ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Tunable Soft-Matter Optofluidic Waveguides Assembled by Light

  • Oto Brzobohatý*
    Oto Brzobohatý
    Institute of Scientific Instruments of the CAS. v.v.i., Královopolská 147, 612 64 Brno, Czech Republic
    *E-mail: [email protected]. Phone: +420 541 514 283. Fax: +420 541 514 111.
  • Lukáš Chvátal
    Lukáš Chvátal
    Institute of Scientific Instruments of the CAS. v.v.i., Královopolská 147, 612 64 Brno, Czech Republic
  • Alexandr Jonáš
    Alexandr Jonáš
    Institute of Scientific Instruments of the CAS. v.v.i., Královopolská 147, 612 64 Brno, Czech Republic
  • Martin Šiler
    Martin Šiler
    Institute of Scientific Instruments of the CAS. v.v.i., Královopolská 147, 612 64 Brno, Czech Republic
  • Jan Kaňka
    Jan Kaňka
    Institute of Scientific Instruments of the CAS. v.v.i., Královopolská 147, 612 64 Brno, Czech Republic
    More by Jan Kaňka
  • Jan Ježek
    Jan Ježek
    Institute of Scientific Instruments of the CAS. v.v.i., Královopolská 147, 612 64 Brno, Czech Republic
    More by Jan Ježek
  • , and 
  • Pavel Zemánek
    Pavel Zemánek
    Institute of Scientific Instruments of the CAS. v.v.i., Královopolská 147, 612 64 Brno, Czech Republic
Cite this: ACS Photonics 2019, 6, 2, 403–410
Publication Date (Web):January 11, 2019
https://doi.org/10.1021/acsphotonics.8b01331
Copyright © 2019 American Chemical Society

    Article Views

    945

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (4)»

    Abstract

    Abstract Image

    Development of artificial materials exhibiting unusual optical properties is one of the major strands of current photonics research. Of particular interest are soft-matter systems reconfigurable by external stimuli that play an important role in research fields ranging from physics to chemistry and life sciences. Here, we prepare and study unconventional self-assembled colloidal optical waveguides (CWs) created from wavelength-size dielectric particles held together by long-range optical forces. We demonstrate robust nonlinear optical properties of these CWs that lead to optical transformation characteristics remarkably similar to those of gradient refractive index materials and enable reversible all-optical tuning of light propagation through the CW. Moreover, we characterize strong optomechanical interactions responsible for the CW self-assembly; in particular, we report self-sustained oscillations of the whole CW structure tuned so that the wavelength of the laser beams forming the CW is not allowed to propagate through. The observed significant coupling between the mechanical motion of the CW and the intensity of light transmitted through the CW can form a base for designing novel mesoscopic-scale photonic devices that are reconfigurable by light.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsphotonics.8b01331.

    • Additional figures (PDF).

    • Media 1 showing oscillation dynamics of the colloidal waveguide (AVI).

    • Media 2 showing oscillation dynamics of the colloidal waveguide (AVI).

    • Media 3 showing oscillation dynamics of the colloidal waveguide (AVI).

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 16 publications.

    1. Henning Bonart, Christian Kahle, Jens-Uwe Repke. Optimal Control of Droplets on a Solid Surface Using Distributed Contact Angles. Langmuir 2020, 36 (30) , 8894-8903. https://doi.org/10.1021/acs.langmuir.0c01242
    2. Giovanni Volpe, Onofrio M Maragò, Halina Rubinsztein-Dunlop, Giuseppe Pesce, Alexander B Stilgoe, Giorgio Volpe, Georgiy Tkachenko, Viet Giang Truong, Síle Nic Chormaic, Fatemeh Kalantarifard, Parviz Elahi, Mikael Käll, Agnese Callegari, Manuel I Marqués, Antonio A R Neves, Wendel L Moreira, Adriana Fontes, Carlos L Cesar, Rosalba Saija, Abir Saidi, Paul Beck, Jörg S Eismann, Peter Banzer, Thales F D Fernandes, Francesco Pedaci, Warwick P Bowen, Rahul Vaippully, Muruga Lokesh, Basudev Roy, Gregor Thalhammer-Thurner, Monika Ritsch-Marte, Laura Pérez García, Alejandro V Arzola, Isaac Pérez Castillo, Aykut Argun, Till M Muenker, Bart E Vos, Timo Betz, Ilaria Cristiani, Paolo Minzioni, Peter J Reece, Fan Wang, David McGloin, Justus C Ndukaife, Romain Quidant, Reece P Roberts, Cyril Laplane, Thomas Volz, Reuven Gordon, Dag Hanstorp, Javier Tello Marmolejo, Graham D Bruce, Kishan Dholakia, Tongcang Li, Oto Brzobohatý, Stephen H Simpson, Pavel Zemánek, Felix Ritort, Yael Roichman, Valeriia Bobkova, Raphael Wittkowski, Cornelia Denz, G V Pavan Kumar, Antonino Foti, Maria Grazia Donato, Pietro G Gucciardi, Lucia Gardini, Giulio Bianchi, Anatolii V Kashchuk, Marco Capitanio, Lynn Paterson, Philip H Jones, Kirstine Berg-Sørensen, Younes F Barooji, Lene B Oddershede, Pegah Pouladian, Daryl Preece, Caroline Beck Adiels, Anna Chiara De Luca, Alessandro Magazzù, David Bronte Ciriza, Maria Antonia Iatì, Grover A Swartzlander. Roadmap for optical tweezers. Journal of Physics: Photonics 2023, 5 (2) , 022501. https://doi.org/10.1088/2515-7647/acb57b
    3. Ahmed S. El-Tawargy. Spatio-temporal photolysis rate profiles of UV254 irradiated toluene. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-16941-6
    4. Nicolas Perez, Daryl Preece, Robert Wilson, Anna Bezryadina. Conservation of orbital angular momentum and polarization through biological waveguides. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-18483-3
    5. Soorya S. Raj, Deljo Davis, Pramila Viswanathan, Arunkumar Chandrasekhar, Vinod T. P.. Compositionally Homogeneous Soft Wrinkles on Elastomeric Substrates: Novel Fabrication Method, Water Collection from Fog, and Triboelectric Charge Generation. Macromolecular Materials and Engineering 2022, 307 (9) https://doi.org/10.1002/mame.202200247
    6. Yu-Xuan Ren, Gwinky G. K. Yip, Lei-Ming Zhou, Cheng-Wei Qiu, Jiawei Shi, Yi Zhou, Huade Mao, Kevin K. Tsia, Kenneth K. Y. Wong. Hysteresis and balance of backaction force on dielectric particles photothermally mediated by photonic nanojet. Nanophotonics 2022, 11 (18) , 4231-4244. https://doi.org/10.1515/nanoph-2022-0312
    7. Xiao-Yong Duan, Graham D. Bruce, Feng Li, Kishan Dholakia. Asymmetric longitudinal optical binding force between two identical dielectric particles with electric and magnetic dipolar responses. Physical Review A 2022, 106 (1) https://doi.org/10.1103/PhysRevA.106.013108
    8. Leonidas Agiotis, Michel Meunier. Nonlinear thermal lensing of high repetition rate ultrafast laser light in plasmonic nano-colloids. Nanophotonics 2022, 11 (5) , 1051-1062. https://doi.org/10.1515/nanoph-2021-0775
    9. Vojtěch Svak, Jana Flajšmanová, Lukáš Chvátal, Martin Šiler, Alexander Jonáš, Jan Ježek, Stephen H. Simpson, Pavel Zemánek, Oto Brzobohatý, , . Optically bound matter levitated in vacuum. 2021, 25. https://doi.org/10.1117/12.2596308
    10. Vojtěch Svak, Jana Flajšmanová, Lukáš Chvátal, Martin Šiler, Alexandr Jonáš, Jan Ježek, Stephen H. Simpson, Pavel Zemánek, Oto Brzobohatý. Stochastic dynamics of optically bound matter levitated in vacuum. Optica 2021, 8 (2) , 220. https://doi.org/10.1364/OPTICA.404851
    11. Nicolas Perez, Jake Chambers, Zhigang Chen, Anna Bezryadina. Nonlinear self-trapping and guiding of light at different wavelengths with sheep blood. Optics Letters 2021, 46 (3) , 629. https://doi.org/10.1364/OL.412984
    12. Oto Brzobohatý, Lukáš Chvátal, Martin Šiler, Pavel Zemánek. Complex colloidal structures with non-linear optical properties formed in an optical trap. Optics Express 2020, 28 (25) , 37700. https://doi.org/10.1364/OE.405839
    13. Gérard Gouesbet. Van de Hulst Essay: A review on generalized Lorenz-Mie theories with wow stories and an epistemological discussion. Journal of Quantitative Spectroscopy and Radiative Transfer 2020, 253 , 107117. https://doi.org/10.1016/j.jqsrt.2020.107117
    14. Adrià Canós Valero, Denis Kislov, Egor A. Gurvitz, Hadi K. Shamkhi, Alexander A. Pavlov, Dmitrii Redka, Sergey Yankin, Pavel Zemánek, Alexander S. Shalin. Nanovortex‐Driven All‐Dielectric Optical Diffusion Boosting and Sorting Concept for Lab‐on‐a‐Chip Platforms. Advanced Science 2020, 7 (11) https://doi.org/10.1002/advs.201903049
    15. Rekha Gautam, Anna Bezryadina, Yinxiao Xiang, Tobias Hansson, Yi Liang, Guo Liang, Josh Lamstein, Nicolas Perez, Benjamin Wetzel, Roberto Morandotti, Zhigang Chen. Nonlinear optical response and self-trapping of light in biological suspensions. Advances in Physics: X 2020, 5 (1) , 1778526. https://doi.org/10.1080/23746149.2020.1778526
    16. Pavel Zemánek, Giorgio Volpe, Alexandr Jonáš, Oto Brzobohatý. Perspective on light-induced transport of particles: from optical forces to phoretic motion. Advances in Optics and Photonics 2019, 11 (3) , 577. https://doi.org/10.1364/AOP.11.000577

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect