ACS Publications. Most Trusted. Most Cited. Most Read
GeSn/SiGeSn Heterostructure and Multi Quantum Well Lasers
My Activity
    Article

    GeSn/SiGeSn Heterostructure and Multi Quantum Well Lasers
    Click to copy article linkArticle link copied!

    • Daniela Stange*
      Daniela Stange
      Peter Grünberg Institute (PGI 9) and JARA-Fundamentals of Future Information Technologies, Forschungszentrum Jülich, 52425 Jülich, Germany
      *E-mail: [email protected]. Tel: +492461-614505.
    • Nils von den Driesch
      Nils von den Driesch
      Peter Grünberg Institute (PGI 9) and JARA-Fundamentals of Future Information Technologies, Forschungszentrum Jülich, 52425 Jülich, Germany
      JARA-Institute Green IT, RWTH Aachen University, 52075 Aachen, Germany
    • Thomas Zabel
      Thomas Zabel
      Laboratory for Micro- and Nanotechnology (LMN), Paul Scherrer Institute, CH-5232 Villigen, Switzerland
      More by Thomas Zabel
    • Francesco Armand-Pilon
      Francesco Armand-Pilon
      Laboratory for Micro- and Nanotechnology (LMN), Paul Scherrer Institute, CH-5232 Villigen, Switzerland
    • Denis Rainko
      Denis Rainko
      Peter Grünberg Institute (PGI 9) and JARA-Fundamentals of Future Information Technologies, Forschungszentrum Jülich, 52425 Jülich, Germany
      More by Denis Rainko
    • Bahareh Marzban
      Bahareh Marzban
      Institute of Integrated Photonics and JARA-Fundamentals of Future Information Technologies, RWTH Aachen University, 52074 Aachen, Germany
    • Peter Zaumseil
      Peter Zaumseil
      IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
    • Jean-Michel Hartmann
      Jean-Michel Hartmann
      University of Grenoble Alpes, CEA, LETI, F-38000 Grenoble, France
    • Zoran Ikonic
      Zoran Ikonic
      Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
      More by Zoran Ikonic
    • Giovanni Capellini
      Giovanni Capellini
      IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
      Department of Sciences, Università Roma Tre, 00146 Roma, Italy
    • Siegfried Mantl
      Siegfried Mantl
      Peter Grünberg Institute (PGI 9) and JARA-Fundamentals of Future Information Technologies, Forschungszentrum Jülich, 52425 Jülich, Germany
    • Hans Sigg
      Hans Sigg
      Laboratory for Micro- and Nanotechnology (LMN), Paul Scherrer Institute, CH-5232 Villigen, Switzerland
      More by Hans Sigg
    • Jeremy Witzens
      Jeremy Witzens
      Institute of Integrated Photonics and JARA-Fundamentals of Future Information Technologies, RWTH Aachen University, 52074 Aachen, Germany
    • Detlev Grützmacher
      Detlev Grützmacher
      Peter Grünberg Institute (PGI 9) and JARA-Fundamentals of Future Information Technologies, Forschungszentrum Jülich, 52425 Jülich, Germany
    • Dan Buca
      Dan Buca
      Peter Grünberg Institute (PGI 9) and JARA-Fundamentals of Future Information Technologies, Forschungszentrum Jülich, 52425 Jülich, Germany
      More by Dan Buca
    Other Access OptionsSupporting Information (1)

    ACS Photonics

    Cite this: ACS Photonics 2018, 5, 11, 4628–4636
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsphotonics.8b01116
    Published October 19, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    GeSn and SiGeSn are promising materials for the fabrication of a group IV laser source offering a number of design options from bulk to heterostructures and quantum wells. Here, we investigate GeSn/SiGeSn multi quantum wells using the optically pumped laser effect. Three complex heterostructures were grown on top of 200 nm thick strain-relaxed Ge0.9Sn0.1 buffers. The lasing is investigated in terms of threshold and maximal lasing operation temperature by comparing multiple quantum well to double heterostructure samples. Pumping under two different wavelengths of 1064 and 1550 nm yields comparable lasing thresholds. The design with multi quantum wells reduces the lasing threshold to 40 ± 5 kW/cm2 at 20 K, almost 10 times lower than for bulk structures. Moreover, 20 K higher maximal lasing temperatures were found for lower energy pumping of 1550 nm.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsphotonics.8b01116.

    • Additional information on the double heterostructure material and lasing performance, calculation of carrier densities and strain distribution, insight on the determination on thresholds and excitation spot size (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 98 publications.

    1. Melvina Chen, Hyo-Jun Joo, Youngmin Kim, Eng Huat Toh, Elgin Quek, Zoran Ikonic, Wei Du, Shui-Qing Yu, Donguk Nam. Tensile-Strained GeSn Microbridge Lasers with Lithographically Controllable Emission Wavelengths. ACS Photonics 2024, 11 (11) , 4502-4506. https://doi.org/10.1021/acsphotonics.4c01173
    2. Omar Concepción, Jhonny Tiscareño-Ramírez, Ada Angela Chimienti, Thomas Classen, Agnieszka Anna Corley-Wiciak, Andrea Tomadin, Davide Spirito, Dario Pisignano, Patrizio Graziosi, Zoran Ikonic, Qing Tai Zhao, Detlev Grützmacher, Giovanni Capellini, Stefano Roddaro, Michele Virgilio, Dan Buca. Room Temperature Lattice Thermal Conductivity of GeSn Alloys. ACS Applied Energy Materials 2024, 7 (10) , 4394-4401. https://doi.org/10.1021/acsaem.4c00275
    3. Qimiao Chen, Yongduck Jung, Hao Zhou, Shaoteng Wu, Xiao Gong, Yi-Chiau Huang, Kwang Hong Lee, Lin Zhang, Donguk Nam, Jian Liu, Jun-Wei Luo, Weijun Fan, Chuan Seng Tan. GeSn/Ge Multiquantum-Well Vertical-Cavity Surface-Emitting p-i-n Structures and Diode Emitters on a 200 mm Ge-on-Insulator Platform. ACS Photonics 2023, 10 (6) , 1716-1725. https://doi.org/10.1021/acsphotonics.2c01934
    4. Bahareh Marzban, Lukas Seidel, Teren Liu, Kui Wu, Vivien Kiyek, Marvin Hartwig Zoellner, Zoran Ikonic, Joerg Schulze, Detlev Grützmacher, Giovanni Capellini, Michael Oehme, Jeremy Witzens, Dan Buca. Strain Engineered Electrically Pumped SiGeSn Microring Lasers on Si. ACS Photonics 2023, 10 (1) , 217-224. https://doi.org/10.1021/acsphotonics.2c01508
    5. Davide Spirito, Nils von den Driesch, Costanza Lucia Manganelli, Marvin Hartwig Zoellner, Agnieszka Anna Corley-Wiciak, Zoran Ikonic, Toma Stoica, Detlev Grützmacher, Dan Buca, Giovanni Capellini. Thermoelectric Efficiency of Epitaxial GeSn Alloys for Integrated Si-Based Applications: Assessing the Lattice Thermal Conductivity by Raman Thermometry. ACS Applied Energy Materials 2021, 4 (7) , 7385-7392. https://doi.org/10.1021/acsaem.1c01576
    6. Anas Elbaz, Riazul Arefin, Emilie Sakat, Binbin Wang, Etienne Herth, Gilles Patriarche, Antonino Foti, Razvigor Ossikovski, Sebastien Sauvage, Xavier Checoury, Konstantinos Pantzas, Isabelle Sagnes, Jérémie Chrétien, Lara Casiez, Mathieu Bertrand, Vincent Calvo, Nicolas Pauc, Alexei Chelnokov, Philippe Boucaud, Frederic Boeuf, Vincent Reboud, Jean-Michel Hartmann, Moustafa El Kurdi. Reduced Lasing Thresholds in GeSn Microdisk Cavities with Defect Management of the Optically Active Region. ACS Photonics 2020, 7 (10) , 2713-2722. https://doi.org/10.1021/acsphotonics.0c00708
    7. Mahdi Samadi Khoshkhoo, Peng Zhang, Karl Hiekel, Beatriz Martı́n-Garcı́a, Annett Reichhelm, Vladimir Lesnyak, Alexander Eychmüller. Semiconductor Nanocrystal Heterostructures: Near-Infrared Emitting PbSe-Tipped CdSe Tetrapods. Chemistry of Materials 2020, 32 (9) , 4045-4053. https://doi.org/10.1021/acs.chemmater.0c00714
    8. Jérémie Chrétien, Nicolas Pauc, Francesco Armand Pilon, Mathieu Bertrand, Quang-Minh Thai, Lara Casiez, Nicolas Bernier, Hugo Dansas, Patrice Gergaud, Eric Delamadeleine, Rami Khazaka, Hans Sigg, Jerome Faist, Alexei Chelnokov, Vincent Reboud, Jean-Michel Hartmann, Vincent Calvo. GeSn Lasers Covering a Wide Wavelength Range Thanks to Uniaxial Tensile Strain. ACS Photonics 2019, 6 (10) , 2462-2469. https://doi.org/10.1021/acsphotonics.9b00712
    9. Jie Zhou, Daniel Vincent, Sudip Acharya, Solomon Ojo, Yang Liu, Yifu Guo, Alireza Abrand, Jiarui Gong, Dong Liu, Samuel Haessly, Jianping Shen, Shining Xu, Yiran Li, Yi Lu, Hryhorii Stanchu, Luke Mawst, Parsian K. Mohseni, Kai Sun, Zetian Mi, Zhenqiang Ma, Shui-Qing Yu. Grafted AlGaAs/GeSn optical pumping laser operating up to 130 K. Applied Physics Letters 2025, 126 (9) https://doi.org/10.1063/5.0241572
    10. Jibao Wu, Huiyong Hu, Rui Zhang, Hongpeng Zhang, Zebo Fang. Impact of stoichiometry and crystallography growth strain on GeSn alloys from first principles calculations study. Materials Today Communications 2025, 42 , 111143. https://doi.org/10.1016/j.mtcomm.2024.111143
    11. Teren Liu, Lukas Seidel, Omar Concepción, Vincent Reboud, Alexei Chelnokov, Giovanni Capellini, Michael Oehme, Detlev Grützmacher, Dan Buca. Electrically Pumped GeSn Micro-Ring Lasers. IEEE Journal of Selected Topics in Quantum Electronics 2025, 31 (1: SiGeSn Infrared Photon.) , 1-7. https://doi.org/10.1109/JSTQE.2024.3489712
    12. Qimiao Chen, Weijie Mao, Lin Zhang, Chuan Seng Tan. Design of Directional-Emission GeSn Multi-Quantum-Well Light-Emitting Diodes on Si. IEEE Journal of Selected Topics in Quantum Electronics 2025, 31 (1: SiGeSn Infrared Photon.) , 1-7. https://doi.org/10.1109/JSTQE.2024.3515048
    13. Xiaoyang Zhang, Xianjun Zhu, Xueping Zhao, Hai Zhang, Wanghua Chen. Understanding the Thermodynamics of Si and Ge Concentration Variation in SiGeSn Nanowires. physica status solidi (a) 2024, 221 (23) https://doi.org/10.1002/pssa.202400261
    14. Lukas Seidel, Teren Liu, Omar Concepción, Bahareh Marzban, Vivien Kiyek, Davide Spirito, Daniel Schwarz, Aimen Benkhelifa, Jörg Schulze, Zoran Ikonic, Jean-Michel Hartmann, Alexei Chelnokov, Jeremy Witzens, Giovanni Capellini, Michael Oehme, Detlev Grützmacher, Dan Buca. Continuous-wave electrically pumped multi-quantum-well laser based on group-IV semiconductors. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-54873-z
    15. A. R. Ellis, D. A. Duffy, I. P. Marko, S. Acharya, W. Du, S. Q-. Yu, S. J. Sweeney. Challenges for room temperature operation of electrically pumped GeSn lasers. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-60686-3
    16. Andrea Giunto, Anna Fontcuberta i Morral. Defects in Ge and GeSn and their impact on optoelectronic properties. Applied Physics Reviews 2024, 11 (4) https://doi.org/10.1063/5.0218623
    17. S. Acharya, R. Kumar, H. Stanchu, B. Li, W. Du, S.-Q. Yu. Development of All Group IV SiGeSn Mid Infrared Semiconductor Laser. 2024, 1-2. https://doi.org/10.1109/ISLC57752.2024.10717411
    18. M. F. Schouten, M. A. J. van Tilburg, V. T. van Lange, W. H. J. Peeters, R. Farina, M. M. Jansen, M. Vettori, E. P. A. M. Bakkers, J. E. M. Haverkort. Carrier cooling in direct bandgap hexagonal silicon-germanium nanowires. Applied Physics Letters 2024, 125 (11) https://doi.org/10.1063/5.0211035
    19. N. Yahyaoui, E. Jellouli, P. Baser, N. Zeiri, M. Said, Mohammad N. Murshed. Computation of the near-infrared electro-absorption in GeSn/SiGeSn step quantum wells. Micro and Nanostructures 2024, 193 , 207876. https://doi.org/10.1016/j.micrna.2024.207876
    20. Xiangquan Liu, Jun Zheng, Qinxing Huang, Jinlai Cui, Yupeng Zhu, Yazhou Yang, Zhi Liu, Yuhua Zuo, Buwen Cheng. Investigation of temperature and H 2 on GePb/Ge multiple quantum well growth. Journal of Physics D: Applied Physics 2024, 57 (24) , 245108. https://doi.org/10.1088/1361-6463/ad32f5
    21. Yuying An, Kun Qian, Jinlong Jiao, Songsong Wu, Jinhui Qian, Qiang Wu, Jianyuan Wang, Jianfang Xu, Guangyang Lin, Wei Huang, Songyan Chen, Cheng Li. Low temperature metal induced crystallization of orientation-preferred polycrystalline germanium with n- and p-type doping for device applications. Journal of Alloys and Compounds 2024, 989 , 174380. https://doi.org/10.1016/j.jallcom.2024.174380
    22. Jiangwen Zhang, Aadithya G. Shankar, Xihua Wang. On-Chip Lasers for Silicon Photonics. Photonics 2024, 11 (3) , 212. https://doi.org/10.3390/photonics11030212
    23. J.M. Hartmann, T. Marion. Impact of flows, temperature and pressure on the GeSn growth kinetics with a digermane and tin tetrachloride chemistry. Materials Science in Semiconductor Processing 2024, 169 , 107893. https://doi.org/10.1016/j.mssp.2023.107893
    24. N. Yahyaoui, P. Baser, M. Said, S. Saadaoui. Electric field effect on the intersubband optical absorption of GeSn quantum wells with parabolically graded barriers. Micro and Nanostructures 2023, 184 , 207682. https://doi.org/10.1016/j.micrna.2023.207682
    25. Grey Abernathy, Solomon Ojo, Abdulla Said, Joshua M. Grant, Yiyin Zhou, Hryhorii Stanchu, Wei Du, Baohua Li, Shui-Qing Yu. Study of all-group-IV SiGeSn mid-IR lasers with dual wavelength emission. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-45916-4
    26. Rabah Moussa, Najet Baki, Fatiha Semari, Mohamed Kharroubi, Ahmed Abdiche, Rahima Boulechfar, Muhammad Waqas Iqbal, Souraya Goumri-Said, Ramesh Sharma, Saad Bin Omran, Hocine Meradji, Rabah Khenata. Theoretical investigation of the structural, electronic, optical, and elastic properties of the zinc blende SiGe1 − xSnx ternary alloy. Optical and Quantum Electronics 2023, 55 (9) https://doi.org/10.1007/s11082-023-05082-3
    27. Jaspinder Kaur, Rikmantra Basu, Ajay Kumar Sharma. Effect of quantum well thickness and temperature on electrical and optical characteristics of transistor laser using group-IV material. Optical and Quantum Electronics 2023, 55 (6) https://doi.org/10.1007/s11082-023-04720-0
    28. Grey Abernathy, Solomon Ojo, Hryhorii Stanchu, Yiyin Zhou, Oluwatobi Olorunsola, Joshua Grant, Wei Du, Yue-Tong Jheng, Guo-En Chang, Baohua Li, Shui-Qing Yu. Investigation of the cap layer for improved GeSn multiple quantum well laser performance. Optics Letters 2023, 48 (7) , 1626. https://doi.org/10.1364/OL.484837
    29. Oluwatobi Olorunsola, Abdulla Said, Solomon Ojo, Hryhorii Stanchu, Grey Abernathy, Sylvester Amoah, Samir Saha, Emmanuel Wangila, Joshua Grant, Sudip Acharya, Yue-Tong Jheng, Guo-En Chang, Baohua Li, Gregory Salamo, Shui-Qing Yu, Wei Du, , . Study of SiGeSn-based multiple quantum well laser for photonics integrated circuits. 2023, 21. https://doi.org/10.1117/12.2655510
    30. D. Grützmacher, O. Concepción, Q.-T. Zhao, D. Buca. Si–Ge–Sn alloys grown by chemical vapour deposition: a versatile material for photonics, electronics, and thermoelectrics. Applied Physics A 2023, 129 (3) https://doi.org/10.1007/s00339-023-06478-4
    31. Solomon Ojo, Hryhorii Stanchu, Sudip Acharya, Abdulla Said, Sylvester Amoah, Mourad Benamara, Chen Li, Fernando M. de Oliveira, Yuriy I. Mazur, Shui-Qing Yu, Gregory Salamo. Depth-dependent photoluminescence characteristic of GeSn/SiGeSn multi-quantum wells. Journal of Crystal Growth 2023, 605 , 127062. https://doi.org/10.1016/j.jcrysgro.2022.127062
    32. Md Toriqul Islam, Mool C. Gupta. Polycrystalline GeSn thin films fabricated by simultaneous laser sintering and recrystallization. Journal of Materials Science: Materials in Electronics 2023, 34 (4) https://doi.org/10.1007/s10854-022-09703-7
    33. Xiangquan Liu, Jun Zheng, Qinxing Huang, Yaqing Pang, Diandian Zhang, Yupeng Zhu, Zhi Liu, Yuhua Zuo, Buwen Cheng. Growth and characterization of GePb/Ge multiple quantum wells. Journal of Alloys and Compounds 2023, 934 , 167954. https://doi.org/10.1016/j.jallcom.2022.167954
    34. Takahiro Tsukamoto, Kento Ikeno, Nobumitsu Hirose, Akifumi Kasamatsu, Toshiaki Matsui, Yoshiyuki Suda. Sn distribution in Ge/GeSn heterostructures formed by sputter epitaxy method. Journal of Crystal Growth 2023, 604 , 127045. https://doi.org/10.1016/j.jcrysgro.2022.127045
    35. Shiyu Zhang, Shigehisa Shibayama, Osamu Nakatsuka. Crystalline and optoelectronic properties of Ge 1−x Sn x /high-Si-content-Si y Ge 1−x−y Sn x double-quantum wells grown with low-temperature molecular beam epitaxy. Semiconductor Science and Technology 2023, 38 (1) , 015018. https://doi.org/10.1088/1361-6641/aca7d9
    36. Nanxi Li, Guanyu Chen, Doris K. T. Ng, Leh Woon Lim, Jin Xue, Chong Pei Ho, Yuan Hsing Fu, Lennon Y. T. Lee. Integrated Lasers on Silicon at Communication Wavelength: A Progress Review. Advanced Optical Materials 2022, 10 (23) https://doi.org/10.1002/adom.202201008
    37. S. Assali, A. Attiaoui, S. Koelling, M. R. M. Atalla, A. Kumar, J. Nicolas, F. A. Chowdhury, C. Lemieux-Leduc, O. Moutanabbir. Micrometer-thick, atomically random Si0.06Ge0.90Sn0.04 for silicon-integrated infrared optoelectronics. Journal of Applied Physics 2022, 132 (19) https://doi.org/10.1063/5.0120505
    38. Oluwatobi Olorunsola, Abdulla Said, Solomon Ojo, Hryhorii Stanchu, Grey Abernathy, Sylvester Amoah, Samir Saha, Emmanuel Wangila, Joshua Grant, Sudip Acharya, Lucas Miller, Kyle Rosler, Yue-Tong Jheng, Guo-En Chang, Baohua Li, Gregory Salamo, Shui-Qing Yu, Wei Du. SiGeSn quantum well for photonics integrated circuits on Si photonics platform: a review. Journal of Physics D: Applied Physics 2022, 55 (44) , 443001. https://doi.org/10.1088/1361-6463/ac8d14
    39. Dan Buca, Andjelika Bjelajac, Davide Spirito, Omar Concepción, Maksym Gromovyi, Emilie Sakat, Xavier Lafosse, Laurence Ferlazzo, Nils von den Driesch, Zoran Ikonic, Detlev Grützmacher, Giovanni Capellini, Moustafa El Kurdi. Room Temperature Lasing in GeSn Microdisks Enabled by Strain Engineering. Advanced Optical Materials 2022, 10 (22) https://doi.org/10.1002/adom.202201024
    40. Grey Abernathy, Solomon Ojo, Joshua M. Grant, Yiyin Zhou, Wei Du, Andrian Kuchuk, Baohua Li, Shui-Qing Yu. Study of critical optical confinement factor for GeSn-based multiple quantum well lasers. Applied Physics Letters 2022, 121 (17) https://doi.org/10.1063/5.0107081
    41. Felix Reichmann, Andreas P. Becker, Emily V.S. Hofmann, Neil J. Curson, Wolfgang M. Klesse, Giovanni Capellini. Modification of the Ge(0 0 1) subsurface electronic structure after adsorption of Sn. Applied Surface Science 2022, 599 , 153884. https://doi.org/10.1016/j.apsusc.2022.153884
    42. Yu Han, Hyundai Park, John Bowers, Kei May Lau. Recent advances in light sources on silicon. Advances in Optics and Photonics 2022, 14 (3) , 404. https://doi.org/10.1364/AOP.455976
    43. Mohamed A. Nawwar, Magdy S. Abo Ghazala, Lobna M. Sharaf El-Deen, Abd El-hady B. Kashyout. Impact of strain engineering and Sn content on GeSn heterostructured nanomaterials for nanoelectronics and photonic devices. RSC Advances 2022, 12 (38) , 24518-24554. https://doi.org/10.1039/D2RA04181B
    44. Masashi Kurosawa, Masaya Nakata, Tianzhuo Zhan, Motohiro Tomita, Takanobu Watanabe, Osamu Nakatsuka. Sn-incorporation effect on thermoelectric properties of Sb-doped Ge-rich Ge 1−x−y Si x Sn y epitaxial layers grown on GaAs(001). Japanese Journal of Applied Physics 2022, 61 (8) , 085502. https://doi.org/10.35848/1347-4065/ac7bc7
    45. Oluwatobi Olorunsola, Abdulla Said, Solomon Ojo, Grey Abernathy, Samir Saha, Emmanuel Wangila, Joshua Grant, Hryhorii Stanchu, Sudip Acharya, Wei Du, Yue-Tong Jheng, Guo-En Chang, Baohua Li, Gregory Salamo, Shui-Qing Yu. Enhanced carrier collection efficiency of GeSn single quantum well towards all-group-IV photonics applications. Journal of Physics D: Applied Physics 2022, 55 (30) , 305101. https://doi.org/10.1088/1361-6463/ac6c5d
    46. F. T. Armand Pilon, Y-M. Niquet, J. Chretien, N. Pauc, V. Reboud, V. Calvo, J. Widiez, J. M. Hartmann, A. Chelnokov, J. Faist, H. Sigg. Investigation of lasing in highly strained germanium at the crossover to direct band gap. Physical Review Research 2022, 4 (3) https://doi.org/10.1103/PhysRevResearch.4.033050
    47. Bahareh Marzban, Lukas Seidel, Vivien Kiyek, Teren Liu, Marvin Zöllner, Zoran Ikonic, Giovanni Capellini, Dan Buca, Jörg Schulze, Michael Oehme, Jeremy Witzens, , . Modeling and design of an electrically pumped SiGeSn microring laser. 2022, 18. https://doi.org/10.1117/12.2609537
    48. Solomon Ojo, Yiyin Zhou, Sudip Acharya, Nicholas Saunders, Sylvester Amoah, Yue-Tong Jheng, Huong Tran, Wei Du, Guo-En Chang, Baohua Li, Shui-Qing Yu, , , . Silicon-based electrically injected GeSn lasers. 2022, 15. https://doi.org/10.1117/12.2615476
    49. Lu Zhang, Haiyang Hong, Kun Qian, Songsong Wu, Guangyang Lin, Jianyuan Wang, Wei Huang, Songyan Chen, Cheng Li. Controllable synthesis of Si-based GeSn quantum dots with room-temperature photoluminescence. Applied Surface Science 2022, 579 , 152249. https://doi.org/10.1016/j.apsusc.2021.152249
    50. Oluwatobi Olorunsola, Solomon Ojo, Grey Abernathy, Yiyin Zhou, Sylvester Amoah, P C Grant, Wei Dou, Joe Margetis, John Tolle, Andrian Kuchuk, Wei Du, Baohua Li, Yong-Hang Zhang, Shui-Qing Yu. Investigation of SiGeSn/GeSn/SiGeSn single quantum well with enhanced well emission. Nanotechnology 2022, 33 (8) , 085201. https://doi.org/10.1088/1361-6528/ac38e4
    51. A. Bjelajac, M. Gromovyi, E. Sakat, B. Wang, G. Patriarche, N. Pauc, V. Calvo, P. Boucaud, F. Boeuf, A. Chelnokov, V. Reboud, M. Frauenrath, J.-M. Hartmann, M. El Kurdi. Up to 300 K lasing with GeSn-On-Insulator microdisk resonators. Optics Express 2022, 30 (3) , 3954. https://doi.org/10.1364/OE.449895
    52. Quang Minh Thai, Jeremie Chretien, Mathieu Bertrand, Joris Aubin, Lara Casiez, Alexei Chelnokov, Jean-Michel Hartmann, Vincent Reboud, Nicolas Pauc, Vincent Calvo. Progress in Germanium Tin (GeSn) Photonic Crystal Lasers. IEEE Journal of Selected Topics in Quantum Electronics 2022, 28 (1: Semiconductor Lasers) , 1-9. https://doi.org/10.1109/JSTQE.2021.3117683
    53. Yiyin Zhou, Solomon Ojo, Chen-Wei Wu, Yuanhao Miao, Huong Tran, Joshua M. Grant, Grey Abernathy, Sylvester Amoah, Jake Bass, Gregory Salamo, Wei Du, Guo-En Chang, Jifeng Liu, Joe Margetis, John Tolle, Yong-Hang Zhang, Greg Sun, Richard A. Soref, Baohua Li, Shui-Qing Yu. Electrically injected GeSn lasers with peak wavelength up to 2.7  μm. Photonics Research 2022, 10 (1) , 222. https://doi.org/10.1364/PRJ.443144
    54. Binbin Wang, Emilie Sakat, Etienne Herth, Maksym Gromovyi, Andjelika Bjelajac, Julien Chaste, Gilles Patriarche, Philippe Boucaud, Frédéric Boeuf, Nicolas Pauc, Vincent Calvo, Jérémie Chrétien, Marvin Frauenrath, Alexei Chelnokov, Vincent Reboud, Jean-Michel Hartmann, Moustafa El Kurdi. GeSnOI mid-infrared laser technology. Light: Science & Applications 2021, 10 (1) https://doi.org/10.1038/s41377-021-00675-7
    55. Joshua Grant, Grey Abernathy, Oluwatobi Olorunsola, Solomon Ojo, Sylvester Amoah, Emmanuel Wanglia, Samir K. Saha, Abbas Sabbar, Wei Du, Murtadha Alher, Bao-Hua Li, Shui-Qing Yu. Growth of Pseudomorphic GeSn at Low Pressure with Sn Composition of 16.7%. Materials 2021, 14 (24) , 7637. https://doi.org/10.3390/ma14247637
    56. Yuanhao Miao, Guilei Wang, Zhenzhen Kong, Buqing Xu, Xuewei Zhao, Xue Luo, Hongxiao Lin, Yan Dong, Bin Lu, Linpeng Dong, Jiuren Zhou, Jinbiao Liu, Henry H. Radamson. Review of Si-Based GeSn CVD Growth and Optoelectronic Applications. Nanomaterials 2021, 11 (10) , 2556. https://doi.org/10.3390/nano11102556
    57. Daniel Burt, Hyo-Jun Joo, Yongduck Jung, Youngmin Kim, Melvina Chen, Yi-Chiau Huang, Donguk Nam. Strain-relaxed GeSn-on-insulator (GeSnOI) microdisks. Optics Express 2021, 29 (18) , 28959. https://doi.org/10.1364/OE.426321
    58. Tianhua Ren, Yiyao Dong, Shengqiang Xu, Xiao Gong. Strong Purcell effect in deep subwavelength coaxial cavity with GeSn active medium. Optics Letters 2021, 46 (16) , 3889. https://doi.org/10.1364/OL.432164
    59. Bahareh Marzban, Daniela Stange, Denis Rainko, Zoran Ikonic, Dan Buca, Jeremy Witzens. Modeling of a SiGeSn quantum well laser. Photonics Research 2021, 9 (7) , 1234. https://doi.org/10.1364/PRJ.416505
    60. Takahiro Tsukamoto, Nobumitsu Hirose, Akifumi Kasamatsu, Toshiaki Matsui, Yoshiyuki Suda. Evaluation of crystallinity of lattice-matched Ge/GeSiSn heterostructure by Raman spectroscopy. Thin Solid Films 2021, 726 , 138646. https://doi.org/10.1016/j.tsf.2021.138646
    61. Z. Chen, Z. Ikonic, D. Indjin, R. W. Kelsall. Design optimization of tensile-strained SiGeSn/GeSn quantum wells at room temperature. Journal of Applied Physics 2021, 129 (12) https://doi.org/10.1063/5.0042482
    62. O. Moutanabbir, S. Assali, X. Gong, E. O'Reilly, C. A. Broderick, B. Marzban, J. Witzens, W. Du, S-Q. Yu, A. Chelnokov, D. Buca, D. Nam. Monolithic infrared silicon photonics: The rise of (Si)GeSn semiconductors. Applied Physics Letters 2021, 118 (11) https://doi.org/10.1063/5.0043511
    63. Grey Abernathy, Yiyin Zhou, Solomon Ojo, Bader Alharthi, Perry C. Grant, Wei Du, Joe Margetis, John Tolle, Andrian Kuchuk, Baohua Li, Shui-Qing Yu. Study of SiGeSn/GeSn single quantum well toward high-performance all-group-IV optoelectronics. Journal of Applied Physics 2021, 129 (9) https://doi.org/10.1063/5.0030230
    64. S. Assali, A. Dijkstra, A. Attiaoui, É. Bouthillier, J.E.M. Haverkort, O. Moutanabbir. Midinfrared Emission and Absorption in Strained and Relaxed Direct-Band-Gap Ge 1 − x Sn x Semiconductors. Physical Review Applied 2021, 15 (2) https://doi.org/10.1103/PhysRevApplied.15.024031
    65. Mahmoud R. M. Atalla, Simone Assali, Anis Attiaoui, Cédric Lemieux‐Leduc, Aashish Kumar, Salim Abdi, Oussama Moutanabbir. All‐Group IV Transferable Membrane Mid‐Infrared Photodetectors. Advanced Functional Materials 2021, 31 (3) https://doi.org/10.1002/adfm.202006329
    66. V. Reboud, D. Buca, H. Sigg, J. M. Hartmann, Z. Ikonic, N. Pauc, V. Calvo, P. Rodriguez, A. Chelnokov. Lasing in Group-IV Materials. 2021, 105-195. https://doi.org/10.1007/978-3-030-68222-4_3
    67. A. Attiaoui, É. Bouthillier, G. Daligou, A. Kumar, S. Assali, O. Moutanabbir. Extended Short-Wave Infrared Absorption in Group-IV Nanowire Arrays. Physical Review Applied 2021, 15 (1) https://doi.org/10.1103/PhysRevApplied.15.014034
    68. Galih Ramadana Suwito, Masahiro Fukuda, Edi Suprayoga, Masahiro Ohtsuka, Eddwi Hesky Hasdeo, Ahmad Ridwan Tresna Nugraha, Mitsuo Sakashita, Shigehisa Shibayama, Osamu Nakatsuka. Formation of ultra-thin Ge1− x Sn x /Ge1− x − y Si x Sn y quantum heterostructures and their electrical properties for realizing resonant tunneling diode. Applied Physics Letters 2020, 117 (23) https://doi.org/10.1063/5.0024905
    69. Guangjian Zhu, Tao Liu, Zhenyang Zhong, Xinju Yang, Liming Wang, Zuimin Jiang. Fabrication of High-Quality and Strain-Relaxed GeSn Microdisks by Integrating Selective Epitaxial Growth and Selective Wet Etching Methods. Nanoscale Research Letters 2020, 15 (1) https://doi.org/10.1186/s11671-020-3251-0
    70. Quang Minh Thai, Jeremie Chretien, Mathieu Bertrand, Lara Casiez, Alexei Chelnokov, Vincent Reboud, Nicolas Pauc, Vincent Calvo. GeSn optical gain and lasing characteristics modelling. Physical Review B 2020, 102 (15) https://doi.org/10.1103/PhysRevB.102.155203
    71. X. W. Liu, A. A. Hopgood. Introduction of misfit dislocations into strained-layer GaAs/In x Ga1– x As/GaAs heterostructures by mechanical bending. Journal of Applied Physics 2020, 128 (12) https://doi.org/10.1063/5.0016476
    72. J.M. Hartmann. Very low temperature growth of GeSi alloys with digermane, disilane and dichlorosilane. Journal of Crystal Growth 2020, 546 , 125789. https://doi.org/10.1016/j.jcrysgro.2020.125789
    73. Liming Wang, Yichi Zhang, Bo Wang, Ying Wei, Bei Zhang, Lingyao Meng, Tao Liu, Bin Wang, Benguang Han, Zuimin Jiang, Huiyong Hu. High-performance infrared Ge-based plasmonic photodetector enhanced by dual absorption mechanism. APL Photonics 2020, 5 (9) , 096104. https://doi.org/10.1063/5.0021187
    74. Yiyin Zhou, Yuanhao Miao, Solomon Ojo, Huong Tran, Grey Abernathy, Joshua M. Grant, Sylvester Amoah, Gregory Salamo, Wei Du, Jifeng Liu, Joe Margetis, John Tolle, Yong-hang Zhang, Greg Sun, Richard A. Soref, Baohua Li, Shui-Qing Yu. Electrically injected GeSn lasers on Si operating up to 100  K. Optica 2020, 7 (8) , 924. https://doi.org/10.1364/OPTICA.395687
    75. Yuan Li, Zhigang Song, Zeyu Li, Greg Sun, Chuan Seng Tan, Weijun Fan, Qi Jie Wang. Theoretical design of mid-infrared interband cascade lasers in SiGeSn system. New Journal of Physics 2020, 22 (8) , 083061. https://doi.org/10.1088/1367-2630/ab9c67
    76. Herbert S. Maczko, Robert Kudrawiec, Marta Gladysiewicz. Optical Gain Characteristics of BGaAs/GaP Quantum Wells. IEEE Photonics Journal 2020, 12 (4) , 1-13. https://doi.org/10.1109/JPHOT.2020.3006624
    77. Liming Wang, Yichi Zhang, Yifei Wu, Tao Liu, Yuanhao Miao, Lingyao Meng, Zuimin Jiang, Huiyong Hu. Effects of Annealing on the Behavior of Sn in GeSn Alloy and GeSn-Based Photodetectors. IEEE Transactions on Electron Devices 2020, 67 (8) , 3229-3234. https://doi.org/10.1109/TED.2020.3004123
    78. Liyao Zhang, Yuxin Song, Nils von den Driesch, Zhenpu Zhang, Dan Buca, Detlev Grützmacher, Shumin Wang. Structural Property Study for GeSn Thin Films. Materials 2020, 13 (16) , 3645. https://doi.org/10.3390/ma13163645
    79. Tao Liu, Yuanhao Miao, Liming Wang, Guangjian Zhu, Huiyong Hu, Zhenyang Zhong, Xinju Yang, Zuimin Jiang. Temperature dependence of Raman scattering in GeSn films. Journal of Raman Spectroscopy 2020, 51 (7) , 1092-1099. https://doi.org/10.1002/jrs.5874
    80. Bahareh Marzban, Jovana Nojic, Daniela Stange, Dan Buca, Jeremy Witzens. Design of a waveguide-coupled GeSn disk laser. 2020, 1-2. https://doi.org/10.1109/SUM48678.2020.9161034
    81. Anas Elbaz, Dan Buca, Nils von den Driesch, Konstantinos Pantzas, Gilles Patriarche, Nicolas Zerounian, Etienne Herth, Xavier Checoury, Sébastien Sauvage, Isabelle Sagnes, Antonino Foti, Razvigor Ossikovski, Jean-Michel Hartmann, Frédéric Boeuf, Zoran Ikonic, Philippe Boucaud, Detlev Grützmacher, Moustafa El Kurdi. Ultra-low-threshold continuous-wave and pulsed lasing in tensile-strained GeSn alloys. Nature Photonics 2020, 14 (6) , 375-382. https://doi.org/10.1038/s41566-020-0601-5
    82. Linzhi Peng, Xiuli Li, Zhi Liu, Xiangquan Liu, Jun Zheng, Chunlai Xue, Yuhua Zuo, Buwen Cheng. Horizontal GeSn/Ge multi-quantum-well ridge waveguide LEDs on silicon substrates. Photonics Research 2020, 8 (6) , 899. https://doi.org/10.1364/PRJ.386996
    83. Wen Xiong, Wei-Jun Fan, Zhi-Gang Song, Chuan-Seng Tan. The Theoretical Optical Gain of Ge 1− x Sn x Nanowires. physica status solidi (RRL) – Rapid Research Letters 2020, 14 (4) https://doi.org/10.1002/pssr.201900704
    84. Nils von den Driesch, Stephan Wirths, Rene Troitsch, Gregor Mussler, Uwe Breuer, Oussama Moutanabbir, Detlev Grützmacher, Dan Buca. Thermally activated diffusion and lattice relaxation in (Si)GeSn materials. Physical Review Materials 2020, 4 (3) https://doi.org/10.1103/PhysRevMaterials.4.033604
    85. Kirill Kapralov, Georgy Alymov, Dmitry Svintsov, Aleksander Dubinov. Feasibility of surface plasmon lasing in HgTe quantum wells with population inversion. Journal of Physics: Condensed Matter 2020, 32 (6) , 065301. https://doi.org/10.1088/1361-648X/ab4f33
    86. P. M. Aneesh, R. Reshmi, M. K. Jayaraj. Optical Properties of Quantum Well Structures. 2020, 129-154. https://doi.org/10.1007/978-981-15-3314-3_4
    87. Grey Abernathy, Yiyin Zhou, Solomon Ojo, Yuanhao Miao, Wei Du, Greg Sun, Richard Soref, Jifeng Liu, Yong-Hang Zhang, Mansour Mortazavi, Baohua Li, Shui-Qing Yu. Study of gain for SiGeSn/GeSn/SiGeSn multiple quantum well lasers. 2020, SM3M.5. https://doi.org/10.1364/CLEO_SI.2020.SM3M.5
    88. Aneeqa Bashir, Ross W. Millar, Kevin Gallacher, Douglas J. Paul, Amith D. Darbal, Robert Stroud, Andrea Ballabio, Jacopo Frigerio, Giovanni Isella, Ian MacLaren. Strain analysis of a Ge micro disk using precession electron diffraction. Journal of Applied Physics 2019, 126 (23) https://doi.org/10.1063/1.5113761
    89. Timothy D. Eales, Igor P. Marko, Stefan Schulz, Edmond O’Halloran, Seyed Ghetmiri, Wei Du, Yiyin Zhou, Shui-Qing Yu, Joe Margetis, John Tolle, Eoin P. O’Reilly, Stephen J. Sweeney. Ge1−xSnx alloys: Consequences of band mixing effects for the evolution of the band gap Γ-character with Sn concentration. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-50349-z
    90. Wei Du, Quang M. Thai, Jeremie Chrétien, Mathieu Bertrand, Lara Casiez, Yiyin Zhou, Joe Margetis, Nicolas Pauc, Alexei Chelnokov, Vincent Reboud, Vincent Calvo, John Tolle, Baohua Li, Shui-Qing Yu. Study of Si-Based GeSn Optically Pumped Lasers With Micro-Disk and Ridge Waveguide Structures. Frontiers in Physics 2019, 7 https://doi.org/10.3389/fphy.2019.00147
    91. F. Boeuf, Z. Ikonic, K. Pantzas, G. Patriarche, I. Sagnes, S. Sauvage, N. von den Driesch, P. Boucaud, D. Buca, X. Checoury, M. El Kurdi, A. Elbaz, D. Grutzmacher, J. M. Hartmann, E. Herth. Ultra-Low Threshold CW Lasing in Tensile Strained GeSn Microdisk Cavities. 2019, 1-2. https://doi.org/10.1109/GROUP4.2019.8853883
    92. A. Elbaz, Z. Ikonic, F. Boeuf, P. Boucaud, D. Grutzmacher, D. Buca, M. El Kurdi, N. von den Driesch, K. Pantzas, X. Checoury, E. Herth, S. Sauvage, G. Patriarche, I. Sagnes, J. M. Hartmann. Ultra-Low Threshold cw Lasing in Tensile Strained GeSn Microdisk Cavities. 2019, 1-2. https://doi.org/10.1109/GROUP4.2019.8925675
    93. Søren Roesgaard, Etienne Talbot, Constantinos Hatzoglou, John Lundsgaard Hansen, Brian Julsgaard. Structural characterization of tin nanocrystals embedded in silicon by atomic probe tomography. Materials Research Express 2019, 6 (6) , 065005. https://doi.org/10.1088/2053-1591/ab0948
    94. Nils von den Driesch, Daniela Stange, Denis Rainko, Uwe Breuer, Giovanni Capellini, Jean-Michel Hartmann, Hans Sigg, Siegfried Mantl, Detlev Grützmacher, Dan Buca. Epitaxy of Si-Ge-Sn-based heterostructures for CMOS-integratable light emitters. Solid-State Electronics 2019, 155 , 139-143. https://doi.org/10.1016/j.sse.2019.03.013
    95. Shengqiang Xu, Wei Wang, Yi-Chiau Huang, Yuan Dong, Saeid Masudy-Panah, Hong Wang, Xiao Gong, Yee-Chia Yeo. High-speed photo detection at two-micron-wavelength: technology enablement by GeSn/Ge multiple-quantum-well photodiode on 300 mm Si substrate. Optics Express 2019, 27 (4) , 5798. https://doi.org/10.1364/OE.27.005798
    96. Yiyin Zhou, Joe Margetis, Grey Abernathy, Wei Dou, Perry C. Grant, Bader Alharthi, Wei Du, Alicia Wadsworth, Qianying Guo, Huong Tran, Solomon Ojo, Aboozar Mosleh, Seyed A. Ghetmiri, Gregory B. Thompson, Jifeng Liu, Greg Sun, Richard Soref, John Tolle, Baohua Li, Mansour Mortazavi, Shui-Qing Yu. Investigation of SiGeSn/GeSn/SiGeSn Quantum Well Structures and Optically Pumped Lasers on Si. 2019, STu3N.3. https://doi.org/10.1364/CLEO_SI.2019.STu3N.3
    97. Mourad Baira, Bassem Salem, Niyaz Ahmad Madhar, Bouraoui Ilahi. Linear and Nonlinear Intersubband Optical Properties of Direct Band Gap GeSn Quantum Dots. Nanomaterials 2019, 9 (1) , 124. https://doi.org/10.3390/nano9010124
    98. Joe Margetis, Yiyin Zhou, Wei Dou, Perry C. Grant, Bader Alharthi, Wei Du, Alicia Wadsworth, Qianying Guo, Huong Tran, Solomon Ojo, Grey Abernathy, Aboozar Mosleh, Seyed A. Ghetmiri, Gregory B. Thompson, Jifeng Liu, Greg Sun, Richard Soref, John Tolle, Baohua Li, Mansour Mortazavi, Shui-Qing Yu. All group-IV SiGeSn/GeSn/SiGeSn QW laser on Si operating up to 90 K. Applied Physics Letters 2018, 113 (22) https://doi.org/10.1063/1.5052563

    ACS Photonics

    Cite this: ACS Photonics 2018, 5, 11, 4628–4636
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsphotonics.8b01116
    Published October 19, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    2495

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.