Research Direction toward Theoretical Efficiency in Perovskite Solar Cells
- Nam-Gyu Park*Nam-Gyu Park*E-mail: [email protected]School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of KoreaDepartment of General System Studies, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, JapanMore by Nam-Gyu Park and
- Hiroshi Segawa*Hiroshi Segawa*E-mail: [email protected]Department of General System Studies, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, JapanMore by Hiroshi Segawa
Abstract

The recently certified efficiency of 22.7% makes perovskite solar cells (PSCs) rise to the top among the thin film technologies of photovoltaics. The research activities of PSCs have been triggered by the ground-breaking report on a 9.7% efficient and 500 h-stable solid-state perovskite solar cell employing methylammonium lead iodide adsorbed on mesoporous TiO2 film and an organic hole conducting layer in 2012. However, PSCs are facing issues on stability, current–voltage hysteresis, ion migration, and so on, which should be solved for commercialization. In addition, further improvement in power conversion efficiency is still needed for PSCs. In this Perspective, the Shockley–Queisser (S-Q) limit in PSCs is investigated, where the best performing state-of-the-art PSC is used for this study. Short-circuit photocurrent density (Jsc) is found to approach the S-Q limit, while open-circuit voltage (Voc) and fill factor (FF) are far below their S-Q limits. Thus, toward an S-Q limit efficiency of ∼30% for PSCs with a light absorber having a band gap of 1.6 eV, a strategy of reducing nonradiative recombination and interface recombination to achieve a theoretical Voc and FF is more important than finding a method to improve Jsc. To this end, types of defects should be sophisticatedly characterized and engineered, although organic–inorganic halide perovskites are known to be defect-tolerant and have a benign grain boundary.
Cited By
This article is cited by 105 publications.
- Seid Yimer Abate, Ziqi Yang, Surabhi Jha, Jada Emodogo, Guorong Ma, Zhongliang Ouyang, Shafi Muhammad, Nihar Pradhan, Xiaodan Gu, Derek Patton, Dawen Li, Jianfeng Cai, Qilin Dai. Promoting Large-Area Slot-Die-Coated Perovskite Solar Cell Performance and Reproducibility by Acid-Based Sulfono-γ-AApeptide. ACS Applied Materials & Interfaces 2023, Article ASAP.
- Bo Zhang, Jiyeon Oh, Zhe Sun, Yongjoon Cho, Seonghun Jeong, Xiao Chen, Kuan Sun, Feng Li, Changduk Yang, Shanshan Chen. Buried Guanidinium Passivator with Favorable Binding Energy for Perovskite Solar Cells. ACS Energy Letters 2023, 8 (4) , 1848-1856. https://doi.org/10.1021/acsenergylett.2c02881
- Nilesh G. Saykar, Muzahir Iqbal, Asim K. Ray, Santosh K. Mahapatra. Synergistic Effect of Crystallization Control and Defect Passivation Induced by a Multifunctional Primidone Additive for High-Performance Perovskite Solar Cells. Energy & Fuels 2023, 37 (1) , 675-683. https://doi.org/10.1021/acs.energyfuels.2c03191
- Weiyi Zhang, Quan-Song Li, Ze-Sheng Li. Atomistic Mechanism of Surface-Defect Passivation: Toward Stable and Efficient Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2022, 13 (29) , 6686-6693. https://doi.org/10.1021/acs.jpclett.2c01762
- Tianshu Ma, Yidan An, Sheng Li, Yue Zhao, Huayang Wang, Changlei Wang, Stefan A. Maier, Xiaofeng Li. Low Band Gap Perovskite Concentrator Solar Cells: Physics, Device Simulation, and Experiment. ACS Applied Materials & Interfaces 2022, 14 (26) , 29856-29866. https://doi.org/10.1021/acsami.2c06393
- Dong-Ho Kang, Chunqing Ma, Nam-Gyu Park. Antiseptic Povidone–Iodine Heals the Grain Boundary of Perovskite Solar Cells. ACS Applied Materials & Interfaces 2022, 14 (7) , 8984-8991. https://doi.org/10.1021/acsami.1c21479
- Hyungwoo Kim, Ji Hoon Seo, Srikanta Palei, Kwanyong Seo. Solvent-Additive Coordination Effect on Lead-Iodide Precursor for Enlarging Grain Size of Perovskite Film. ACS Applied Energy Materials 2022, 5 (1) , 27-34. https://doi.org/10.1021/acsaem.1c03249
- Wenjun Wu, Dongze Li, Yuehua Xu, Xiao Cheng Zeng. Two-Dimensional GeC2 with Tunable Electronic and Carrier Transport Properties and a High Current ON/OFF Ratio. The Journal of Physical Chemistry Letters 2021, 12 (47) , 11488-11496. https://doi.org/10.1021/acs.jpclett.1c03477
- Shukun Weng, Asman Tamang, Alberto Salleo, Hiroyuki Fujiwara, Masakazu Nakamura, Yiwen Zhang, Dietmar Knipp. Band-Gap-Engineered Transparent Perovskite Solar Modules to Combine Photovoltaics with Photosynthesis. ACS Applied Materials & Interfaces 2021, 13 (33) , 39230-39238. https://doi.org/10.1021/acsami.1c08367
- Youhei Numata, Yoshitaka Sanehira, Tsutomu Miyasaka. Drastic Change of Surface Morphology of Cesium–Formamidinium Perovskite Solar Cells by Antisolvent Processing. ACS Applied Energy Materials 2021, 4 (2) , 1069-1077. https://doi.org/10.1021/acsaem.0c01717
- Jialin Dang, Zhi Yang, Wei Guo, Jinjuan Dou, Hui Wang, Minqiang Wang. Revealing Energy Loss and Nonradiative Recombination Pathway in Mixed-Ion Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2020, 11 (19) , 8100-8107. https://doi.org/10.1021/acs.jpclett.0c02232
- Yoshitaka Sanehira, Naoyuki Shibayama, Youhei Numata, Masashi Ikegami, Tsutomu Miyasaka. Low-Temperature Synthesized Nb-Doped TiO2 Electron Transport Layer Enabling High-Efficiency Perovskite Solar Cells by Band Alignment Tuning. ACS Applied Materials & Interfaces 2020, 12 (13) , 15175-15182. https://doi.org/10.1021/acsami.9b23485
- Zhenhua Xu, Liang Wang, Qianji Han, Yusuke Kamata, Tingli Ma. Suppression of Iodide Ion Migration via Sb2S3 Interfacial Modification for Stable Inorganic Perovskite Solar Cells. ACS Applied Materials & Interfaces 2020, 12 (11) , 12867-12873. https://doi.org/10.1021/acsami.9b23630
- Yong Zhang, Seongrok Seo, Soo Yeon Lim, Younghoon Kim, Seul-Gi Kim, Do-Kyoung Lee, Sun-Ho Lee, Hyunjung Shin, Hyeonsik Cheong, Nam-Gyu Park. Achieving Reproducible and High-Efficiency (>21%) Perovskite Solar Cells with a Presynthesized FAPbI3 Powder. ACS Energy Letters 2020, 5 (2) , 360-366. https://doi.org/10.1021/acsenergylett.9b02348
- Dmitry S. Muratov, Artur R. Ishteev, Dmitry A. Lypenko, Vladislav O. Vanyushin, Pavel Gostishev, Svetlana Perova, Danila S. Saranin, Daniele Rossi, Matthias Auf der Maur, George Volonakis, Feliciano Giustino, Per. O. Å. Persson, Denis V. Kuznetsov, Alexander Sinitskii, Aldo Di Carlo. Slot-Die-Printed Two-Dimensional ZrS3 Charge Transport Layer for Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces 2019, 11 (51) , 48021-48028. https://doi.org/10.1021/acsami.9b16457
- Nam-Gyu Park (Senior Editor). Perovskite Solar Cell: Research Direction for Next 10 Years. ACS Energy Letters 2019, 4 (12) , 2983-2985. https://doi.org/10.1021/acsenergylett.9b02442
- Deyu Xin, Shujie Tie, Ruihan Yuan, Xiaojia Zheng, Jianguo Zhu, Wen-Hua Zhang. Defect Passivation in Hybrid Perovskite Solar Cells by Tailoring the Electron Density Distribution in Passivation Molecules. ACS Applied Materials & Interfaces 2019, 11 (47) , 44233-44240. https://doi.org/10.1021/acsami.9b15166
- Dong-Nyuk Jeong, Do-Kyoung Lee, Seongrok Seo, Soo Yeon Lim, Yong Zhang, Hyunjung Shin, Hyeonsik Cheong, Nam-Gyu Park. Perovskite Cluster-Containing Solution for Scalable D-Bar Coating toward High-Throughput Perovskite Solar Cells. ACS Energy Letters 2019, 4 (5) , 1189-1195. https://doi.org/10.1021/acsenergylett.9b00042
- Ajay Kumar Jena, Ashish Kulkarni, Tsutomu Miyasaka. Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chemical Reviews 2019, 119 (5) , 3036-3103. https://doi.org/10.1021/acs.chemrev.8b00539
- Aleksandra Oranskaia, Jun Yin, Osman M. Bakr, Jean-Luc Brédas, Omar F. Mohammed. Halogen Migration in Hybrid Perovskites: The Organic Cation Matters. The Journal of Physical Chemistry Letters 2018, 9 (18) , 5474-5480. https://doi.org/10.1021/acs.jpclett.8b02522
- Tae-Gyun Kwon, Taesu Kim, Younghoon Kim. Enhanced Open-Circuit Voltage of Eco-Friendly Silver Bismuth Iodide Thin-Film Photovoltaics with PTB7 Polymer-Based Hole Transport Layer. Electronic Materials Letters 2023, 131 https://doi.org/10.1007/s13391-023-00437-0
- Ya Wang, Meidouxue Han, Rongbo Wang, Juntao Zhao, Jiawei Zhang, Huizhi Ren, Guofu Hou, Yi Ding, Ying Zhao, Xiaodan Zhang. Buried interface passivation strategies for high-performance perovskite solar cells. Journal of Materials Chemistry A 2023, 11 (16) , 8573-8598. https://doi.org/10.1039/D3TA00750B
- Yinyi Ma, Chengsong Zeng, Peng Zeng, Yuchao Hu, Faming Li, Zhonghao Zheng, Minchao Qin, Xinhui Lu, Mingzhen Liu. How Do Surface Polar Molecules Contribute to High Open‐Circuit Voltage in Perovskite Solar Cells?. Advanced Science 2023, 70 https://doi.org/10.1002/advs.202205072
- Yoonhoo Ha, Yoosang Son, Dooam Paik, Ki-Ha Hong, Hyungjun Kim. Effect of Surface Termination on Carrier Dynamics of Metal Halide Perovskites: Ab Initio Quantum Dynamics Study. Electronic Materials Letters 2023, 5 https://doi.org/10.1007/s13391-023-00428-1
- Chongzhu Hu, Zhuangzhuang Zhang, Jun Chen, Peng Gao. Surface Passivation of Organic-Inorganic Hybrid Perovskites with Methylhydrazine Iodide for Enhanced Photovoltaic Device Performance. Inorganics 2023, 11 (4) , 168. https://doi.org/10.3390/inorganics11040168
- Katherine Lochhead, Eric Johlin, Dongfang Yang. Encapsulation of Perovskite Solar Cells with Thin Barrier Films. 2023https://doi.org/10.5772/intechopen.107189
- Do-Kyoung Lee, Nam-Gyu Park. Additive engineering for highly efficient and stable perovskite solar cells. Applied Physics Reviews 2023, 10 (1) , 011308. https://doi.org/10.1063/5.0097704
- Min Shi, Tiancheng Bai, Shushu Du, Huimin Sha, Hao Chen, Xiaohu Ma, Yudong Xu, Yiqing Chen. Impact of concentration of DMF and H2O on photovoltaic properties of SnO2-based planar perovskite solar cells. Electrochimica Acta 2023, 444 , 141985. https://doi.org/10.1016/j.electacta.2023.141985
- Jinho Lee. Perovskite and organic bulk heterojunction integrated solar cells: a mini review. Journal of the Korean Physical Society 2023, 82 (3) , 229-235. https://doi.org/10.1007/s40042-023-00733-w
- Gourav, K. Ramachndran. Identification of lead-free double halide perovskites for promising photovoltaic applications: first-principles calculations. The European Physical Journal Plus 2023, 138 (2) https://doi.org/10.1140/epjp/s13360-023-03790-z
- Junjie Lou, Jiangshan Feng, Shengzhong (Frank) Liu, Yong Qin. Semitransparent Perovskite Solar Cells for Photovoltaic Application. Solar RRL 2023, 7 (1) , 2200708. https://doi.org/10.1002/solr.202200708
- Ranbir Singh, Mohammed Nazim, Gururaj P. Kini, Zhipeng Kan. Perovskite‐Based Photovoltaics for Artificial Indoor Light Harvesting: A Critical Review. Solar RRL 2023, 7 (1) , 2200953. https://doi.org/10.1002/solr.202200953
- Nasir Ali, Xiaoyu Wang, Huizhen Wu. Lower dimensional nontoxic perovskites: Structures, optoelectronic properties, and applications. 2023, 437-466. https://doi.org/10.1016/B978-0-12-819905-3.00016-6
- Jeongbeom Cha, Mi Kyong Kim, Wonjong Lee, Haedam Jin, Hyemi Na, Dinh Cung Tien Nguyen, Soo-Hyoung Lee, Jongchul Lim, Min Kim. Perovskite nanowires as defect passivators and charge transport networks for efficient and stable perovskite solar cells. Chemical Engineering Journal 2023, 451 , 138920. https://doi.org/10.1016/j.cej.2022.138920
- Xueyuan Wei, Pengxiang Zhang, Tailai Xu, Huanping Zhou, Yang Bai, Qi Chen. Chemical approaches for electronic doping in photovoltaic materials beyond crystalline silicon. Chemical Society Reviews 2022, 51 (24) , 10016-10063. https://doi.org/10.1039/D2CS00110A
- Kyu‐Woong Yeom, Do‐Kyoung Lee, Nam‐Gyu Park. Hard and Soft Acid and Base (HSAB) Engineering for Efficient and Stable Sn‐Pb Perovskite Solar Cells. Advanced Energy Materials 2022, 12 (48) , 2202496. https://doi.org/10.1002/aenm.202202496
- D.Y. Heo, W.J. Jang, S.Y. Kim. Recent review of interfacial engineering for perovskite solar cells: effect of functional groups on the stability and efficiency. Materials Today Chemistry 2022, 26 , 101224. https://doi.org/10.1016/j.mtchem.2022.101224
- Mu Xiao, Yurou Zhang, Jiakang You, Zhiliang Wang, Jun-Ho Yun, Muxina Konarova, Gang Liu, Lianzhou Wang. Addressing the stability challenge of metal halide perovskite based photocatalysts for solar fuel production. Journal of Physics: Energy 2022, 4 (4) , 042005. https://doi.org/10.1088/2515-7655/ac93b3
- Mukaddar Sk, Saurabh Ghosh. 16.35 % efficient Cs2GeSnCl6 based heterojunction solar cell with hole-blocking SnO2 layer: DFT and SCAPS-1D simulation. Optik 2022, 267 , 169608. https://doi.org/10.1016/j.ijleo.2022.169608
- Pengyu Yan, Daobin Yang, Hongqian Wang, Shuncheng Yang, Ziyi Ge. Recent advances in dopant-free organic hole-transporting materials for efficient, stable and low-cost perovskite solar cells. Energy & Environmental Science 2022, 15 (9) , 3630-3669. https://doi.org/10.1039/D2EE01256A
- Rushi Jani, Kshitij Bhargava. Efficiency and Reproducibility Enhancement in Perovskite Solar Cell With MoS₂ as Electron Transport Layer: A Computational Finding. IEEE Transactions on Electron Devices 2022, 69 (8) , 4349-4354. https://doi.org/10.1109/TED.2022.3181533
- Sisi He, Sibo Li, Anning Zhang, Guanshui Xie, Xin Wang, Jun Fang, Yabing Qi, Longbin Qiu. Residual strain reduction leads to efficiency and operational stability improvements in flexible perovskite solar cells. Materials Advances 2022, 3 (15) , 6316-6323. https://doi.org/10.1039/D2MA00431C
- Gourav, Mukaddar Sk, Krishnamoorthy Ramachandran, Saurabh Ghosh. First‐principles investigation of Rb 2 Ag (Ga/In)Br 6 for thermoelectric and photovoltaic applications. International Journal of Quantum Chemistry 2022, 122 (14) https://doi.org/10.1002/qua.26910
- Mahdi Malekshahi Byranvand, Clara Otero‐Martínez, Junzhi Ye, Weiwei Zuo, Liberato Manna, Michael Saliba, Robert L. Z. Hoye, Lakshminarayana Polavarapu. Recent Progress in Mixed A‐Site Cation Halide Perovskite Thin‐Films and Nanocrystals for Solar Cells and Light‐Emitting Diodes. Advanced Optical Materials 2022, 10 (14) , 2200423. https://doi.org/10.1002/adom.202200423
- A. B. Nikolskaia, S. S. Kozlov, O. K. Karyagina, O. V. Alexeeva, O. V. Almjasheva, D. D. Averkiev, P. V. Kozhuhovskaya, O. I. Shevaleevskiy. Cation Doping of La2NiMnO6 Complex Oxide with the Double Perovskite Structure for Photovoltaic Applications. Russian Journal of Inorganic Chemistry 2022, 67 (6) , 921-925. https://doi.org/10.1134/S003602362206016X
- Rengasamy Dhanabal, Suhash Ranjan Dey. Perovskite solar cells: recent progress and strategies developed for minimizing interfacial recombination. Frontiers of Materials Science 2022, 16 (2) https://doi.org/10.1007/s11706-022-0595-7
- Mukaddar Sk. Recent progress of lead-free halide double perovskites for green energy and other applications. Applied Physics A 2022, 128 (5) https://doi.org/10.1007/s00339-022-05596-9
- Zhi‐Wen Gao, Yong Wang, Wallace C. H. Choy. Buried Interface Modification in Perovskite Solar Cells: A Materials Perspective. Advanced Energy Materials 2022, 12 (20) , 2104030. https://doi.org/10.1002/aenm.202104030
- Angelica Simbula, Riccardo Pau, Fang Liu, Luyan Wu, Stefano Lai, Alessandra Geddo-Lehmann, Alessio Filippetti, Maria A. Loi, Daniela Marongiu, Francesco Quochi, Michele Saba, Andrea Mura, Giovanni Bongiovanni. Direct measurement of radiative decay rates in metal halide perovskites. Energy & Environmental Science 2022, 15 (3) , 1211-1221. https://doi.org/10.1039/D1EE03426J
- Do-Kyoung Lee, Nam-Gyu Park. Materials and Methods for High‐Efficiency Perovskite Solar Modules. Solar RRL 2022, 6 (3) , 2100455. https://doi.org/10.1002/solr.202100455
- Jung Hwan Lee, Taehee Kim, Seulki Song, Yongchul Kim, Sooeun Shin, SunJe Lee, Younghoon Kim, Young Jin Choi, Sungsoon Kim, Kan Zhang, Jeong Ho Cho, Hyunjung Shin, Geunsik Lee, Nam-Gyu Park, Dongho Kim, Jangwon Seo, Jong Hyeok Park. Enhanced band-filling effect in halide perovskites via hydrophobic conductive linkers. Cell Reports Physical Science 2022, 3 (3) , 100800. https://doi.org/10.1016/j.xcrp.2022.100800
- Sushu Wan, Yajie Zhu, Daocheng Hong, Yuxi Tian. Controllable Introduction of Surface Defects on CH3NH3PbI3 Perovskite. Nanomaterials 2022, 12 (6) , 1002. https://doi.org/10.3390/nano12061002
- Umar Farooq, Muhammad Ishaq, Usman Ali Shah, Shuo Chen, Zhuang-Hao Zheng, Muhammad Azam, Zheng-Hua Su, Rong Tang, Ping Fan, Yang Bai, Guang-Xing Liang. Bandgap engineering of lead-free ternary halide perovskites for photovoltaics and beyond: Recent progress and future prospects. Nano Energy 2022, 92 , 106710. https://doi.org/10.1016/j.nanoen.2021.106710
- Nilesh G Saykar, Anil Arya, S K Mahapatra. A comprehensive review on defect passivation and gradient energy alignment strategies for highly efficient perovskite solar cells. Journal of Physics D: Applied Physics 2022, 55 (4) , 043001. https://doi.org/10.1088/1361-6463/ac2d63
- Youhei Numata, Naoyuki Shibayama, Tsutomu Miyasaka. FAPbBr 3 perovskite solar cells with V OC values over 1.5 V by controlled crystal growth using tetramethylenesulfoxide. Journal of Materials Chemistry A 2022, 10 (2) , 672-681. https://doi.org/10.1039/D1TA08964A
- Xing Ni, Yuyan Liu, Yujin Ji, Chunhua Hu, Youyong Li. Theoretical screening of lead-free hybrid organic–inorganic halide double perovskites for solar cells. Journal of Materials Chemistry C 2022, 131 https://doi.org/10.1039/D2TC03507C
- Jeongbeom Cha, Mi Kyong Kim, Wonjong Lee, Haedam Jin, Hyemi Na, Dinh Cung Tien Nguyen, Soo-Hyoung Lee, Jongchul Lim, Min Kim. Perovskite Nanowires as Defect Passivators and Charge Transport Networks for Efficient and Stable Perovskite Solar Cells. SSRN Electronic Journal 2022, 5 https://doi.org/10.2139/ssrn.4122755
- Thomas Stergiopoulos. Tin Halide Perovskite Solar Cells. 2021, 223-245. https://doi.org/10.1002/9783527825790.ch6
- Lijuan Chen, Qinqin Li, Chengrui Shao, Yongle Wang, Tianzhu Gong, Wei Hu. High-performance and stable perovskite photodetector with mixed 2D/3D perovskite surface passivation layer. Semiconductor Science and Technology 2021, 36 (12) , 12LT01. https://doi.org/10.1088/1361-6641/ac2af1
- Xin Wu, Bo Li, Zonglong Zhu, Chu-Chen Chueh, Alex. K.-Y. Jen. Designs from single junctions, heterojunctions to multijunctions for high-performance perovskite solar cells. Chemical Society Reviews 2021, 50 (23) , 13090-13128. https://doi.org/10.1039/D1CS00841B
- Robert Godin, James R. Durrant. Dynamics of photoconversion processes: the energetic cost of lifetime gain in photosynthetic and photovoltaic systems. Chemical Society Reviews 2021, 50 (23) , 13372-13409. https://doi.org/10.1039/D1CS00577D
- Seonghwa Jeong, Seongrok Seo, Hyunwoo Yang, Hyoungmin Park, Sooeun Shin, Hyungju Ahn, Donghwa Lee, Jong Hyeok Park, Nam‐Gyu Park, Hyunjung Shin. Cyclohexylammonium‐Based 2D/3D Perovskite Heterojunction with Funnel‐Like Energy Band Alignment for Efficient Solar Cells (23.91%). Advanced Energy Materials 2021, 11 (42) , 2102236. https://doi.org/10.1002/aenm.202102236
- Pengyun Liu, Huimin Xiang, Wei Wang, Ran Ran, Wei Zhou, Zongping Shao. A bilateral cyano molecule serving as an effective additive enables high-efficiency and stable perovskite solar cells. Journal of Energy Chemistry 2021, 62 , 243-251. https://doi.org/10.1016/j.jechem.2021.03.024
- Chang-Ying Ou, Sudipta Som, Chung-Hsin Lu, Karan Kumar Gupta, Rajneesh Chaurasiya. Photovoltaic characteristics and computational simulation of samarium-ion doped Cu(In, Ga)Se2 thin films prepared via a non-vacuum coating process. Journal of Alloys and Compounds 2021, 881 , 160377. https://doi.org/10.1016/j.jallcom.2021.160377
- Christos Polyzoidis, Konstantinos Rogdakis, Emmanuel Kymakis. Indoor Perovskite Photovoltaics for the Internet of Things—Challenges and Opportunities toward Market Uptake. Advanced Energy Materials 2021, 11 (38) , 2101854. https://doi.org/10.1002/aenm.202101854
- Lukas Schmidt-Mende, Vladimir Dyakonov, Selina Olthof, Feray Ünlü, Khan Moritz Trong Lê, Sanjay Mathur, Andrei D. Karabanov, Doru C. Lupascu, Laura M. Herz, Alexander Hinderhofer, Frank Schreiber, Alexey Chernikov, David A. Egger, Oleksandra Shargaieva, Caterina Cocchi, Eva Unger, Michael Saliba, Mahdi Malekshahi Byranvand, Martin Kroll, Frederik Nehm, Karl Leo, Alex Redinger, Julian Höcker, Thomas Kirchartz, Jonathan Warby, Emilio Gutierrez-Partida, Dieter Neher, Martin Stolterfoht, Uli Würfel, Moritz Unmüssig, Jan Herterich, Clemens Baretzky, John Mohanraj, Mukundan Thelakkat, Clément Maheu, Wolfram Jaegermann, Thomas Mayer, Janek Rieger, Thomas Fauster, Daniel Niesner, Fengjiu Yang, Steve Albrecht, Thomas Riedl, Azhar Fakharuddin, Maria Vasilopoulou, Yana Vaynzof, Davide Moia, Joachim Maier, Marius Franckevičius, Vidmantas Gulbinas, Ross A. Kerner, Lianfeng Zhao, Barry P. Rand, Nadja Glück, Thomas Bein, Fabio Matteocci, Luigi Angelo Castriotta, Aldo Di Carlo, Matthias Scheffler, Claudia Draxl. Roadmap on organic–inorganic hybrid perovskite semiconductors and devices. APL Materials 2021, 9 (10) , 109202. https://doi.org/10.1063/5.0047616
- Asia Bibi, Ilgeum Lee, Yoonseo Nah, Omar Allam, Heejun Kim, Li Na Quan, Jiang Tang, Aron Walsh, Seung Soon Jang, Edward H. Sargent, Dong Ha Kim. Lead-free halide double perovskites: Toward stable and sustainable optoelectronic devices. Materials Today 2021, 49 , 123-144. https://doi.org/10.1016/j.mattod.2020.11.026
- Yi-June Huang, Chuan-Pei Lee. Nanostructured Transition Metal Compounds as Highly Efficient Electrocatalysts for Dye-Sensitized Solar Cells. 2021https://doi.org/10.5772/intechopen.94021
- Fei Cheng, Jie Zhang, Thierry Pauporté. Chlorides, other Halides, and Pseudo‐Halides as Additives for the Fabrication of Efficient and Stable Perovskite Solar Cells. ChemSusChem 2021, 14 (18) , 3665-3692. https://doi.org/10.1002/cssc.202101089
- T. Liang, J. Fu, M. Li, H. Li, Y. Hao, W. Ma. Application of upconversion photoluminescent materials in perovskite solar cells: opportunities and challenges. Materials Today Energy 2021, 21 , 100740. https://doi.org/10.1016/j.mtener.2021.100740
- J. Chen, Z.-K. Wang, L.-S. Liao. Defect passivation and crystallization control of perovskite films for photovoltaic application. Materials Today Nano 2021, 15 , 100118. https://doi.org/10.1016/j.mtnano.2021.100118
- Yu Zhao, Xin Zhang, Xuefei Han, Chengyi Hou, Hongzhi Wang, Jiabin Qi, Yaogang Li, Qinghong Zhang. Tuning the reactivity of PbI2 film via monolayer Ti3C2Tx MXene for two-step-processed CH3NH3PbI3 solar cells. Chemical Engineering Journal 2021, 417 , 127912. https://doi.org/10.1016/j.cej.2020.127912
- Mahdi Malekshahi Byranvand, Michael Saliba. Defect Passivation of Perovskite Films for Highly Efficient and Stable Solar Cells. Solar RRL 2021, 5 (8) , 2100295. https://doi.org/10.1002/solr.202100295
- Wenbin Tang, Yujie Zhang, Changlai Yuan, Xiao Liu, Baohua Zhu, Liufang Meng, Changrong Zhou, Fei Liu, Jiwen Xu, Jiang Wang, Guanghui Rao. Crystal structures and electrical properties of Sr/Fe‐modified KNbO 3 ferroelectric semiconductors with narrow bandgap. Journal of the American Ceramic Society 2021, 104 (5) , 2181-2190. https://doi.org/10.1111/jace.17567
- Abyl Muradov, Daria Frolushkina, Vadim Samusenkov, Gulsara Zhamanbayeva, Sebastian Kot. Methods of Stability Control of Perovskite Solar Cells for High Efficiency. Energies 2021, 14 (10) , 2918. https://doi.org/10.3390/en14102918
- Yulu He, Imane Abdellaoui, M. Abdel-Shakour, Towhid Hossain Chowdhury, Muhammad Akmal Kamarudin, Ana Flávia Nogueira, Qing Shen, Shuzi Hayase, Ashraful Islam, Takeaki Sakurai. Study of open circuit voltage loss mechanism in perovskite solar cells. Japanese Journal of Applied Physics 2021, 60 (SB) , SBBF13. https://doi.org/10.35848/1347-4065/abe5c1
- Longkai Yang, Qiu Xiong, Yanbo Li, Peng Gao, Ben Xu, Hong Lin, Xin Li, Tsutomu Miyasaka. Artemisinin-passivated mixed-cation perovskite films for durable flexible perovskite solar cells with over 21% efficiency. Journal of Materials Chemistry A 2021, 9 (3) , 1574-1582. https://doi.org/10.1039/D0TA10717D
- Yuiga Nakamura, Tomonori Matsushita, Takashi Kondo. Ternary-source vapor-phase deposition of CH 3 NH 3 PbI 3 polycrystalline thin films using CH 3 NH 2 and HI gas sources with PbI 2 solid source. Japanese Journal of Applied Physics 2021, 60 (1) , 015505. https://doi.org/10.35848/1347-4065/abd0c6
- Sadia Khalid, Muhammad Sultan, Ejaz Ahmed, Waqar Ahmed. Third-generation solar cells. 2021, 3-35. https://doi.org/10.1016/B978-0-12-821346-9.00019-5
- Afshan Jamshaid, Zhendong Guo, Jeremy Hieulle, Collin Stecker, Robin Ohmann, Luis K. Ono, Longbin Qiu, Guoqing Tong, Wanjian Yin, Yabing Qi. Atomic-scale insight into the enhanced surface stability of methylammonium lead iodide perovskite by controlled deposition of lead chloride. Energy & Environmental Science 2021, 131 https://doi.org/10.1039/D1EE01084K
- Rushi Jani, Nirag R Jain, Kshitij Bhargava. A computational study on efficiency augmentation in formamidinium-lead-iodide perovskite solar cell with WS 2 as electron transport layer. 2020, 1-4. https://doi.org/10.1109/ICEE50728.2020.9777034
- Ahra Yi, Sangmin Chae, Sejeong Won, Hyun-June Jung, In Hwa Cho, Jae-Hyun Kim, Hyo Jung Kim. Roll-transferred graphene encapsulant for robust perovskite solar cells. Nano Energy 2020, 77 , 105182. https://doi.org/10.1016/j.nanoen.2020.105182
- Young Wook Noh, In Su Jin, Kyeong Su Kim, Sang Hyun Park, Jae Woong Jung. Reduced energy loss in SnO 2 /ZnO bilayer electron transport layer-based perovskite solar cells for achieving high efficiencies in outdoor/indoor environments. Journal of Materials Chemistry A 2020, 8 (33) , 17163-17173. https://doi.org/10.1039/D0TA04721J
- Mei Lyu, Do-Kyoung Lee, Nam-Gyu Park. Effect of alkaline earth metal chloride additives BCl 2 (B = Mg, Ca, Sr and Ba) on the photovoltaic performance of FAPbI 3 based perovskite solar cells. Nanoscale Horizons 2020, 5 (9) , 1332-1343. https://doi.org/10.1039/D0NH00263A
- Ching Lin. Stabilizing Organic–Inorganic Lead Halide Perovskite Solar Cells With Efficiency Beyond 20%. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.00592
- Sanam Attique, Nasir Ali, Shahid Ali, Rabia Khatoon, Na Li, Amir Khesro, Sajid Rauf, Shikuan Yang, Huizhen Wu. A Potential Checkmate to Lead: Bismuth in Organometal Halide Perovskites, Structure, Properties, and Applications. Advanced Science 2020, 7 (13) , 1903143. https://doi.org/10.1002/advs.201903143
- Maciej Adam Surmiak, Tian Zhang, Jianfeng Lu, Kevin James Rietwyk, Sonia Ruiz Raga, David Patrick McMeekin, Udo Bach. High‐Throughput Characterization of Perovskite Solar Cells for Rapid Combinatorial Screening. Solar RRL 2020, 4 (7) , 2000097. https://doi.org/10.1002/solr.202000097
- Feray Ünlü, Eunhwan Jung, Jinane Haddad, Ashish Kulkarni, Senol Öz, Heechae Choi, Thomas Fischer, Sudip Chakraborty, Thomas Kirchartz, Sanjay Mathur. Understanding the interplay of stability and efficiency in A-site engineered lead halide perovskites. APL Materials 2020, 8 (7) , 070901. https://doi.org/10.1063/5.0011851
- Anurag Roy, Aritra Ghosh, Shubhranshu Bhandari, Senthilarasu Sundaram, Tapas K. Mallick. Perovskite Solar Cells for BIPV Application: A Review. Buildings 2020, 10 (7) , 129. https://doi.org/10.3390/buildings10070129
- Junjie Wang, Qikun Hu, Minzhang Li, Haiquan Shan, Yaomiao Feng, Zong-Xiang Xu. Poly(3‐hexylthiophene)/Gold Nanorod Composites as Efficient Hole‐Transporting Materials for Perovskite Solar Cells. Solar RRL 2020, 4 (6) , 2000109. https://doi.org/10.1002/solr.202000109
- Chunqing Ma, Nam-Gyu Park. A Realistic Methodology for 30% Efficient Perovskite Solar Cells. Chem 2020, 6 (6) , 1254-1264. https://doi.org/10.1016/j.chempr.2020.04.013
- Qian Zhou, Boxing Wang, Rui Meng, Jiyu Zhou, Shenkun Xie, Xuning Zhang, Jianqiu Wang, Shengli Yue, Bing Qin, Huiqiong Zhou, Yuan Zhang. Understanding Temperature‐Dependent Charge Extraction and Trapping in Perovskite Solar Cells. Advanced Functional Materials 2020, 30 (22) , 2000550. https://doi.org/10.1002/adfm.202000550
- Nam-Gyu Park, Kai Zhu. Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nature Reviews Materials 2020, 5 (5) , 333-350. https://doi.org/10.1038/s41578-019-0176-2
- Luis K. Ono, Shengzhong (Frank) Liu, Yabing Qi. Verringerung schädlicher Defekte für leistungsstarke Metallhalogenid‐Perowskit‐Solarzellen. Angewandte Chemie 2020, 132 (17) , 6740-6764. https://doi.org/10.1002/ange.201905521
- Luis K. Ono, Shengzhong (Frank) Liu, Yabing Qi. Reducing Detrimental Defects for High‐Performance Metal Halide Perovskite Solar Cells. Angewandte Chemie International Edition 2020, 59 (17) , 6676-6698. https://doi.org/10.1002/anie.201905521
- Dong-Nyuk Jeong, June-Mo Yang, Nam-Gyu Park. Roadmap on halide perovskite and related devices. Nanotechnology 2020, 31 (15) , 152001. https://doi.org/10.1088/1361-6528/ab59ed
- Longbin Qiu, Sisi He, Luis K. Ono, Yabing Qi. Progress of Surface Science Studies on ABX 3 ‐Based Metal Halide Perovskite Solar Cells. Advanced Energy Materials 2020, 10 (13) , 1902726. https://doi.org/10.1002/aenm.201902726
- Nam‐Gyu Park. Research Direction toward Scalable, Stable, and High Efficiency Perovskite Solar Cells. Advanced Energy Materials 2020, 10 (13) , 1903106. https://doi.org/10.1002/aenm.201903106
- Chunhua Xiong, Jiuxun Sun, Jingye Zhang, Yao Fu. Revelating mechnism of light ideality factor in organic solar cells. Organic Electronics 2020, 78 , 105559. https://doi.org/10.1016/j.orgel.2019.105559
- Nam-Gyu Park. High Efficiency Perovskite Solar Cells: Materials and Devices Engineering. Transactions on Electrical and Electronic Materials 2020, 21 (1) , 1-15. https://doi.org/10.1007/s42341-019-00156-0