ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES

Size-Selective Optical Printing of Silicon Nanoparticles through Their Dipolar Magnetic Resonance

  • Cecilia Zaza
    Cecilia Zaza
    Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2390 Ciudad Autonoma de Buenos Aires, Argentina
    Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes, 2620 Ciudad Autonoma de Buenos Aires, Argentina
    More by Cecilia Zaza
  • Ianina L. Violi*
    Ianina L. Violi
    Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2390 Ciudad Autonoma de Buenos Aires, Argentina
    *E-mail: [email protected] (I.L.V.).
  • Julián Gargiulo
    Julián Gargiulo
    The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
  • Germán Chiarelli
    Germán Chiarelli
    Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2390 Ciudad Autonoma de Buenos Aires, Argentina
    Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes, 2620 Ciudad Autonoma de Buenos Aires, Argentina
  • Ludmilla Schumacher
    Ludmilla Schumacher
    Physical Chemistry I, Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141 Essen, Germany
  • Jurij Jakobi
    Jurij Jakobi
    Technical Chemistry I, Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141 Essen, Germany
    More by Jurij Jakobi
  • Jorge Olmos-Trigo
    Jorge Olmos-Trigo
    Donostia International Physics Center (DIPC), 20018 San Sebastián, Spain
  • Emiliano Cortes
    Emiliano Cortes
    The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
    Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 München, Germany
  • Matthias König
    Matthias König
    Physical Chemistry I, Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141 Essen, Germany
  • Stephan Barcikowski
    Stephan Barcikowski
    Technical Chemistry I, Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141 Essen, Germany
  • Sebastian Schlücker
    Sebastian Schlücker
    Physical Chemistry I, Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141 Essen, Germany
  • Juan José Sáenz
    Juan José Sáenz
    Donostia International Physics Center (DIPC), 20018 San Sebastián, Spain
    IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
  • Stefan A. Maier
    Stefan A. Maier
    The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
    Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 München, Germany
  • , and 
  • Fernando D. Stefani*
    Fernando D. Stefani
    Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2390 Ciudad Autonoma de Buenos Aires, Argentina
    Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes, 2620 Ciudad Autonoma de Buenos Aires, Argentina
    *E-mail: [email protected] (F.D.S.).
Cite this: ACS Photonics 2019, 6, 4, 815–822
Publication Date (Web):March 7, 2019
https://doi.org/10.1021/acsphotonics.8b01619
Copyright © 2019 American Chemical Society
Article Views
1437
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (4 MB)
Supporting Info (1)»

Abstract

Abstract Image

Silicon nanoparticles possess unique size-dependent optical properties due to their strong electric and magnetic resonances in the visible range. However, their widespread application has been limited, in comparison with other (e.g., metallic) nanoparticles, because their preparation on monodisperse colloids remains challenging. Exploiting the unique properties of Si nanoparticles in nano- and microdevices calls for methods able to sort and organize them from a colloidal suspension onto specific positions of solid substrates with nanometric precision. We demonstrate that surfactant-free silicon nanoparticles of a predefined and narrow (σ < 10 nm) size range can be selectively immobilized on a substrate by optical printing from a polydisperse colloidal suspension. The size selectivity is based on differential optical forces that can be applied on nanoparticles of different sizes by tuning the light wavelength to the size-dependent magnetic dipolar resonance of the nanoparticles.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsphotonics.8b01619.

  • Details of theoretical calculations (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 29 publications.

  1. Pushkar K. Gothe, Anthony Martinez, Seong Jin Koh. Effect of Ionic Strength, Nanoparticle Surface Charge Density, and Template Diameter on Self-Limiting Single-Particle Placement: A Numerical Study. Langmuir 2021, 37 (41) , 11961-11977. https://doi.org/10.1021/acs.langmuir.1c01375
  2. Yatao Ren, Qin Chen, Mingjian He, Xiangzhi Zhang, Hong Qi, Yuying Yan. Plasmonic Optical Tweezers for Particle Manipulation: Principles, Methods, and Applications. ACS Nano 2021, 15 (4) , 6105-6128. https://doi.org/10.1021/acsnano.1c00466
  3. Shaofeng Liu, Linhan Lin, Hong-Bo Sun. Opto-Thermophoretic Manipulation. ACS Nano 2021, 15 (4) , 5925-5943. https://doi.org/10.1021/acsnano.0c10427
  4. Cherie R. Kagan, Lee C. Bassett, Christopher B. Murray, Sarah M. Thompson. Colloidal Quantum Dots as Platforms for Quantum Information Science. Chemical Reviews 2021, 121 (5) , 3186-3233. https://doi.org/10.1021/acs.chemrev.0c00831
  5. Martin Poblet, Yi Li, Emiliano Cortés, Stefan A. Maier, Gustavo Grinblat, Andrea V. Bragas. Direct Detection of Optical Forces of Magnetic Nature in Dielectric Nanoantennas. Nano Letters 2020, 20 (10) , 7627-7634. https://doi.org/10.1021/acs.nanolett.0c03157
  6. Nils Odebo Länk, Peter Johansson, Mikael Käll. Optical Tweezing and Photothermal Properties of Resonant Dielectric and Metallic Nanospheres. ACS Photonics 2020, 7 (9) , 2405-2412. https://doi.org/10.1021/acsphotonics.0c00292
  7. Alvaro Blanco, F. Javier Garcı́a de Abajo, Antonio Garcı́a Martı́n, Luis M. Liz-Marzán, Cefe López. Goodbye Juan José Sáenz (1960–2020): A Bright Scientific Mind, an Unusually Prolific Friend, and a Family Man. ACS Photonics 2020, 7 (5) , 1078-1079. https://doi.org/10.1021/acsphotonics.0c00526
  8. Vytautas Valuckas, Ramón Paniagua-Domínguez, Aili Maimaiti, Partha Pratim Patra, Seng Kai Wong, Ruggero Verre, Mikael Käll, Arseniy I. Kuznetsov. Fabrication of Monodisperse Colloids of Resonant Spherical Silicon Nanoparticles: Applications in Optical Trapping and Printing. ACS Photonics 2019, 6 (8) , 2141-2148. https://doi.org/10.1021/acsphotonics.9b00722
  9. Jingang Li, Eric H. Hill, Linhan Lin, Yuebing Zheng. Optical Nanoprinting of Colloidal Particles and Functional Structures. ACS Nano 2019, 13 (4) , 3783-3795. https://doi.org/10.1021/acsnano.9b01034
  10. Jinyong Hu, Wangdi Bai, Chuxuan Tan, Yiming Li, Qi Lin, Lingling Wang. Highly electric field enhancement induced by anapole modes coupling in the hybrid dielectric–metal nanoantenna. Optics Communications 2022, 511 , 127987. https://doi.org/10.1016/j.optcom.2022.127987
  11. Luciana Paula Martinez, Julian Gargiulo, Mariano Barella, Ianina Lucila Violi, Fernando Daniel Stefani. Fine Tuning the Optical Properties of Single Au Nanoparticles by Plasmon‐Driven Growth in Closed‐Loop Control. Advanced Optical Materials 2022, , 2102724. https://doi.org/10.1002/adom.202102724
  12. D. A. Shilkin, A. A. Fedyanin. Optical Levitation of Mie-Resonant Silicon Particles in the Field of Bloch Surface Electromagnetic Waves. JETP Letters 2022, 115 (3) , 136-140. https://doi.org/10.1134/S0021364022030092
  13. Ianina L. Violi, Luciana P. Martinez, Mariano Barella, Cecilia Zaza, Lukáš Chvátal, Pavel Zemánek, Marina V. Gutiérrez, María Y. Paredes, Alberto F. Scarpettini, Jorge Olmos-Trigo, Valeria R. Pais, Iván Díaz Nóblega, Emiliano Cortes, Juan José Sáenz, Andrea V. Bragas, Julian Gargiulo, Fernando D. Stefani. Challenges on optical printing of colloidal nanoparticles. The Journal of Chemical Physics 2022, 156 (3) , 034201. https://doi.org/10.1063/5.0078454
  14. Jiahui Xu, Yue Wu, Pinzheng Zhang, Yiming Wu, Renaud A. L. Vallée, Suli Wu, Xiaogang Liu. Resonant Scattering Manipulation of Dielectric Nanoparticles. Advanced Optical Materials 2021, 9 (15) , 2100112. https://doi.org/10.1002/adom.202100112
  15. Niels Gieseler, Aso Rahimzadegan, Carsten Rockstuhl. Self-stabilizing curved metasurfaces as a sail for light-propelled spacecrafts. Optics Express 2021, 29 (14) , 21562. https://doi.org/10.1364/OE.420475
  16. Cristina Sanz‐Fernández, Martín Molezuelas‐Ferreras, Jon Lasa‐Alonso, Nuno de Sousa, Xavier Zambrana‐Puyalto, Jorge Olmos‐Trigo. Multiple Kerker Anapoles in Dielectric Microspheres. Laser & Photonics Reviews 2021, 15 (7) , 2100035. https://doi.org/10.1002/lpor.202100035
  17. Jie Fang, Mingsong Wang, Kan Yao, Tianyi Zhang, Alex Krasnok, Taizhi Jiang, Junho Choi, Ethan Kahn, Brian A. Korgel, Mauricio Terrones, Xiaoqin Li, Andrea Alù, Yuebing Zheng. Directional Modulation of Exciton Emission Using Single Dielectric Nanospheres. Advanced Materials 2021, 33 (20) , 2007236. https://doi.org/10.1002/adma.202007236
  18. Hiroshi Sugimoto, Minoru Fujii. Colloidal Mie Resonators for All‐Dielectric Metaoptics. Advanced Photonics Research 2021, 2 (4) , 2000111. https://doi.org/10.1002/adpr.202000111
  19. Nina Armon, Ehud Greenberg, Eitan Edri, Ornit Nagler‐Avramovitz, Yuval Elias, Hagay Shpaisman. Laser‐Based Printing: From Liquids to Microstructures. Advanced Functional Materials 2021, 31 (13) , 2008547. https://doi.org/10.1002/adfm.202008547
  20. Niusha Lasemi, Christian Rentenberger, Gerhard Liedl, Dominik Eder. The influence of the fluid nature on femtosecond laser ablation properties of a SiO 2 /Si target and synthesis of ultrafine-grained Si nanoparticles. Nanoscale Advances 2020, 2 (9) , 3991-4002. https://doi.org/10.1039/D0NA00317D
  21. Hiroshi Sugimoto, Takuma Okazaki, Minoru Fujii. Mie Resonator Color Inks of Monodispersed and Perfectly Spherical Crystalline Silicon Nanoparticles. Advanced Optical Materials 2020, 8 (12) , 2000033. https://doi.org/10.1002/adom.202000033
  22. Xiaohao Xu, Manuel Nieto‐Vesperinas, Cheng‐Wei Qiu, Xiaoshuai Liu, Dongliang Gao, Yao Zhang, Baojun Li. Kerker‐Type Intensity‐Gradient Force of Light. Laser & Photonics Reviews 2020, 14 (4) , 1900265. https://doi.org/10.1002/lpor.201900265
  23. A. Krivonosov, D. Zuev, S. Kaputkina, V. Mikhailovskii, E. Egorova, E. Ageev, G. Odintsova. Evolution of size distribution of Si nanoparticles produced by pulsed laser ablation in water. Optical and Quantum Electronics 2020, 52 (3) https://doi.org/10.1007/s11082-020-02274-z
  24. María Cecilia Zaza, Ianina Lucinla Violi, Julian Gargiulo, Germán Chiarelli, Ludmilla Schumacher, Jurij Jakobi, Jorge Olmos-Trigo, Emiliano Cortés, Matthias Konig, Stephan Barcikowski, Sebastian Schlücker, Juan José Sáenz, Stefan Maier, Fernando D. Stefani, , , . Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance. 2020,,, 7. https://doi.org/10.1117/12.2539265
  25. Tong Wu, Alexandre Baron, Philippe Lalanne, Kevin Vynck. Intrinsic multipolar contents of nanoresonators for tailored scattering. Physical Review A 2020, 101 (1) https://doi.org/10.1103/PhysRevA.101.011803
  26. Pavel Zemánek, Giorgio Volpe, Alexandr Jonáš, Oto Brzobohatý. Perspective on light-induced transport of particles: from optical forces to phoretic motion. Advances in Optics and Photonics 2019, 11 (3) , 577. https://doi.org/10.1364/AOP.11.000577
  27. Shunsuke Murai, Yuki Kawachiya, Katsuhisa Tanaka. Confinement of ultraviolet light using lattice modes in Al and Si nanocylinder arrays. Optical Materials Express 2019, 9 (8) , 3310. https://doi.org/10.1364/OME.9.003310
  28. Yao Zhang, Peng Yue, Jun-Yan Liu, Wei Geng, Ya-Ting Bai, Shao-Ding Liu. Ideal magnetic dipole resonances with metal-dielectric-metal hybridized nanodisks. Optics Express 2019, 27 (11) , 16143. https://doi.org/10.1364/OE.27.016143
  29. Cecilia Zaza, Ianina L. Violi, Julián Gargiulo, Germán Chiarelli, Ludmilla Schumacher, Jurij Jakobi, Jorge Olmos, Emiliano Cortés, Matthias König, Stephan Barcikowski, Sebastian Schlücker, Juan José Saenz, Stefan A. Maier, Fernando D. Stefani. Size-Selective Optical Printing of Silicon Nanoparticles through Their Dipolar Magnetic Resonance. 2019,,, FM5C.3. https://doi.org/10.1364/FIO.2019.FM5C.3

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE