ACS Publications. Most Trusted. Most Cited. Most Read
Achiral, Helicity Preserving, and Resonant Structures for Enhanced Sensing of Chiral Molecules
My Activity
    ADDITION/CORRECTION. This article has been corrected. View the notice.
    Article

    Achiral, Helicity Preserving, and Resonant Structures for Enhanced Sensing of Chiral Molecules
    Click to copy article linkArticle link copied!

    • Florian Graf*
      Florian Graf
      Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
      *E-mail: [email protected]
      More by Florian Graf
    • Joshua Feis
      Joshua Feis
      Institute of Applied Physics, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
      More by Joshua Feis
    • Xavier Garcia-Santiago
      Xavier Garcia-Santiago
      Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
      JCMWave GmbH, 14050 Berlin, Germany
    • Martin Wegener
      Martin Wegener
      Institute of Applied Physics, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
      Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
    • Carsten Rockstuhl
      Carsten Rockstuhl
      Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
      Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
    • Ivan Fernandez-Corbaton*
      Ivan Fernandez-Corbaton
      Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
      *E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    ACS Photonics

    Cite this: ACS Photonics 2019, 6, 2, 482–491
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsphotonics.8b01454
    Published January 28, 2019
    Copyright © 2019 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We derive a set of design requirements that lead to structures suitable for molecular circular dichroism (CD) enhancement. Achirality of the structure and two suitably selected sequentially incident beams of opposite helicity ensures that the CD signal only depends on the chiral absorption properties of the molecules, and not on the achiral ones. Under this condition, a helicity preserving structure, which prevents the coupling of the two polarization handednesses, maximizes the enhancement of the CD signal for a given ability of the structure to enhance the field. When the achirality and helicity preservation requirements are met, the enhancement of the CD signal is directly related to the enhancement of the field. Next, we design an exemplary structure following the requirements. The considered system is a planar array of silicon cylinders under normally incident plane-wave illumination. Full-wave numerical calculations show that the enhancement of the transmission CD signal is between 6.5 and 3.75 for interaction lengths between 1.25 and 3 times the height of the cylinders.

    Copyright © 2019 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsphotonics.8b01454.

    • S1: Derivation of design requirements for CD enhancing structures. S2: Implementation of chiral constitutive relations. S3: Influence of the discretization mesh (PDF).

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 82 publications.

    1. Longfang Ye, Jingyan Li, Felix Ulrich Richter, Yasaman Jahani, Rui Lu, Bo Ray Lee, Ming Lun Tseng, Hatice Altug. Dielectric Tetramer Nanoresonators Supporting Strong Superchiral Fields for Vibrational Circular Dichroism Spectroscopy. ACS Photonics 2023, 10 (12) , 4377-4384. https://doi.org/10.1021/acsphotonics.3c01186
    2. Hidemasa Negoro, Hiroshi Sugimoto, Minoru Fujii. Helicity-Preserving Optical Metafluids. Nano Letters 2023, 23 (11) , 5101-5107. https://doi.org/10.1021/acs.nanolett.3c01026
    3. Kirill Voronin, Alexey S. Taradin, Maxim V. Gorkunov, Denis G. Baranov. Single-Handedness Chiral Optical Cavities. ACS Photonics 2022, 9 (8) , 2652-2659. https://doi.org/10.1021/acsphotonics.2c00134
    4. X. Garcia-Santiago, M. Hammerschmidt, J. Sachs, S. Burger, H. Kwon, M. Knöller, T. Arens, P. Fischer, I. Fernandez-Corbaton, C. Rockstuhl. Toward Maximally Electromagnetically Chiral Scatterers at Optical Frequencies. ACS Photonics 2022, 9 (6) , 1954-1964. https://doi.org/10.1021/acsphotonics.1c01887
    5. Steffen Both, Martin Schäferling, Florian Sterl, Egor A. Muljarov, Harald Giessen, Thomas Weiss. Nanophotonic Chiral Sensing: How Does It Actually Work?. ACS Nano 2022, 16 (2) , 2822-2832. https://doi.org/10.1021/acsnano.1c09796
    6. Guanghao Rui, Shuting Zou, Bing Gu, Yiping Cui. Surface-Enhanced Circular Dichroism by Localized Superchiral Hotspots in a Dielectric Dimer Array Metasurface. The Journal of Physical Chemistry C 2022, 126 (4) , 2199-2206. https://doi.org/10.1021/acs.jpcc.1c09618
    7. Ershad Mohammadi, Andreas Tittl, Kosmas L. Tsakmakidis, T. V. Raziman, Alberto G. Curto. Dual Nanoresonators for Ultrasensitive Chiral Detection. ACS Photonics 2021, 8 (6) , 1754-1762. https://doi.org/10.1021/acsphotonics.1c00311
    8. Kristina Frizyuk, Elizaveta Melik-Gaykazyan, Jae-Hyuck Choi, Mihail I. Petrov, Hong-Gyu Park, Yuri Kivshar. Nonlinear Circular Dichroism in Mie-Resonant Nanoparticle Dimers. Nano Letters 2021, 21 (10) , 4381-4387. https://doi.org/10.1021/acs.nanolett.1c01025
    9. Jon Lasa-Alonso, Diego Romero Abujetas, Álvaro Nodar, Jennifer A. Dionne, Juan José Sáenz, Gabriel Molina-Terriza, Javier Aizpurua, Aitzol García-Etxarri. Surface-Enhanced Circular Dichroism Spectroscopy on Periodic Dual Nanostructures. ACS Photonics 2020, 7 (11) , 2978-2986. https://doi.org/10.1021/acsphotonics.0c00611
    10. Saisai Hou, Tong Wu, Weixuan Zhang, Xiangdong Zhang. Strongly Enhanced Raman Optical Activity of Chiral Molecules by Vector Exceptional Points. The Journal of Physical Chemistry C 2020, 124 (45) , 24970-24977. https://doi.org/10.1021/acs.jpcc.0c07599
    11. Michelle L. Solomon, John M. Abendroth, Lisa V. Poulikakos, Jack Hu, Jennifer A. Dionne. Fluorescence-Detected Circular Dichroism of a Chiral Molecular Monolayer with Dielectric Metasurfaces. Journal of the American Chemical Society 2020, 142 (43) , 18304-18309. https://doi.org/10.1021/jacs.0c07140
    12. Mina Hanifeh, Mohammad Albooyeh, Filippo Capolino. Optimally Chiral Light: Upper Bound of Helicity Density of Structured Light for Chirality Detection of Matter at Nanoscale. ACS Photonics 2020, 7 (10) , 2682-2691. https://doi.org/10.1021/acsphotonics.0c00304
    13. Qingdong Yang, Weijin Chen, Yuntian Chen, Wei Liu. Electromagnetic Duality Protected Scattering Properties of Nonmagnetic Particles. ACS Photonics 2020, 7 (7) , 1830-1838. https://doi.org/10.1021/acsphotonics.0c00555
    14. Jose García-Guirado, Mikael Svedendahl, Joaquim Puigdollers, Romain Quidant. Enhanced Chiral Sensing with Dielectric Nanoresonators. Nano Letters 2020, 20 (1) , 585-591. https://doi.org/10.1021/acs.nanolett.9b04334
    15. T. V. Raziman, Rasmus H. Godiksen, Moos A. Müller, Alberto G. Curto. Conditions for Enhancing Chiral Nanophotonics near Achiral Nanoparticles. ACS Photonics 2019, 6 (10) , 2583-2589. https://doi.org/10.1021/acsphotonics.9b01200
    16. Myonghoo Hwang, Hyeongoo Jung, Ji‐Young Kim. Chirality Quantification for High‐Performance Nanophotonic Biosensors. Small Methods 2025, 13 https://doi.org/10.1002/smtd.202500112
    17. Hao Wang, Shu Chen, Xing Liu, Yanan Yu, Ting-Hui Xiao, Chong-Xin Shan. Mid-infrared giant optical chirality induced by multipole degeneracy in a diamond metasurface. Optics Letters 2025, 50 (4) , 1381. https://doi.org/10.1364/OL.550219
    18. Tingting Guan, Zhenyu Wang, Ruize Wang, Zihan Wu, Chaowei Wang, Dong Wu, Jiaru Chu, Yang Chen. Ultrasensitive circular dichroism spectroscopy based on coupled quasi-bound states in the continuum. Nanophotonics 2025, https://doi.org/10.1515/nanoph-2024-0620
    19. Hamed Nouri, Amir Nader Askarpour, Parisa Dehkhoda, Ahad Tavakoli. Chiral sensing via dielectric waveguide-nanoparticle array interactions. Optics Express 2024, 32 (23) , 41390. https://doi.org/10.1364/OE.538940
    20. Anastasia Nikitina, Kristina Frizyuk. Achiral Nanostructures: Perturbative Harmonic Generation and Dichroism Under Vortex and Vector Beams Illumination. Advanced Optical Materials 2024, 12 (25) https://doi.org/10.1002/adom.202400732
    21. Xiaojun Tian, Yijing Bai, Tong Fu, Zhongyue Zhang. Enhanced chiral sensing by optical whispering gallery mode microresonator. Optics Express 2024, 32 (18) , 31034. https://doi.org/10.1364/OE.532514
    22. Benedikt Zerulla, Chun Li, Dominik Beutel, Simon Oßwald, Christof Holzer, Jochen Bürck, Stefan Bräse, Christof Wöll, Ivan Fernandez‐Corbaton, Lars Heinke, Carsten Rockstuhl, Marjan Krstić. Exploring Functional Photonic Devices made from a Chiral Metal–Organic Framework Material by a Multiscale Computational Method. Advanced Functional Materials 2024, 34 (20) https://doi.org/10.1002/adfm.202301093
    23. Jorge Olmos‐Trigo, Hiroshi Sugimoto, Minoru Fujii. Far‐Field Detection of Near‐Field Circular Dichroism Enhancements Induced by a Nanoantenna. Laser & Photonics Reviews 2024, 18 (5) https://doi.org/10.1002/lpor.202300948
    24. Sergey A. Dyakov, Natalia S. Salakhova, Alexey V. Ignatov, Ilia M. Fradkin, Vitaly P. Panov, Jang‐Kun Song, Nikolay A. Gippius. Chiral Light in Twisted Fabry–Pérot Cavities. Advanced Optical Materials 2024, 12 (12) https://doi.org/10.1002/adom.202302502
    25. Aritra Biswas, Pablo Cencillo-Abad, Muhammad W. Shabbir, Manobina Karmakar, Debashis Chanda. Tunable plasmonic superchiral light for ultrasensitive detection of chiral molecules. Science Advances 2024, 10 (8) https://doi.org/10.1126/sciadv.adk2560
    26. L. Mauro, J. Fregoni, J. Feist, R. Avriller. Classical approaches to chiral polaritonics. Physical Review A 2024, 109 (2) https://doi.org/10.1103/PhysRevA.109.023528
    27. Alice De Corte, Mondher Besbes, Henri Benisty, Bjorn Maes. Chiral materials to control exceptional points in parity-time-symmetric waveguides. Physical Review A 2024, 109 (2) https://doi.org/10.1103/PhysRevA.109.023531
    28. Jorge Olmos-Trigo, Jon Lasa-Alonso, Iker Gómez-Viloria, Gabriel Molina-Terriza, Aitzol García-Etxarri. Capturing near-field circular dichroism enhancements from far-field measurements. Physical Review Research 2024, 6 (1) https://doi.org/10.1103/PhysRevResearch.6.013151
    29. Matteo Castagnola, Rosario Roberto Riso, Alberto Barlini, Enrico Ronca, Henrik Koch. Polaritonic response theory for exact and approximate wave functions. WIREs Computational Molecular Science 2024, 14 (1) https://doi.org/10.1002/wcms.1684
    30. P. Elli Stamatopoulou. Strong Coupling in Photonics. 2024, 63-81. https://doi.org/10.1007/978-3-031-67907-0_3
    31. Leonid Beliaev, Osamu Takayama, Andrei Laurynenka. Subwavelength periodic dielectric nanostructures for biochemical sensing. 2024, 157-187. https://doi.org/10.1016/B978-0-44-318840-4.00013-9
    32. Aritra Biswas, Pablo Cencillo-Abad, Debashis Chanda. Probing Molecular Chirality with a Tunable Achiral Plasmonic System. 2024, FF3C.5. https://doi.org/10.1364/CLEO_FS.2024.FF3C.5
    33. Shiqi Jia, Tong Fu, Jie Peng, Shubo Wang. Broadband and large-area optical chirality generated by an achiral metasurface under achiral excitation. Physical Review A 2023, 108 (5) https://doi.org/10.1103/PhysRevA.108.053504
    34. Ioannis Katsantonis, Maria Manousidaki, Anastasios D. Koulouklidis, Christina Daskalaki, Ioannis Spanos, Constantinos Kerantzopoulos, Anna C. Tasolamprou, Costas M. Soukoulis, Eleftherios N. Economou, Stelios Tzortzakis, Maria Farsari, Maria Kafesaki. Strong and Broadband Pure Optical Activity in 3D Printed THz Chiral Metamaterials. Advanced Optical Materials 2023, 11 (18) https://doi.org/10.1002/adom.202300238
    35. Jingyan Li, Longfang Ye. Dielectric dual-dimer metasurface for enhanced mid-infrared chiral sensing under both excitation modes. Nanophotonics 2023, 12 (12) , 2189-2197. https://doi.org/10.1515/nanoph-2023-0128
    36. Huizhen Zhang, Weixuan Zhang, Shaohu Chen, Pengfei Duan, Junjie Li, Lei Shi, Jian Zi, Xiangdong Zhang. Experimental Observation of Vector Bound States in the Continuum. Advanced Optical Materials 2023, 11 (12) https://doi.org/10.1002/adom.202203118
    37. Hanan Ali, Emilija Petronijevic, Giovanni Pellegrini, Concita Sibilia, Lucio Claudio Andreani. Circular dichroism in a plasmonic array of elliptical nanoholes with square lattice. Optics Express 2023, 31 (9) , 14196. https://doi.org/10.1364/OE.485324
    38. L. Mauro, J. Fregoni, J. Feist, R. Avriller. Chiral discrimination in helicity-preserving Fabry-Pérot cavities. Physical Review A 2023, 107 (2) https://doi.org/10.1103/PhysRevA.107.L021501
    39. Anastasia Nikitina, Anna Nikolaeva, Kristina Frizyuk. Nonlinear circular dichroism in achiral dielectric nanoparticles. Physical Review B 2023, 107 (4) https://doi.org/10.1103/PhysRevB.107.L041405
    40. P. Elli Stamatopoulou, Sotiris Droulias, Guillermo P. Acuna, N. Asger Mortensen, Christos Tserkezis. Reconfigurable chirality with achiral excitonic materials in the strong-coupling regime. Nanoscale 2022, 14 (47) , 17581-17588. https://doi.org/10.1039/D2NR05063C
    41. R. Ali. Chirality-assisted spin Hall effect of light in the vicinity of the quasi-antidual symmetry mode of a chiral sphere. Physical Review A 2022, 106 (6) https://doi.org/10.1103/PhysRevA.106.063508
    42. Jorge Olmos-Trigo, Xavier Zambrana-Puyalto. Helicity Conservation for Mie Optical Cavities. Physical Review Applied 2022, 18 (4) https://doi.org/10.1103/PhysRevApplied.18.044007
    43. Krzysztof M. Czajkowski, Tomasz J. Antosiewicz. Local versus bulk circular dichroism enhancement by achiral all-dielectric nanoresonators. Nanophotonics 2022, 11 (18) , 4287-4297. https://doi.org/10.1515/nanoph-2022-0293
    44. Ioannis Katsantonis, Sotiris Droulias, Costas M. Soukoulis, Eleftherios N. Economou, T. Peter Rakitzis, Maria Kafesaki. Chirality sensing employing parity-time-symmetric and other resonant gain-loss optical systems. Physical Review B 2022, 105 (17) https://doi.org/10.1103/PhysRevB.105.174112
    45. Yang Chen, Weijin Chen, Xianghong Kong, Dong Wu, Jiaru Chu, Cheng-Wei Qiu. Can Weak Chirality Induce Strong Coupling between Resonant States?. Physical Review Letters 2022, 128 (14) https://doi.org/10.1103/PhysRevLett.128.146102
    46. Joshua Feis, Dominik Beutel, Julian Köpfler, Xavier Garcia-Santiago, Carsten Rockstuhl, Martin Wegener, Ivan Fernandez-Corbaton. An Achiral Optical Cavity with Helicity-Preserving Modes for Enhanced Sensing of Chiral Molecules. 2022, 317-319. https://doi.org/10.1007/978-94-024-2138-5_34
    47. Jayeeta Amboli, Guillaume Demésy, Bruno Galas, Nicolas Bonod, , , , . Numerical investigation of far-field circular dichroism and local chiral response of pseudo-chiral meta-surface with FEM. EPJ Web of Conferences 2022, 266 , 05001. https://doi.org/10.1051/epjconf/202226605001
    48. Christina Ioannou, Ranjith Nair, Ivan Fernandez-Corbaton, Mile Gu, Carsten Rockstuhl, Changhyoup Lee. Optimal circular dichroism sensing with quantum light: Multiparameter estimation approach. Physical Review A 2021, 104 (5) https://doi.org/10.1103/PhysRevA.104.052615
    49. I. Katsantonis, S. Droulias, C. M. Soukoulis, E. N. Economou, T. P. Rakitzis, M. Kafesaki. Molecular Chirality Sensing Employing Active and Parity-Time Symmetric Metamaterials. 2021, 188-190. https://doi.org/10.1109/Metamaterials52332.2021.9577183
    50. Sotiris Droulias, Lykourgos Bougas. Chiral sensing with achiral anisotropic metasurfaces. Physical Review B 2021, 104 (7) https://doi.org/10.1103/PhysRevB.104.075412
    51. Niels Gieseler, Aso Rahimzadegan, Carsten Rockstuhl. Self-stabilizing curved metasurfaces as a sail for light-propelled spacecrafts. Optics Express 2021, 29 (14) , 21562. https://doi.org/10.1364/OE.420475
    52. D. Beutel, P. Scott, M. Wegener, C. Rockstuhl, I. Fernandez-Corbaton. Enhancing the optical rotation of chiral molecules using helicity preserving all-dielectric metasurfaces. Applied Physics Letters 2021, 118 (22) https://doi.org/10.1063/5.0050411
    53. Diego R. Abujetas, Manuel I. Marqués, José A. Sánchez-Gil. Modulated flipping torque, spin-induced radiation pressure, and chiral sorting exerted by guided light. Optics Express 2021, 29 (11) , 16969. https://doi.org/10.1364/OE.412638
    54. S. S. Hou, Y. Liu, W. X. Zhang, X. D. Zhang. Separating and trapping of chiral nanoparticles with dielectric photonic crystal slabs. Optics Express 2021, 29 (10) , 15177. https://doi.org/10.1364/OE.423243
    55. Sangtae Jeon, Soo Jin Kim. Enhancement of Optical Chirality Using Metasurfaces for Enantiomer-Selective Molecular Sensing. Applied Sciences 2021, 11 (7) , 2989. https://doi.org/10.3390/app11072989
    56. Kang Du, Pei Li, Heng Wang, Kun Gao, Rui‐Bin Liu, Fanfan Lu, Wending Zhang, Ting Mei. Optical Chirality Enhancement in Hollow Silicon Disk by Dipolar Interference. Advanced Optical Materials 2021, 9 (5) https://doi.org/10.1002/adom.202001771
    57. Ya-Xin Hu, Ren-Chao Jin, Xiao-Rui Zhang, Li-Li Tang, Jia-Qi Li, Jin Wang, Zheng-Gao Dong. Negative optical torque in spin-dependent 2D chiral nanomotor due to dipolar scattering. Optics Communications 2021, 482 , 126560. https://doi.org/10.1016/j.optcom.2020.126560
    58. Lyuzhou Ye, Longqing Yang, Xiao Zheng, Shaul Mukamel. Enhancing Circular Dichroism Signals with Vector Beams. Physical Review Letters 2021, 126 (12) https://doi.org/10.1103/PhysRevLett.126.123001
    59. Khai Q. Le. Electromagnetic modeling of excited-state dynamics in the vicinity of metallic nanostructures. Physica B: Condensed Matter 2021, 602 , 412381. https://doi.org/10.1016/j.physb.2020.412381
    60. J. Enrique Vázquez-Lozano, Alejandro Martínez. Theoretical Generalization of the Optical Chirality to Arbitrary Optical Media. 2021, 323-355. https://doi.org/10.1007/978-3-030-62844-4_13
    61. Philip Scott, Xavier Garcia-Santiago, Dominik Beutel, Carsten Rockstuhl, Martin Wegener, Ivan Fernandez-Corbaton. On enhanced sensing of chiral molecules in optical cavities. Applied Physics Reviews 2020, 7 (4) https://doi.org/10.1063/5.0025006
    62. John M. Abendroth, Michelle L. Solomon, David R. Barton, Mohammed S. El Hadri, Eric E. Fullerton, Jennifer A. Dionne. Helicity‐Preserving Metasurfaces for Magneto‐Optical Enhancement in Ferromagnetic [Pt/Co] N Films. Advanced Optical Materials 2020, 8 (22) https://doi.org/10.1002/adom.202001420
    63. Tong Wu, Saisai Hou, Weixuan Zhang, Xiangdong Zhang. Strong superchiral fields and an ultrasensitive chiral sensor of biomolecules based on a dielectric photonic crystal slab with air holes. Physical Review A 2020, 102 (5) https://doi.org/10.1103/PhysRevA.102.053519
    64. Mina Hanifeh, Mohammad Albooyeh, Filippo Capolino. Helicity maximization below the diffraction limit. Physical Review B 2020, 102 (16) https://doi.org/10.1103/PhysRevB.102.165419
    65. J. Enrique Vázquez‐Lozano, Alejandro Martínez. Toward Chiral Sensing and Spectroscopy Enabled by All‐Dielectric Integrated Photonic Waveguides. Laser & Photonics Reviews 2020, 14 (9) https://doi.org/10.1002/lpor.201900422
    66. Sotiris Droulias. Chiral sensing with achiral isotropic metasurfaces. Physical Review B 2020, 102 (7) https://doi.org/10.1103/PhysRevB.102.075119
    67. Jorge Olmos-Trigo, Cristina Sanz-Fernández, Diego R. Abujetas, Jon Lasa-Alonso, Nuno de Sousa, Aitzol García-Etxarri, José A. Sánchez-Gil, Gabriel Molina-Terriza, Juan José Sáenz. Kerker Conditions upon Lossless, Absorption, and Optical Gain Regimes. Physical Review Letters 2020, 125 (7) https://doi.org/10.1103/PhysRevLett.125.073205
    68. Tianji Liu, Rongyang Xu, Peng Yu, Zhiming Wang, Junichi Takahara. Multipole and multimode engineering in Mie resonance-based metastructures. Nanophotonics 2020, 9 (5) , 1115-1137. https://doi.org/10.1515/nanoph-2019-0505
    69. Yun Huang, Jia Zhu, Shengxiao Jin, Meizhang Wu, Xiaoyu Chen, Wengang Wu. Polarization-controlled bifunctional metasurface for structural color printing and beam deflection. Optics Letters 2020, 45 (7) , 1707. https://doi.org/10.1364/OL.387408
    70. Mina Hanifeh, Filippo Capolino. Helicity maximization in a planar array of achiral high-density dielectric nanoparticles. Journal of Applied Physics 2020, 127 (9) https://doi.org/10.1063/1.5138600
    71. Rfaqat Ali, Felipe A. Pinheiro, Rafael S. Dutra, Felipe S. S. Rosa, Paulo A. Maia Neto. Enantioselective manipulation of single chiral nanoparticles using optical tweezers. Nanoscale 2020, 12 (8) , 5031-5037. https://doi.org/10.1039/C9NR09736H
    72. Denis G. Baranov, Battulga Munkhbat, Nils Odebo Länk, Ruggero Verre, Mikael Käll, Timur Shegai. Circular dichroism mode splitting and bounds to its enhancement with cavity-plasmon-polaritons. Nanophotonics 2020, 9 (2) , 283-293. https://doi.org/10.1515/nanoph-2019-0372
    73. Tong Wu, Weixuan Zhang, Huizhen Zhang, Saisai Hou, Guangyuan Chen, Ruibin Liu, Cuicui Lu, Jiafang Li, Rongyao Wang, Pengfei Duan, Junjie Li, Bo Wang, Lei Shi, Jian Zi, Xiangdong Zhang. Vector Exceptional Points with Strong Superchiral Fields. Physical Review Letters 2020, 124 (8) https://doi.org/10.1103/PhysRevLett.124.083901
    74. Hadi Shamkhi, Alexander Shalin. Enhanced helicity at the transverse Kerker condition. 2020, 020114. https://doi.org/10.1063/5.0031704
    75. Hadi Shamkhi, Adrià Canós Valero, Alexander Shalin. Effective electromagnetic fields of a particle situated near a substrate. 2020, 020115. https://doi.org/10.1063/5.0031705
    76. Rajeshkumar Mupparapu, Tobias Bucher, Isabelle Staude. Integration of two-dimensional transition metal dichalcogenides with Mie-resonant dielectric nanostructures. Advances in Physics: X 2020, 5 (1) , 1734083. https://doi.org/10.1080/23746149.2020.1734083
    77. Lei Wei, Francisco J. Rodríguez-Fortuño. Momentum-Space Geometric Structure of Helical Evanescent Waves and Its Implications on Near-Field Directionality. Physical Review Applied 2020, 13 (1) https://doi.org/10.1103/PhysRevApplied.13.014008
    78. Joshua Feis, Dominik Beutel, Julian Köpfler, Xavier Garcia-Santiago, Carsten Rockstuhl, Martin Wegener, Ivan Fernandez-Corbaton. Helicity-Preserving Optical Cavity Modes for Enhanced Sensing of Chiral Molecules. Physical Review Letters 2020, 124 (3) https://doi.org/10.1103/PhysRevLett.124.033201
    79. Ivan Fernandez-Corbaton. A Conformally Invariant Derivation of Average Electromagnetic Helicity. Symmetry 2019, 11 (11) , 1427. https://doi.org/10.3390/sym11111427
    80. Sébastien Bidault, Mathieu Mivelle, Nicolas Bonod. Dielectric nanoantennas to manipulate solid-state light emission. Journal of Applied Physics 2019, 126 (9) https://doi.org/10.1063/1.5108641
    81. Lisa Poulikakos, Jennifer Dionne, Aitzol García-Etxarri. Optical Helicity and Optical Chirality in Free Space and in the Presence of Matter. Symmetry 2019, 11 (9) , 1113. https://doi.org/10.3390/sym11091113
    82. Frances Crimin, Neel Mackinnon, Jörg B. Götte, Stephen M. Barnett. Optical Helicity and Chirality: Conservation and Sources. Applied Sciences 2019, 9 (5) , 828. https://doi.org/10.3390/app9050828

    ACS Photonics

    Cite this: ACS Photonics 2019, 6, 2, 482–491
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsphotonics.8b01454
    Published January 28, 2019
    Copyright © 2019 American Chemical Society

    Article Views

    2832

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.