Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Overcoming Diffusion-Limited Biosensing by Electrothermoplasmonics

  • Jose Garcia-Guirado
    Jose Garcia-Guirado
    ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
  • Raúl A Rica*
    Raúl A Rica
    ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
    Department of Applied Physics, School of Sciences, University of Granada, 18071 Granada, Spain
    *E-mail: [email protected]
    More by Raúl A Rica
  • Jaime Ortega
    Jaime Ortega
    ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
    More by Jaime Ortega
  • Judith Medina
    Judith Medina
    ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
  • Vanesa Sanz
    Vanesa Sanz
    ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
    More by Vanesa Sanz
  • Emilio Ruiz-Reina
    Emilio Ruiz-Reina
    Departamento de Física Aplicada II, Escuela de Ingenierías Industriales, Universidad de Málaga, 29071 Málaga, Spain
  • , and 
  • Romain Quidant*
    Romain Quidant
    ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
    ICREA-Institució Catalana de Recerca I Estudis Avançats, 08010 Barcelona, Spain
    *E-mail: [email protected]
Cite this: ACS Photonics 2018, 5, 9, 3673–3679
Publication Date (Web):July 31, 2018
https://doi.org/10.1021/acsphotonics.8b00681
Copyright © 2018 American Chemical Society

    Article Views

    1735

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (3)»

    Abstract

    Abstract Image

    Biosensing based on optical micro- and nanoresonators integrated in a microfluidic environment is a promising approach to lab-on-a-chip platforms capable of detecting low concentrations of analytes from small sample volumes. While sensitivity has reached the single molecule level, in practice, the applicability to real-life settings is limited by Brownian diffusion of the analyte to the sensor surface, which dictates the total duration of the sensing assay. Here, we use the electrothermoplasmonic (ETP) effect to overcome this limit through opto-electrical fluid convective flow generation. To this end, we designed a Localized Surface Plasmon Resonance (LSPR) sensing chip that integrates ETP operation into state-of-the-art microfluidics. First, we optimize and characterize the ETP dynamics inside the microfluidic chamber, showing high fluid velocities. Then, we perform proof-of-concept experiments on model immunoglobulin G detection to demonstrate ETP-enhanced biosensing. Our results demonstrate the synergetic effect of temperature and electric field proving that ETP-LSPR has improved performances over standard LSPR.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Supporting videos files and are included in the document. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsphotonics.8b00681.

    • Details on sample and experimental preparation, particle tracing, parameters used in simulations, a discussion about the thermal shift, and additional set of data (PDF).

    • Video SV1 (AVI).

    • Video SV2 (AVI).

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 40 publications.

    1. Shuting Pan, Rui You, Xian Chen, Wenwei Pan, Quanning Li, Xuejiao Chen, Wei Pang, Xuexin Duan. Regulating Biomolecular Surface Interactions Using Tunable Acoustic Streaming. ACS Sensors 2023, 8 (9) , 3458-3467. https://doi.org/10.1021/acssensors.3c00982
    2. Nabarun Polley, Samim Sardar, Peter Werner, Ingo Gersonde, Yuya Kanehira, Ilko Bald, Daniel Repp, Thomas Pertsch, Claudia Pacholski. Photothermomechanical Nanopump: A Flow-Through Plasmonic Sensor at the Fiber Tip. ACS Nano 2023, 17 (2) , 1403-1413. https://doi.org/10.1021/acsnano.2c09938
    3. Emiliano Cortés, Fedja J. Wendisch, Luca Sortino, Andrea Mancini, Simone Ezendam, Seryio Saris, Leonardo de S. Menezes, Andreas Tittl, Haoran Ren, Stefan A. Maier. Optical Metasurfaces for Energy Conversion. Chemical Reviews 2022, 122 (19) , 15082-15176. https://doi.org/10.1021/acs.chemrev.2c00078
    4. Zi Li, Molly McNeely, Erin Sandford, Muneesh Tewari, Alexander Johnson-Buck, Nils G. Walter. Attomolar Sensitivity in Single Biomarker Counting upon Aqueous Two-Phase Surface Enrichment. ACS Sensors 2022, 7 (5) , 1419-1430. https://doi.org/10.1021/acssensors.2c00135
    5. Zhihan Chen, Jingang Li, Yuebing Zheng. Heat-Mediated Optical Manipulation. Chemical Reviews 2022, 122 (3) , 3122-3179. https://doi.org/10.1021/acs.chemrev.1c00626
    6. Jun-Yi Lu, Hsi-An Chen, Chia-Min Yang, Li-Kang Chu. Radiative Relaxation of Gold Nanorods Coated with Mesoporous Silica with Different Porosities upon Nanosecond Photoexcitation Monitored by Time-Resolved Infrared Emission Spectroscopy. ACS Applied Materials & Interfaces 2021, 13 (50) , 60018-60026. https://doi.org/10.1021/acsami.1c19613
    7. Yaoran Liu, Zilong Wu, Pavana Siddhartha Kollipara, Richard Montellano, Kumar Sharma, Yuebing Zheng. Label-Free Ultrasensitive Detection of Abnormal Chiral Metabolites in Diabetes. ACS Nano 2021, 15 (4) , 6448-6456. https://doi.org/10.1021/acsnano.0c08822
    8. Yatao Ren, Qin Chen, Mingjian He, Xiangzhi Zhang, Hong Qi, Yuying Yan. Plasmonic Optical Tweezers for Particle Manipulation: Principles, Methods, and Applications. ACS Nano 2021, 15 (4) , 6105-6128. https://doi.org/10.1021/acsnano.1c00466
    9. Ieng-Wai Un, Yonatan Sivan. The Role of Heat Generation and Fluid Flow in Plasmon-Enhanced Reduction–Oxidation Reactions. ACS Photonics 2021, 8 (4) , 1183-1190. https://doi.org/10.1021/acsphotonics.1c00113
    10. Souvik Ghosh, Ambarish Ghosh. Next-Generation Optical Nanotweezers for Dynamic Manipulation: From Surface to Bulk. Langmuir 2020, 36 (21) , 5691-5708. https://doi.org/10.1021/acs.langmuir.0c00728
    11. Abhay Kotnala, Pavana Siddhartha Kollipara, Jingang Li, Yuebing Zheng. Overcoming Diffusion-Limited Trapping in Nanoaperture Tweezers Using Opto-Thermal-Induced Flow. Nano Letters 2020, 20 (1) , 768-779. https://doi.org/10.1021/acs.nanolett.9b04876
    12. Lili Gui, Mario Hentschel, Josselin Defrance, Joachim Krauth, Thomas Weiss, Harald Giessen. Nonlinear Born-Kuhn Analog for Chiral Plasmonics. ACS Photonics 2019, 6 (12) , 3306-3314. https://doi.org/10.1021/acsphotonics.9b01400
    13. Chuchuan Hong, Ikjun Hong, Yuxi Jiang, Justus C. Ndukaife. Plasmonic Dielectric Antennas for Hybrid Optical Nanotweezing And Optothermoelectric Manipulation of Single Nanosized Extracellular Vesicles. Advanced Optical Materials 2024, 12 (12) https://doi.org/10.1002/adom.202302603
    14. Chuchuan Hong, Ikjun Hong, Sen Yang, Justus C. Ndukaife. Towards rapid colorimetric detection of extracellular vesicles using optofluidics-enhanced color-changing optical metasurface. Optics Express 2024, 32 (4) , 4769. https://doi.org/10.1364/OE.506686
    15. Guangyu Qiu, Xiaole Zhang, Andrew J. deMello, Maosheng Yao, Junji Cao, Jing Wang. On-site airborne pathogen detection for infection risk mitigation. Chemical Society Reviews 2023, 52 (24) , 8531-8579. https://doi.org/10.1039/D3CS00417A
    16. Carlos David González-Gómez, Raúl A. Rica, Emilio Ruiz-Reina. Electrothermoplasmonic flow in gold nanoparticles suspensions: Nonlinear dependence of flow velocity on aggregate concentration. Journal of Colloid and Interface Science 2023, 648 , 397-405. https://doi.org/10.1016/j.jcis.2023.05.198
    17. Liuzheng Zheng, Nathan Hart, Yong Zeng. Micro-/nanoscale robotics for chemical and biological sensing. Lab on a Chip 2023, 23 (17) , 3741-3767. https://doi.org/10.1039/D3LC00404J
    18. David J. Simon, Felix Hartmann, Tobias Thalheim, Frank Cichos. Thermoplasmonic Manipulation for the Study of Single Polymers and Protein Aggregates. Macromolecular Chemistry and Physics 2023, 224 (14) https://doi.org/10.1002/macp.202300060
    19. Dousabel M.Y. Tay, Seunghyeon Kim, Yining Hao, Emma H. Yee, Huan Jia, Sydney M. Vleck, Makaya Chilekwa, Joel Voldman, Hadley D. Sikes. Accelerating the optimization of vertical flow assay performance guided by a rational systematic model-based approach. Biosensors and Bioelectronics 2023, 222 , 114977. https://doi.org/10.1016/j.bios.2022.114977
    20. Swetapadma Sahoo, Valery A. Davydov, Viatcheslav N. Agafonov, Simeon I. Bogdanov. Hybrid quantum nanophotonic devices with color centers in nanodiamonds [Invited]. Optical Materials Express 2023, 13 (1) , 191. https://doi.org/10.1364/OME.471376
    21. 钟义立 Zhong Yili, 彭宇航 Peng Yuhang, 陈嘉杰 Chen Jiajie, 周健行 Zhou Jianxing, 戴小祺 Dai Xiaoqi, 张晗 Zhang Han, 屈军乐 Qu Junle, 邵永红 Shao Yonghong. 光致温度场光镊:原理及生物医学应用. Acta Optica Sinica 2023, 43 (14) , 1400001. https://doi.org/10.3788/AOS230530
    22. Anders Henriksson, Peter Neubauer, Mario Birkholz. Dielectrophoresis: An Approach to Increase Sensitivity, Reduce Response Time and to Suppress Nonspecific Binding in Biosensors?. Biosensors 2022, 12 (10) , 784. https://doi.org/10.3390/bios12100784
    23. Zhimin Jing, Peng Yu, Artur Movsesyan, Cuiping Ma, Peihang Li, Yisong Zhu, Alexander O. Govorov, Arup Neogi, Zhiming Wang. Manipulation of Fluid Convection by Surface Lattice Resonance. Advanced Optical Materials 2022, 10 (17) https://doi.org/10.1002/adom.202201066
    24. Boliang Jia, Jiajie Chen, Jie Zhou, Youjun Zeng, Ho-Pui Ho, Yonghong Shao. Passively and actively enhanced surface plasmon resonance sensing strategies towards single molecular detection. Nano Research 2022, 15 (9) , 8367-8388. https://doi.org/10.1007/s12274-022-4515-z
    25. Jiajie Chen, Youjun Zeng, Jie Zhou, Xueliang Wang, Boliang Jia, Ruibiao Miyan, Teliang Zhang, Wei Sang, Ying Wang, Haixia Qiu, Junle Qu, Ho-Pui Ho, Bruce Zhi Gao, Yonghong Shao, Ying Gu. Optothermophoretic flipping method for biomolecule interaction enhancement. Biosensors and Bioelectronics 2022, 204 , 114084. https://doi.org/10.1016/j.bios.2022.114084
    26. Tabitha Jones, Gemma Davison, Hyeon-Ho Jeong, Tung-Chun Lee. Engineered Gold Nanoparticles for Photothermal Applications. 2022, 33-80. https://doi.org/10.1039/9781839165177-00033
    27. B. Ciraulo, J. Garcia-Guirado, I. de Miguel, J. Ortega Arroyo, R. Quidant. Long-range optofluidic control with plasmon heating. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-22280-3
    28. Xianglai Liao, Lili Gui, Chuanshuo Wang, Maoyu Feng, Zhenming Yu, Tian Zhang, Kun Xu. Efficient Design of 3D Chiral Plasmonic Metasurfaces Assisted by Intelligent Algorithms. 2021, 779-787. https://doi.org/10.1109/PIERS53385.2021.9695023
    29. Yingqi Zhao, Aliaksandr Hubarevich, Marzia Iarossi, Tetiana Borzda, Francesco Tantussi, Jian‐An Huang, Francesco De Angelis. Hyperbolic Nanoparticles on Substrate with Separate Optical Scattering and Absorption Resonances: A Dual Function Platform for SERS and Thermoplasmonics. Advanced Optical Materials 2021, 9 (20) https://doi.org/10.1002/adom.202100888
    30. Andreas Dahlin. Biochemical Sensing with Nanoplasmonic Architectures: We Know How but Do We Know Why?. Annual Review of Analytical Chemistry 2021, 14 (1) , 281-297. https://doi.org/10.1146/annurev-anchem-091420-090751
    31. Hsin-Fu Huang, Kun-Hao Huang. Energy efficiency analysis of mass transport enhancement in time-periodic oscillatory electroosmosis. Physics of Fluids 2021, 33 (3) https://doi.org/10.1063/5.0041229
    32. Sara Perotto, Claudio Biagini, Aliaksandr Hubarevich, Francesco Tantussi, Francesco De Angelis. Toward all on chip optical detection in the few molecule regime. Biosensors and Bioelectronics 2020, 169 , 112600. https://doi.org/10.1016/j.bios.2020.112600
    33. Chuchuan Hong, Sen Yang, Justus C. Ndukaife. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers. Nature Nanotechnology 2020, 15 (11) , 908-913. https://doi.org/10.1038/s41565-020-0760-z
    34. Guillaume Baffou, Frank Cichos, Romain Quidant. Applications and challenges of thermoplasmonics. Nature Materials 2020, 19 (9) , 946-958. https://doi.org/10.1038/s41563-020-0740-6
    35. Yaoran Liu, Zilong Wu, Yuebing Zheng. Microbubble-Assisted Concentration and Ultrasensitive Detection of Biomolecules Using Plasmonic Chiral Metamaterials. 2020, 1-2. https://doi.org/10.1109/IPC47351.2020.9252520
    36. Gabriele C. Messina, Xavier Zambrana-Puyalto, Nicolò Maccaferri, Denis Garoli, Francesco De Angelis. Two-state switchable plasmonic tweezers for dynamic manipulation of nano-objects. Nanoscale 2020, 12 (15) , 8574-8581. https://doi.org/10.1039/D0NR00721H
    37. Zhihao Ren, Yuhua Chang, Yiming Ma, Kailing Shih, Bowei Dong, Chengkuo Lee. Leveraging of MEMS Technologies for Optical Metamaterials Applications. Advanced Optical Materials 2020, 8 (3) https://doi.org/10.1002/adom.201900653
    38. Farzia Karim, Yvonne Sun, Erick S. Vasquez, Chenglong Zhao. Active and Ultrasensitive Chemical and Biosensing through Optothermally Generated Microbubble. 2020, AW3I.2. https://doi.org/10.1364/CLEO_AT.2020.AW3I.2
    39. Farzia Karim, Erick S. Vasquez, Yvonne Sun, Chenglong Zhao. Optothermal microbubble assisted manufacturing of nanogap-rich structures for active chemical sensing. Nanoscale 2019, 11 (43) , 20589-20597. https://doi.org/10.1039/C9NR05892C
    40. Chuchuan Hong, Sen Yang, Justus C. Ndukaife. Optofluidic control using plasmonic TiN bowtie nanoantenna. Optical Materials Express 2019, 9 (3) , 953. https://doi.org/10.1364/OME.9.000953