Achiral, Helicity Preserving, and Resonant Structures for Enhanced Sensing of Chiral MoleculesClick to copy article linkArticle link copied!
- Florian Graf*Florian Graf*E-mail: [email protected]Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, 76128 Karlsruhe, GermanyMore by Florian Graf
- Joshua FeisJoshua FeisInstitute of Applied Physics, Karlsruhe Institute of Technology, 76128 Karlsruhe, GermanyMore by Joshua Feis
- Xavier Garcia-SantiagoXavier Garcia-SantiagoInstitute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, GermanyJCMWave GmbH, 14050 Berlin, GermanyMore by Xavier Garcia-Santiago
- Martin WegenerMartin WegenerInstitute of Applied Physics, Karlsruhe Institute of Technology, 76128 Karlsruhe, GermanyInstitute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, GermanyMore by Martin Wegener
- Carsten RockstuhlCarsten RockstuhlInstitute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, 76128 Karlsruhe, GermanyInstitute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, GermanyMore by Carsten Rockstuhl
- Ivan Fernandez-Corbaton*Ivan Fernandez-Corbaton*E-mail: [email protected]Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, GermanyMore by Ivan Fernandez-Corbaton
Abstract

We derive a set of design requirements that lead to structures suitable for molecular circular dichroism (CD) enhancement. Achirality of the structure and two suitably selected sequentially incident beams of opposite helicity ensures that the CD signal only depends on the chiral absorption properties of the molecules, and not on the achiral ones. Under this condition, a helicity preserving structure, which prevents the coupling of the two polarization handednesses, maximizes the enhancement of the CD signal for a given ability of the structure to enhance the field. When the achirality and helicity preservation requirements are met, the enhancement of the CD signal is directly related to the enhancement of the field. Next, we design an exemplary structure following the requirements. The considered system is a planar array of silicon cylinders under normally incident plane-wave illumination. Full-wave numerical calculations show that the enhancement of the transmission CD signal is between 6.5 and 3.75 for interaction lengths between 1.25 and 3 times the height of the cylinders.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 82 publications.
- Longfang Ye, Jingyan Li, Felix Ulrich Richter, Yasaman Jahani, Rui Lu, Bo Ray Lee, Ming Lun Tseng, Hatice Altug. Dielectric Tetramer Nanoresonators Supporting Strong Superchiral Fields for Vibrational Circular Dichroism Spectroscopy. ACS Photonics 2023, 10
(12)
, 4377-4384. https://doi.org/10.1021/acsphotonics.3c01186
- Hidemasa Negoro, Hiroshi Sugimoto, Minoru Fujii. Helicity-Preserving Optical Metafluids. Nano Letters 2023, 23
(11)
, 5101-5107. https://doi.org/10.1021/acs.nanolett.3c01026
- Kirill Voronin, Alexey S. Taradin, Maxim V. Gorkunov, Denis G. Baranov. Single-Handedness Chiral Optical Cavities. ACS Photonics 2022, 9
(8)
, 2652-2659. https://doi.org/10.1021/acsphotonics.2c00134
- X. Garcia-Santiago, M. Hammerschmidt, J. Sachs, S. Burger, H. Kwon, M. Knöller, T. Arens, P. Fischer, I. Fernandez-Corbaton, C. Rockstuhl. Toward Maximally Electromagnetically Chiral Scatterers at Optical Frequencies. ACS Photonics 2022, 9
(6)
, 1954-1964. https://doi.org/10.1021/acsphotonics.1c01887
- Steffen Both, Martin Schäferling, Florian Sterl, Egor A. Muljarov, Harald Giessen, Thomas Weiss. Nanophotonic Chiral Sensing: How Does It Actually Work?. ACS Nano 2022, 16
(2)
, 2822-2832. https://doi.org/10.1021/acsnano.1c09796
- Guanghao Rui, Shuting Zou, Bing Gu, Yiping Cui. Surface-Enhanced Circular Dichroism by Localized Superchiral Hotspots in a Dielectric Dimer Array Metasurface. The Journal of Physical Chemistry C 2022, 126
(4)
, 2199-2206. https://doi.org/10.1021/acs.jpcc.1c09618
- Ershad Mohammadi, Andreas Tittl, Kosmas L. Tsakmakidis, T. V. Raziman, Alberto G. Curto. Dual Nanoresonators for Ultrasensitive Chiral Detection. ACS Photonics 2021, 8
(6)
, 1754-1762. https://doi.org/10.1021/acsphotonics.1c00311
- Kristina Frizyuk, Elizaveta Melik-Gaykazyan, Jae-Hyuck Choi, Mihail I. Petrov, Hong-Gyu Park, Yuri Kivshar. Nonlinear Circular Dichroism in Mie-Resonant Nanoparticle Dimers. Nano Letters 2021, 21
(10)
, 4381-4387. https://doi.org/10.1021/acs.nanolett.1c01025
- Jon Lasa-Alonso, Diego Romero Abujetas, Álvaro Nodar, Jennifer A. Dionne, Juan José Sáenz, Gabriel Molina-Terriza, Javier Aizpurua, Aitzol García-Etxarri. Surface-Enhanced Circular Dichroism Spectroscopy on Periodic Dual Nanostructures. ACS Photonics 2020, 7
(11)
, 2978-2986. https://doi.org/10.1021/acsphotonics.0c00611
- Saisai Hou, Tong Wu, Weixuan Zhang, Xiangdong Zhang. Strongly Enhanced Raman Optical Activity of Chiral Molecules by Vector Exceptional Points. The Journal of Physical Chemistry C 2020, 124
(45)
, 24970-24977. https://doi.org/10.1021/acs.jpcc.0c07599
- Michelle L. Solomon, John M. Abendroth, Lisa V. Poulikakos, Jack Hu, Jennifer A. Dionne. Fluorescence-Detected Circular Dichroism of a Chiral Molecular Monolayer with Dielectric Metasurfaces. Journal of the American Chemical Society 2020, 142
(43)
, 18304-18309. https://doi.org/10.1021/jacs.0c07140
- Mina Hanifeh, Mohammad Albooyeh, Filippo Capolino. Optimally Chiral Light: Upper Bound of Helicity Density of Structured Light for Chirality Detection of Matter at Nanoscale. ACS Photonics 2020, 7
(10)
, 2682-2691. https://doi.org/10.1021/acsphotonics.0c00304
- Qingdong Yang, Weijin Chen, Yuntian Chen, Wei Liu. Electromagnetic Duality Protected Scattering Properties of Nonmagnetic Particles. ACS Photonics 2020, 7
(7)
, 1830-1838. https://doi.org/10.1021/acsphotonics.0c00555
- Jose García-Guirado, Mikael Svedendahl, Joaquim Puigdollers, Romain Quidant. Enhanced Chiral Sensing with Dielectric Nanoresonators. Nano Letters 2020, 20
(1)
, 585-591. https://doi.org/10.1021/acs.nanolett.9b04334
- T. V. Raziman, Rasmus H. Godiksen, Moos A. Müller, Alberto G. Curto. Conditions for Enhancing Chiral Nanophotonics near Achiral Nanoparticles. ACS Photonics 2019, 6
(10)
, 2583-2589. https://doi.org/10.1021/acsphotonics.9b01200
- Myonghoo Hwang, Hyeongoo Jung, Ji‐Young Kim. Chirality Quantification for High‐Performance Nanophotonic Biosensors. Small Methods 2025, 13 https://doi.org/10.1002/smtd.202500112
- Hao Wang, Shu Chen, Xing Liu, Yanan Yu, Ting-Hui Xiao, Chong-Xin Shan. Mid-infrared giant optical chirality induced by multipole degeneracy in a diamond metasurface. Optics Letters 2025, 50
(4)
, 1381. https://doi.org/10.1364/OL.550219
- Tingting Guan, Zhenyu Wang, Ruize Wang, Zihan Wu, Chaowei Wang, Dong Wu, Jiaru Chu, Yang Chen. Ultrasensitive circular dichroism spectroscopy based on coupled quasi-bound states in the continuum. Nanophotonics 2025, https://doi.org/10.1515/nanoph-2024-0620
- Hamed Nouri, Amir Nader Askarpour, Parisa Dehkhoda, Ahad Tavakoli. Chiral sensing via dielectric waveguide-nanoparticle array interactions. Optics Express 2024, 32
(23)
, 41390. https://doi.org/10.1364/OE.538940
- Anastasia Nikitina, Kristina Frizyuk. Achiral Nanostructures: Perturbative Harmonic Generation and Dichroism Under Vortex and Vector Beams Illumination. Advanced Optical Materials 2024, 12
(25)
https://doi.org/10.1002/adom.202400732
- Xiaojun Tian, Yijing Bai, Tong Fu, Zhongyue Zhang. Enhanced chiral sensing by optical whispering gallery mode microresonator. Optics Express 2024, 32
(18)
, 31034. https://doi.org/10.1364/OE.532514
- Benedikt Zerulla, Chun Li, Dominik Beutel, Simon Oßwald, Christof Holzer, Jochen Bürck, Stefan Bräse, Christof Wöll, Ivan Fernandez‐Corbaton, Lars Heinke, Carsten Rockstuhl, Marjan Krstić. Exploring Functional Photonic Devices made from a Chiral Metal–Organic Framework Material by a Multiscale Computational Method. Advanced Functional Materials 2024, 34
(20)
https://doi.org/10.1002/adfm.202301093
- Jorge Olmos‐Trigo, Hiroshi Sugimoto, Minoru Fujii. Far‐Field Detection of Near‐Field Circular Dichroism Enhancements Induced by a Nanoantenna. Laser & Photonics Reviews 2024, 18
(5)
https://doi.org/10.1002/lpor.202300948
- Sergey A. Dyakov, Natalia S. Salakhova, Alexey V. Ignatov, Ilia M. Fradkin, Vitaly P. Panov, Jang‐Kun Song, Nikolay A. Gippius. Chiral Light in Twisted Fabry–Pérot Cavities. Advanced Optical Materials 2024, 12
(12)
https://doi.org/10.1002/adom.202302502
- Aritra Biswas, Pablo Cencillo-Abad, Muhammad W. Shabbir, Manobina Karmakar, Debashis Chanda. Tunable plasmonic superchiral light for ultrasensitive detection of chiral molecules. Science Advances 2024, 10
(8)
https://doi.org/10.1126/sciadv.adk2560
- L. Mauro, J. Fregoni, J. Feist, R. Avriller. Classical approaches to chiral polaritonics. Physical Review A 2024, 109
(2)
https://doi.org/10.1103/PhysRevA.109.023528
- Alice De Corte, Mondher Besbes, Henri Benisty, Bjorn Maes. Chiral materials to control exceptional points in parity-time-symmetric waveguides. Physical Review A 2024, 109
(2)
https://doi.org/10.1103/PhysRevA.109.023531
- Jorge Olmos-Trigo, Jon Lasa-Alonso, Iker Gómez-Viloria, Gabriel Molina-Terriza, Aitzol García-Etxarri. Capturing near-field circular dichroism enhancements from far-field measurements. Physical Review Research 2024, 6
(1)
https://doi.org/10.1103/PhysRevResearch.6.013151
- Matteo Castagnola, Rosario Roberto Riso, Alberto Barlini, Enrico Ronca, Henrik Koch. Polaritonic response theory for exact and approximate wave functions. WIREs Computational Molecular Science 2024, 14
(1)
https://doi.org/10.1002/wcms.1684
- P. Elli Stamatopoulou. Strong Coupling in Photonics. 2024, 63-81. https://doi.org/10.1007/978-3-031-67907-0_3
- Leonid Beliaev, Osamu Takayama, Andrei Laurynenka. Subwavelength periodic dielectric nanostructures for biochemical sensing. 2024, 157-187. https://doi.org/10.1016/B978-0-44-318840-4.00013-9
- Aritra Biswas, Pablo Cencillo-Abad, Debashis Chanda. Probing Molecular Chirality with a Tunable Achiral Plasmonic System. 2024, FF3C.5. https://doi.org/10.1364/CLEO_FS.2024.FF3C.5
- Shiqi Jia, Tong Fu, Jie Peng, Shubo Wang. Broadband and large-area optical chirality generated by an achiral metasurface under achiral excitation. Physical Review A 2023, 108
(5)
https://doi.org/10.1103/PhysRevA.108.053504
- Ioannis Katsantonis, Maria Manousidaki, Anastasios D. Koulouklidis, Christina Daskalaki, Ioannis Spanos, Constantinos Kerantzopoulos, Anna C. Tasolamprou, Costas M. Soukoulis, Eleftherios N. Economou, Stelios Tzortzakis, Maria Farsari, Maria Kafesaki. Strong and Broadband Pure Optical Activity in 3D Printed THz Chiral Metamaterials. Advanced Optical Materials 2023, 11
(18)
https://doi.org/10.1002/adom.202300238
- Jingyan Li, Longfang Ye. Dielectric dual-dimer metasurface for enhanced mid-infrared chiral sensing under both excitation modes. Nanophotonics 2023, 12
(12)
, 2189-2197. https://doi.org/10.1515/nanoph-2023-0128
- Huizhen Zhang, Weixuan Zhang, Shaohu Chen, Pengfei Duan, Junjie Li, Lei Shi, Jian Zi, Xiangdong Zhang. Experimental Observation of Vector Bound States in the Continuum. Advanced Optical Materials 2023, 11
(12)
https://doi.org/10.1002/adom.202203118
- Hanan Ali, Emilija Petronijevic, Giovanni Pellegrini, Concita Sibilia, Lucio Claudio Andreani. Circular dichroism in a plasmonic array of elliptical nanoholes with square lattice. Optics Express 2023, 31
(9)
, 14196. https://doi.org/10.1364/OE.485324
- L. Mauro, J. Fregoni, J. Feist, R. Avriller. Chiral discrimination in helicity-preserving Fabry-Pérot cavities. Physical Review A 2023, 107
(2)
https://doi.org/10.1103/PhysRevA.107.L021501
- Anastasia Nikitina, Anna Nikolaeva, Kristina Frizyuk. Nonlinear circular dichroism in achiral dielectric nanoparticles. Physical Review B 2023, 107
(4)
https://doi.org/10.1103/PhysRevB.107.L041405
- P. Elli Stamatopoulou, Sotiris Droulias, Guillermo P. Acuna, N. Asger Mortensen, Christos Tserkezis. Reconfigurable chirality with achiral excitonic materials in the strong-coupling regime. Nanoscale 2022, 14
(47)
, 17581-17588. https://doi.org/10.1039/D2NR05063C
- R. Ali. Chirality-assisted spin Hall effect of light in the vicinity of the quasi-antidual symmetry mode of a chiral sphere. Physical Review A 2022, 106
(6)
https://doi.org/10.1103/PhysRevA.106.063508
- Jorge Olmos-Trigo, Xavier Zambrana-Puyalto. Helicity Conservation for Mie Optical Cavities. Physical Review Applied 2022, 18
(4)
https://doi.org/10.1103/PhysRevApplied.18.044007
- Krzysztof M. Czajkowski, Tomasz J. Antosiewicz. Local versus bulk circular dichroism enhancement by achiral all-dielectric nanoresonators. Nanophotonics 2022, 11
(18)
, 4287-4297. https://doi.org/10.1515/nanoph-2022-0293
- Ioannis Katsantonis, Sotiris Droulias, Costas M. Soukoulis, Eleftherios N. Economou, T. Peter Rakitzis, Maria Kafesaki. Chirality sensing employing parity-time-symmetric and other resonant gain-loss optical systems. Physical Review B 2022, 105
(17)
https://doi.org/10.1103/PhysRevB.105.174112
- Yang Chen, Weijin Chen, Xianghong Kong, Dong Wu, Jiaru Chu, Cheng-Wei Qiu. Can Weak Chirality Induce Strong Coupling between Resonant States?. Physical Review Letters 2022, 128
(14)
https://doi.org/10.1103/PhysRevLett.128.146102
- Joshua Feis, Dominik Beutel, Julian Köpfler, Xavier Garcia-Santiago, Carsten Rockstuhl, Martin Wegener, Ivan Fernandez-Corbaton. An Achiral Optical Cavity with Helicity-Preserving Modes for Enhanced Sensing of Chiral Molecules. 2022, 317-319. https://doi.org/10.1007/978-94-024-2138-5_34
- Jayeeta Amboli, Guillaume Demésy, Bruno Galas, Nicolas Bonod, , , , . Numerical investigation of far-field circular dichroism and local chiral response of pseudo-chiral meta-surface with FEM. EPJ Web of Conferences 2022, 266 , 05001. https://doi.org/10.1051/epjconf/202226605001
- Christina Ioannou, Ranjith Nair, Ivan Fernandez-Corbaton, Mile Gu, Carsten Rockstuhl, Changhyoup Lee. Optimal circular dichroism sensing with quantum light: Multiparameter estimation approach. Physical Review A 2021, 104
(5)
https://doi.org/10.1103/PhysRevA.104.052615
- I. Katsantonis, S. Droulias, C. M. Soukoulis, E. N. Economou, T. P. Rakitzis, M. Kafesaki. Molecular Chirality Sensing Employing Active and Parity-Time Symmetric Metamaterials. 2021, 188-190. https://doi.org/10.1109/Metamaterials52332.2021.9577183
- Sotiris Droulias, Lykourgos Bougas. Chiral sensing with achiral anisotropic metasurfaces. Physical Review B 2021, 104
(7)
https://doi.org/10.1103/PhysRevB.104.075412
- Niels Gieseler, Aso Rahimzadegan, Carsten Rockstuhl. Self-stabilizing curved metasurfaces as a sail for light-propelled spacecrafts. Optics Express 2021, 29
(14)
, 21562. https://doi.org/10.1364/OE.420475
- D. Beutel, P. Scott, M. Wegener, C. Rockstuhl, I. Fernandez-Corbaton. Enhancing the optical rotation of chiral molecules using helicity preserving all-dielectric metasurfaces. Applied Physics Letters 2021, 118
(22)
https://doi.org/10.1063/5.0050411
- Diego R. Abujetas, Manuel I. Marqués, José A. Sánchez-Gil. Modulated flipping torque, spin-induced radiation pressure, and chiral sorting exerted by guided light. Optics Express 2021, 29
(11)
, 16969. https://doi.org/10.1364/OE.412638
- S. S. Hou, Y. Liu, W. X. Zhang, X. D. Zhang. Separating and trapping of chiral nanoparticles with dielectric photonic crystal slabs. Optics Express 2021, 29
(10)
, 15177. https://doi.org/10.1364/OE.423243
- Sangtae Jeon, Soo Jin Kim. Enhancement of Optical Chirality Using Metasurfaces for Enantiomer-Selective Molecular Sensing. Applied Sciences 2021, 11
(7)
, 2989. https://doi.org/10.3390/app11072989
- Kang Du, Pei Li, Heng Wang, Kun Gao, Rui‐Bin Liu, Fanfan Lu, Wending Zhang, Ting Mei. Optical Chirality Enhancement in Hollow Silicon Disk by Dipolar Interference. Advanced Optical Materials 2021, 9
(5)
https://doi.org/10.1002/adom.202001771
- Ya-Xin Hu, Ren-Chao Jin, Xiao-Rui Zhang, Li-Li Tang, Jia-Qi Li, Jin Wang, Zheng-Gao Dong. Negative optical torque in spin-dependent 2D chiral nanomotor due to dipolar scattering. Optics Communications 2021, 482 , 126560. https://doi.org/10.1016/j.optcom.2020.126560
- Lyuzhou Ye, Longqing Yang, Xiao Zheng, Shaul Mukamel. Enhancing Circular Dichroism Signals with Vector Beams. Physical Review Letters 2021, 126
(12)
https://doi.org/10.1103/PhysRevLett.126.123001
- Khai Q. Le. Electromagnetic modeling of excited-state dynamics in the vicinity of metallic nanostructures. Physica B: Condensed Matter 2021, 602 , 412381. https://doi.org/10.1016/j.physb.2020.412381
- J. Enrique Vázquez-Lozano, Alejandro Martínez. Theoretical Generalization of the Optical Chirality to Arbitrary Optical Media. 2021, 323-355. https://doi.org/10.1007/978-3-030-62844-4_13
- Philip Scott, Xavier Garcia-Santiago, Dominik Beutel, Carsten Rockstuhl, Martin Wegener, Ivan Fernandez-Corbaton. On enhanced sensing of chiral molecules in optical cavities. Applied Physics Reviews 2020, 7
(4)
https://doi.org/10.1063/5.0025006
- John M. Abendroth, Michelle L. Solomon, David R. Barton, Mohammed S. El Hadri, Eric E. Fullerton, Jennifer A. Dionne. Helicity‐Preserving Metasurfaces for Magneto‐Optical Enhancement in Ferromagnetic [Pt/Co]
N
Films. Advanced Optical Materials 2020, 8
(22)
https://doi.org/10.1002/adom.202001420
- Tong Wu, Saisai Hou, Weixuan Zhang, Xiangdong Zhang. Strong superchiral fields and an ultrasensitive chiral sensor of biomolecules based on a dielectric photonic crystal slab with air holes. Physical Review A 2020, 102
(5)
https://doi.org/10.1103/PhysRevA.102.053519
- Mina Hanifeh, Mohammad Albooyeh, Filippo Capolino. Helicity maximization below the diffraction limit. Physical Review B 2020, 102
(16)
https://doi.org/10.1103/PhysRevB.102.165419
- J. Enrique Vázquez‐Lozano, Alejandro Martínez. Toward Chiral Sensing and Spectroscopy Enabled by All‐Dielectric Integrated Photonic Waveguides. Laser & Photonics Reviews 2020, 14
(9)
https://doi.org/10.1002/lpor.201900422
- Sotiris Droulias. Chiral sensing with achiral isotropic metasurfaces. Physical Review B 2020, 102
(7)
https://doi.org/10.1103/PhysRevB.102.075119
- Jorge Olmos-Trigo, Cristina Sanz-Fernández, Diego R. Abujetas, Jon Lasa-Alonso, Nuno de Sousa, Aitzol García-Etxarri, José A. Sánchez-Gil, Gabriel Molina-Terriza, Juan José Sáenz. Kerker Conditions upon Lossless, Absorption, and Optical Gain Regimes. Physical Review Letters 2020, 125
(7)
https://doi.org/10.1103/PhysRevLett.125.073205
- Tianji Liu, Rongyang Xu, Peng Yu, Zhiming Wang, Junichi Takahara. Multipole and multimode engineering in Mie resonance-based metastructures. Nanophotonics 2020, 9
(5)
, 1115-1137. https://doi.org/10.1515/nanoph-2019-0505
- Yun Huang, Jia Zhu, Shengxiao Jin, Meizhang Wu, Xiaoyu Chen, Wengang Wu. Polarization-controlled bifunctional metasurface for structural color printing and beam deflection. Optics Letters 2020, 45
(7)
, 1707. https://doi.org/10.1364/OL.387408
- Mina Hanifeh, Filippo Capolino. Helicity maximization in a planar array of achiral high-density dielectric nanoparticles. Journal of Applied Physics 2020, 127
(9)
https://doi.org/10.1063/1.5138600
- Rfaqat Ali, Felipe A. Pinheiro, Rafael S. Dutra, Felipe S. S. Rosa, Paulo A. Maia Neto. Enantioselective manipulation of single chiral nanoparticles using optical tweezers. Nanoscale 2020, 12
(8)
, 5031-5037. https://doi.org/10.1039/C9NR09736H
- Denis G. Baranov, Battulga Munkhbat, Nils Odebo Länk, Ruggero Verre, Mikael Käll, Timur Shegai. Circular dichroism mode splitting and bounds to its enhancement with cavity-plasmon-polaritons. Nanophotonics 2020, 9
(2)
, 283-293. https://doi.org/10.1515/nanoph-2019-0372
- Tong Wu, Weixuan Zhang, Huizhen Zhang, Saisai Hou, Guangyuan Chen, Ruibin Liu, Cuicui Lu, Jiafang Li, Rongyao Wang, Pengfei Duan, Junjie Li, Bo Wang, Lei Shi, Jian Zi, Xiangdong Zhang. Vector Exceptional Points with Strong Superchiral Fields. Physical Review Letters 2020, 124
(8)
https://doi.org/10.1103/PhysRevLett.124.083901
- Hadi Shamkhi, Alexander Shalin. Enhanced helicity at the transverse Kerker condition. 2020, 020114. https://doi.org/10.1063/5.0031704
- Hadi Shamkhi, Adrià Canós Valero, Alexander Shalin. Effective electromagnetic fields of a particle situated near a substrate. 2020, 020115. https://doi.org/10.1063/5.0031705
- Rajeshkumar Mupparapu, Tobias Bucher, Isabelle Staude. Integration of two-dimensional transition metal dichalcogenides with Mie-resonant dielectric nanostructures. Advances in Physics: X 2020, 5
(1)
, 1734083. https://doi.org/10.1080/23746149.2020.1734083
- Lei Wei, Francisco J. Rodríguez-Fortuño. Momentum-Space Geometric Structure of Helical Evanescent Waves and Its Implications on Near-Field Directionality. Physical Review Applied 2020, 13
(1)
https://doi.org/10.1103/PhysRevApplied.13.014008
- Joshua Feis, Dominik Beutel, Julian Köpfler, Xavier Garcia-Santiago, Carsten Rockstuhl, Martin Wegener, Ivan Fernandez-Corbaton. Helicity-Preserving Optical Cavity Modes for Enhanced Sensing of Chiral Molecules. Physical Review Letters 2020, 124
(3)
https://doi.org/10.1103/PhysRevLett.124.033201
- Ivan Fernandez-Corbaton. A Conformally Invariant Derivation of Average Electromagnetic Helicity. Symmetry 2019, 11
(11)
, 1427. https://doi.org/10.3390/sym11111427
- Sébastien Bidault, Mathieu Mivelle, Nicolas Bonod. Dielectric nanoantennas to manipulate solid-state light
emission. Journal of Applied Physics 2019, 126
(9)
https://doi.org/10.1063/1.5108641
- Lisa Poulikakos, Jennifer Dionne, Aitzol García-Etxarri. Optical Helicity and Optical Chirality in Free Space and in the Presence of Matter. Symmetry 2019, 11
(9)
, 1113. https://doi.org/10.3390/sym11091113
- Frances Crimin, Neel Mackinnon, Jörg B. Götte, Stephen M. Barnett. Optical Helicity and Chirality: Conservation and Sources. Applied Sciences 2019, 9
(5)
, 828. https://doi.org/10.3390/app9050828
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.