Shah, Shuo Chen, Zhuang-Hao Zheng, Muhammad Azam, Zheng-Hua Su, Rong Tang, Ping Fan, Yang Bai, Guang-Xing Liang. Bandgap engineering of lead-free ternary halide perovskites for photovoltaics and beyond: Recent progress and future prospects. Nano Energy 2022, 92 , 106710. https://doi.org/10.1016/j.nanoen.2021.106710
  54. Nilesh G Saykar, Anil Arya, S K Mahapatra. A comprehensive review on defect passivation and gradient energy alignment strategies for highly efficient perovskite solar cells. Journal of Physics D: Applied Physics 2022, 55 (4) , 043001. https://doi.org/10.1088/1361-6463/ac2d63
  55. Youhei Numata, Naoyuki Shibayama, Tsutomu Miyasaka. FAPbBr 3 perovskite solar cells with V OC values over 1.5 V by controlled crystal growth using tetramethylenesulfoxide. Journal of Materials Chemistry A 2022, 10 (2) , 672-681. https://doi.org/10.1039/D1TA08964A
  56. Xing Ni, Yuyan Liu, Yujin Ji, Chunhua Hu, Youyong Li. Theoretical screening of lead-free hybrid organic–inorganic halide double perovskites for solar cells. Journal of Materials Chemistry C 2022, 131 https://doi.org/10.1039/D2TC03507C
  57. Jeongbeom Cha, Mi Kyong Kim, Wonjong Lee, Haedam Jin, Hyemi Na, Dinh Cung Tien Nguyen, Soo-Hyoung Lee, Jongchul Lim, Min Kim. Perovskite Nanowires as Defect Passivators and Charge Transport Networks for Efficient and Stable Perovskite Solar Cells. SSRN Electronic Journal 2022, 5 https://doi.org/10.2139/ssrn.4122755
  58. Thomas Stergiopoulos. Tin Halide Perovskite Solar Cells. 2021, 223-245. https://doi.org/10.1002/9783527825790.ch6
  59. Lijuan Chen, Qinqin Li, Chengrui Shao, Yongle Wang, Tianzhu Gong, Wei Hu. High-performance and stable perovskite photodetector with mixed 2D/3D perovskite surface passivation layer. Semiconductor Science and Technology 2021, 36 (12) , 12LT01. https://doi.org/10.1088/1361-6641/ac2af1
  60. Xin Wu, Bo Li, Zonglong Zhu, Chu-Chen Chueh, Alex. K.-Y. Jen. Designs from single junctions, heterojunctions to multijunctions for high-performance perovskite solar cells. Chemical Society Reviews 2021, 50 (23) , 13090-13128. https://doi.org/10.1039/D1CS00841B
  61. Robert Godin, James R. Durrant. Dynamics of photoconversion processes: the energetic cost of lifetime gain in photosynthetic and photovoltaic systems. Chemical Society Reviews 2021, 50 (23) , 13372-13409. https://doi.org/10.1039/D1CS00577D
  62. Seonghwa Jeong, Seongrok Seo, Hyunwoo Yang, Hyoungmin Park, Sooeun Shin, Hyungju Ahn, Donghwa Lee, Jong Hyeok Park, Nam‐Gyu Park, Hyunjung Shin. Cyclohexylammonium‐Based 2D/3D Perovskite Heterojunction with Funnel‐Like Energy Band Alignment for Efficient Solar Cells (23.91%). Advanced Energy Materials 2021, 11 (42) , 2102236. https://doi.org/10.1002/aenm.202102236
  63. Pengyun Liu, Huimin Xiang, Wei Wang, Ran Ran, Wei Zhou, Zongping Shao. A bilateral cyano molecule serving as an effective additive enables high-efficiency and stable perovskite solar cells. Journal of Energy Chemistry 2021, 62 , 243-251. https://doi.org/10.1016/j.jechem.2021.03.024
  64. Chang-Ying Ou, Sudipta Som, Chung-Hsin Lu, Karan Kumar Gupta, Rajneesh Chaurasiya. Photovoltaic characteristics and computational simulation of samarium-ion doped Cu(In, Ga)Se2 thin films prepared via a non-vacuum coating process. Journal of Alloys and Compounds 2021, 881 , 160377. https://doi.org/10.1016/j.jallcom.2021.160377
  65. Christos Polyzoidis, Konstantinos Rogdakis, Emmanuel Kymakis. Indoor Perovskite Photovoltaics for the Internet of Things—Challenges and Opportunities toward Market Uptake. Advanced Energy Materials 2021, 11 (38) , 2101854. https://doi.org/10.1002/aenm.202101854
  66. Lukas Schmidt-Mende, Vladimir Dyakonov, Selina Olthof, Feray Ünlü, Khan Moritz Trong Lê, Sanjay Mathur, Andrei D. Karabanov, Doru C. Lupascu, Laura M. Herz, Alexander Hinderhofer, Frank Schreiber, Alexey Chernikov, David A. Egger, Oleksandra Shargaieva, Caterina Cocchi, Eva Unger, Michael Saliba, Mahdi Malekshahi Byranvand, Martin Kroll, Frederik Nehm, Karl Leo, Alex Redinger, Julian Höcker, Thomas Kirchartz, Jonathan Warby, Emilio Gutierrez-Partida, Dieter Neher, Martin Stolterfoht, Uli Würfel, Moritz Unmüssig, Jan Herterich, Clemens Baretzky, John Mohanraj, Mukundan Thelakkat, Clément Maheu, Wolfram Jaegermann, Thomas Mayer, Janek Rieger, Thomas Fauster, Daniel Niesner, Fengjiu Yang, Steve Albrecht, Thomas Riedl, Azhar Fakharuddin, Maria Vasilopoulou, Yana Vaynzof, Davide Moia, Joachim Maier, Marius Franckevičius, Vidmantas Gulbinas, Ross A. Kerner, Lianfeng Zhao, Barry P. Rand, Nadja Glück, Thomas Bein, Fabio Matteocci, Luigi Angelo Castriotta, Aldo Di Carlo, Matthias Scheffler, Claudia Draxl. Roadmap on organic–inorganic hybrid perovskite semiconductors and devices. APL Materials 2021, 9 (10) , 109202. https://doi.org/10.1063/5.0047616
  67. Asia Bibi, Ilgeum Lee, Yoonseo Nah, Omar Allam, Heejun Kim, Li Na Quan, Jiang Tang, Aron Walsh, Seung Soon Jang, Edward H. Sargent, Dong Ha Kim. Lead-free halide double perovskites: Toward stable and sustainable optoelectronic devices. Materials Today 2021, 49 , 123-144. https://doi.org/10.1016/j.mattod.2020.11.026
  68. Yi-June Huang, Chuan-Pei Lee. Nanostructured Transition Metal Compounds as Highly Efficient Electrocatalysts for Dye-Sensitized Solar Cells. 2021https://doi.org/10.5772/intechopen.94021
  69. Fei Cheng, Jie Zhang, Thierry Pauporté. Chlorides, other Halides, and Pseudo‐Halides as Additives for the Fabrication of Efficient and Stable Perovskite Solar Cells. ChemSusChem 2021, 14 (18) , 3665-3692. https://doi.org/10.1002/cssc.202101089
  70. T. Liang, J. Fu, M. Li, H. Li, Y. Hao, W. Ma. Application of upconversion photoluminescent materials in perovskite solar cells: opportunities and challenges. Materials Today Energy 2021, 21 , 100740. https://doi.org/10.1016/j.mtener.2021.100740
  71. J. Chen, Z.-K. Wang, L.-S. Liao. Defect passivation and crystallization control of perovskite films for photovoltaic application. Materials Today Nano 2021, 15 , 100118. https://doi.org/10.1016/j.mtnano.2021.100118
  72. Yu Zhao, Xin Zhang, Xuefei Han, Chengyi Hou, Hongzhi Wang, Jiabin Qi, Yaogang Li, Qinghong Zhang. Tuning the reactivity of PbI2 film via monolayer Ti3C2Tx MXene for two-step-processed CH3NH3PbI3 solar cells. Chemical Engineering Journal 2021, 417 , 127912. https://doi.org/10.1016/j.cej.2020.127912
  73. Mahdi Malekshahi Byranvand, Michael Saliba. Defect Passivation of Perovskite Films for Highly Efficient and Stable Solar Cells. Solar RRL 2021, 5 (8) , 2100295. https://doi.org/10.1002/solr.202100295
  74. Wenbin Tang, Yujie Zhang, Changlai Yuan, Xiao Liu, Baohua Zhu, Liufang Meng, Changrong Zhou, Fei Liu, Jiwen Xu, Jiang Wang, Guanghui Rao. Crystal structures and electrical properties of Sr/Fe‐modified KNbO 3 ferroelectric semiconductors with narrow bandgap. Journal of the American Ceramic Society 2021, 104 (5) , 2181-2190. https://doi.org/10.1111/jace.17567
  75. Abyl Muradov, Daria Frolushkina, Vadim Samusenkov, Gulsara Zhamanbayeva, Sebastian Kot. Methods of Stability Control of Perovskite Solar Cells for High Efficiency. Energies 2021, 14 (10) , 2918. https://doi.org/10.3390/en14102918
  76. Yulu He, Imane Abdellaoui, M. Abdel-Shakour, Towhid Hossain Chowdhury, Muhammad Akmal Kamarudin, Ana Flávia Nogueira, Qing Shen, Shuzi Hayase, Ashraful Islam, Takeaki Sakurai. Study of open circuit voltage loss mechanism in perovskite solar cells. Japanese Journal of Applied Physics 2021, 60 (SB) , SBBF13. https://doi.org/10.35848/1347-4065/abe5c1
  77. Longkai Yang, Qiu Xiong, Yanbo Li, Peng Gao, Ben Xu, Hong Lin, Xin Li, Tsutomu Miyasaka. Artemisinin-passivated mixed-cation perovskite films for durable flexible perovskite solar cells with over 21% efficiency. Journal of Materials Chemistry A 2021, 9 (3) , 1574-1582. https://doi.org/10.1039/D0TA10717D
  78. Yuiga Nakamura, Tomonori Matsushita, Takashi Kondo. Ternary-source vapor-phase deposition of CH 3 NH 3 PbI 3 polycrystalline thin films using CH 3 NH 2 and HI gas sources with PbI 2 solid source. Japanese Journal of Applied Physics 2021, 60 (1) , 015505. https://doi.org/10.35848/1347-4065/abd0c6
  79. Sadia Khalid, Muhammad Sultan, Ejaz Ahmed, Waqar Ahmed. Third-generation solar cells. 2021, 3-35. https://doi.org/10.1016/B978-0-12-821346-9.00019-5
  80. Afshan Jamshaid, Zhendong Guo, Jeremy Hieulle, Collin Stecker, Robin Ohmann, Luis K. Ono, Longbin Qiu, Guoqing Tong, Wanjian Yin, Yabing Qi. Atomic-scale insight into the enhanced surface stability of methylammonium lead iodide perovskite by controlled deposition of lead chloride. Energy & Environmental Science 2021, 131 https://doi.org/10.1039/D1EE01084K
  81. Rushi Jani, Nirag R Jain, Kshitij Bhargava. A computational study on efficiency augmentation in formamidinium-lead-iodide perovskite solar cell with WS 2 as electron transport layer. 2020, 1-4. https://doi.org/10.1109/ICEE50728.2020.9777034
  82. Ahra Yi, Sangmin Chae, Sejeong Won, Hyun-June Jung, In Hwa Cho, Jae-Hyun Kim, Hyo Jung Kim. Roll-transferred graphene encapsulant for robust perovskite solar cells. Nano Energy 2020, 77 , 105182. https://doi.org/10.1016/j.nanoen.2020.105182
  83. Young Wook Noh, In Su Jin, Kyeong Su Kim, Sang Hyun Park, Jae Woong Jung. Reduced energy loss in SnO 2 /ZnO bilayer electron transport layer-based perovskite solar cells for achieving high efficiencies in outdoor/indoor environments. Journal of Materials Chemistry A 2020, 8 (33) , 17163-17173. https://doi.org/10.1039/D0TA04721J
  84. Mei Lyu, Do-Kyoung Lee, Nam-Gyu Park. Effect of alkaline earth metal chloride additives BCl 2 (B = Mg, Ca, Sr and Ba) on the photovoltaic performance of FAPbI 3 based perovskite solar cells. Nanoscale Horizons 2020, 5 (9) , 1332-1343. https://doi.org/10.1039/D0NH00263A
  85. Ching Lin. Stabilizing Organic–Inorganic Lead Halide Perovskite Solar Cells With Efficiency Beyond 20%. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.00592
  86. Sanam Attique, Nasir Ali, Shahid Ali, Rabia Khatoon, Na Li, Amir Khesro, Sajid Rauf, Shikuan Yang, Huizhen Wu. A Potential Checkmate to Lead: Bismuth in Organometal Halide Perovskites, Structure, Properties, and Applications. Advanced Science 2020, 7 (13) , 1903143. https://doi.org/10.1002/advs.201903143
  87. Maciej Adam Surmiak, Tian Zhang, Jianfeng Lu, Kevin James Rietwyk, Sonia Ruiz Raga, David Patrick McMeekin, Udo Bach. High‐Throughput Characterization of Perovskite Solar Cells for Rapid Combinatorial Screening. Solar RRL 2020, 4 (7) , 2000097. https://doi.org/10.1002/solr.202000097
  88. Feray Ünlü, Eunhwan Jung, Jinane Haddad, Ashish Kulkarni, Senol Öz, Heechae Choi, Thomas Fischer, Sudip Chakraborty, Thomas Kirchartz, Sanjay Mathur. Understanding the interplay of stability and efficiency in A-site engineered lead halide perovskites. APL Materials 2020, 8 (7) , 070901. https://doi.org/10.1063/5.0011851
  89. Anurag Roy, Aritra Ghosh, Shubhranshu Bhandari, Senthilarasu Sundaram, Tapas K. Mallick. Perovskite Solar Cells for BIPV Application: A Review. Buildings 2020, 10 (7) , 129. https://doi.org/10.3390/buildings10070129
  90. Junjie Wang, Qikun Hu, Minzhang Li, Haiquan Shan, Yaomiao Feng, Zong-Xiang Xu. Poly(3‐hexylthiophene)/Gold Nanorod Composites as Efficient Hole‐Transporting Materials for Perovskite Solar Cells. Solar RRL 2020, 4 (6) , 2000109. https://doi.org/10.1002/solr.202000109
  91. Chunqing Ma, Nam-Gyu Park. A Realistic Methodology for 30% Efficient Perovskite Solar Cells. Chem 2020, 6 (6) , 1254-1264. https://doi.org/10.1016/j.chempr.2020.04.013
  92. Qian Zhou, Boxing Wang, Rui Meng, Jiyu Zhou, Shenkun Xie, Xuning Zhang, Jianqiu Wang, Shengli Yue, Bing Qin, Huiqiong Zhou, Yuan Zhang. Understanding Temperature‐Dependent Charge Extraction and Trapping in Perovskite Solar Cells. Advanced Functional Materials 2020, 30 (22) , 2000550. https://doi.org/10.1002/adfm.202000550
  93. Nam-Gyu Park, Kai Zhu. Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nature Reviews Materials 2020, 5 (5) , 333-350. https://doi.org/10.1038/s41578-019-0176-2
  94. Luis K. Ono, Shengzhong (Frank) Liu, Yabing Qi. Verringerung schädlicher Defekte für leistungsstarke Metallhalogenid‐Perowskit‐Solarzellen. Angewandte Chemie 2020, 132 (17) , 6740-6764. https://doi.org/10.1002/ange.201905521
  95. Luis K. Ono, Shengzhong (Frank) Liu, Yabing Qi. Reducing Detrimental Defects for High‐Performance Metal Halide Perovskite Solar Cells. Angewandte Chemie International Edition 2020, 59 (17) , 6676-6698. https://doi.org/10.1002/anie.201905521
  96. Dong-Nyuk Jeong, June-Mo Yang, Nam-Gyu Park. Roadmap on halide perovskite and related devices. Nanotechnology 2020, 31 (15) , 152001. https://doi.org/10.1088/1361-6528/ab59ed
  97. Longbin Qiu, Sisi He, Luis K. Ono, Yabing Qi. Progress of Surface Science Studies on ABX 3 ‐Based Metal Halide Perovskite Solar Cells. Advanced Energy Materials 2020, 10 (13) , 1902726. https://doi.org/10.1002/aenm.201902726
  98. Nam‐Gyu Park. Research Direction toward Scalable, Stable, and High Efficiency Perovskite Solar Cells. Advanced Energy Materials 2020, 10 (13) , 1903106. https://doi.org/10.1002/aenm.201903106
  99. Chunhua Xiong, Jiuxun Sun, Jingye Zhang, Yao Fu. Revelating mechnism of light ideality factor in organic solar cells. Organic Electronics 2020, 78 , 105559. https://doi.org/10.1016/j.orgel.2019.105559
  100. Nam-Gyu Park. High Efficiency Perovskite Solar Cells: Materials and Devices Engineering. Transactions on Electrical and Electronic Materials 2020, 21 (1) , 1-15. https://doi.org/10.1007/s42341-019-00156-0
Load all citations

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE