ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Electrochemosensor for Trace Analysis of Perfluorooctanesulfonate in Water Based on a Molecularly Imprinted Poly(o-phenylenediamine) Polymer

  • Najmeh Karimian
    Najmeh Karimian
    Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, via Torino 155, 30172 Venezia Mestre, Italy
  • Angela M. Stortini
    Angela M. Stortini
    Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, via Torino 155, 30172 Venezia Mestre, Italy
  • Ligia M. Moretto
    Ligia M. Moretto
    Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, via Torino 155, 30172 Venezia Mestre, Italy
  • Claudio Costantino
    Claudio Costantino
    Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, via Torino 155, 30172 Venezia Mestre, Italy
  • Sara Bogialli
    Sara Bogialli
    Department of Chemical Sciences, University of Padova, via F. Marzolo 1, 35131 Padova, Italy
  • , and 
  • Paolo Ugo*
    Paolo Ugo
    Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, via Torino 155, 30172 Venezia Mestre, Italy
    *E-mail: [email protected]
    More by Paolo Ugo
Cite this: ACS Sens. 2018, 3, 7, 1291–1298
Publication Date (Web):June 18, 2018
https://doi.org/10.1021/acssensors.8b00154
Copyright © 2018 American Chemical Society

    Article Views

    4426

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    This work is aimed at developing an electrochemical sensor for the sensitive and selective detection of trace levels of perfluorooctanesulfonate (PFOS) in water. Contamination of waters by perfluorinated alkyl substances (PFAS) is a problem of global concern due to their suspected toxicity and ability to bioaccumulate. PFOS is the perfluorinated compound of major concern, as it has the lowest suggested control concentrations. The sensor reported here is based on a gold electrode modified with a thin coating of a molecularly imprinted polymer (MIP), prepared by anodic electropolymerization of o-phenylenediamine (o-PD) in the presence of PFOS as the template. Activation of the sensor is achieved by template removal with suitable a solvent mixture. Voltammetry, a quartz crystal microbalance, scanning electron microscopy and elemental analysis were used to monitor the electropolymerization process, template removal, and binding of the analyte. Ferrocenecarboxylic acid (FcCOOH) has been exploited as an electrochemical probe able to generate analytically useful voltammetric signals by competing for the binding sites with PFOS, as the latter is not electroactive. The sensor has a low detection limit (0.04 nM), a satisfactory selectivity, and is reproducible and repeatable, giving analytical results in good agreement with those obtained by HPLC-MS/MS analyses.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acssensors.8b00154.

    • Optical characterization of MIP sensor; EQCM monitoring of electropolymerization; Profilometric measurement; Comparison between redox probes; Optimization of conditions for MIPs/AuE preparation (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 80 publications.

    1. Zahra Abbasian Chaleshtari, Reza Foudazi. A Review on Per- and Polyfluoroalkyl Substances (PFAS) Remediation: Separation Mechanisms and Molecular Interactions. ACS ES&T Water 2022, 2 (12) , 2258-2272. https://doi.org/10.1021/acsestwater.2c00271
    2. Mingyue Wang, Xavier Cetó, Manel del Valle. A Sensor Array Based on Molecularly Imprinted Polymers and Machine Learning for the Analysis of Fluoroquinolone Antibiotics. ACS Sensors 2022, 7 (11) , 3318-3325. https://doi.org/10.1021/acssensors.2c01260
    3. Gazi Jahirul Islam, Damien W. M. Arrigan. Voltammetric Selectivity in Detection of Ionized Perfluoroalkyl Substances at Micro-Interfaces between Immiscible Electrolyte Solutions. ACS Sensors 2022, 7 (10) , 2960-2967. https://doi.org/10.1021/acssensors.2c01100
    4. Philip J. Kauffmann, Nathaneal A. Park, Rebecca B. Clark, Gary L. Glish, Jeffrey E. Dick. Aerosol Electroanalysis by PILSNER: Particle-into-Liquid Sampling for Nanoliter Electrochemical Reactions. ACS Measurement Science Au 2022, 2 (2) , 106-112. https://doi.org/10.1021/acsmeasuresciau.1c00024
    5. Sushant P. Sahu, Subarna Kole, Christopher G. Arges, Manas Ranjan Gartia. Rapid and Direct Perfluorooctanoic Acid Sensing with Selective Ionomer Coatings on Screen-Printed Electrodes under Environmentally Relevant Concentrations. ACS Omega 2022, 7 (6) , 5001-5007. https://doi.org/10.1021/acsomega.1c05847
    6. Yuqin Wang, Seth B. Darling, Junhong Chen. Selectivity of Per- and Polyfluoroalkyl Substance Sensors and Sorbents in Water. ACS Applied Materials & Interfaces 2021, 13 (51) , 60789-60814. https://doi.org/10.1021/acsami.1c16517
    7. Ibrahim F. Abo-Elmagd, Amr M. Mahmoud, Medhat A. Al-Ghobashy, Marianne Nebsen, Nesrine S. El Sayed, Shahira Nofal, Sameh H. Soror, Robert Todd, Salwa A. Elgebaly. Impedimetric Sensors for Cyclocreatine Phosphate Determination in Plasma Based on Electropolymerized Poly(o-phenylenediamine) Molecularly Imprinted Polymers. ACS Omega 2021, 6 (46) , 31282-31291. https://doi.org/10.1021/acsomega.1c05098
    8. P. U. Ashvin Iresh Fernando, Matthew W. Glasscott, Gilbert K. Kosgei, Jared S. Cobb, Erik M. Alberts, Caitlin G. Bresnahan, Timothy C. Schutt, Garrett W. George, Lee C. Moores. Toward Rational Design of Electrogenerated Molecularly Imprinted Polymers (eMIPs): Maximizing Monomer/Template Affinity. ACS Applied Polymer Materials 2021, 3 (9) , 4523-4533. https://doi.org/10.1021/acsapm.1c00575
    9. Alireza Sanati, Roozbeh Siavash Moakhar, Imman I. Hosseini, Keyvan Raeissi, Fathallah Karimzadeh, Mahsa Jalali, Mahshid Kharaziha, Sara Sheibani, Laleh Shariati, John F. Presley, Hojatollah Vali, Sara Mahshid. Gold Nano/Micro-Islands Overcome the Molecularly Imprinted Polymer Limitations to Achieve Ultrasensitive Protein Detection. ACS Sensors 2021, 6 (3) , 797-807. https://doi.org/10.1021/acssensors.0c01701
    10. Rebecca B. Clark, Jeffrey E. Dick. Electrochemical Sensing of Perfluorooctanesulfonate (PFOS) Using Ambient Oxygen in River Water. ACS Sensors 2020, 5 (11) , 3591-3598. https://doi.org/10.1021/acssensors.0c01894
    11. Rezvan Kazemi, Emili I. Potts, Jeffrey E. Dick. Quantifying Interferent Effects on Molecularly Imprinted Polymer Sensors for Per- and Polyfluoroalkyl Substances (PFAS). Analytical Chemistry 2020, 92 (15) , 10597-10605. https://doi.org/10.1021/acs.analchem.0c01565
    12. Matthew W. Glasscott, Kathryn J. Vannoy, Rezvan Kazemi, Matthew D. Verber, Jeffrey E. Dick. μ-MIP: Molecularly Imprinted Polymer-Modified Microelectrodes for the Ultrasensitive Quantification of GenX (HFPO-DA) in River Water. Environmental Science & Technology Letters 2020, 7 (7) , 489-495. https://doi.org/10.1021/acs.estlett.0c00341
    13. Yu H. Cheng, Dushyant Barpaga, Jennifer A. Soltis, V. Shutthanandan, Roli Kargupta, Kee Sung Han, B. Peter McGrail, Radha Kishan Motkuri, Sagnik Basuray, Sayandev Chatterjee. Metal–Organic Framework-Based Microfluidic Impedance Sensor Platform for Ultrasensitive Detection of Perfluorooctanesulfonate. ACS Applied Materials & Interfaces 2020, 12 (9) , 10503-10514. https://doi.org/10.1021/acsami.9b22445
    14. Susan D. Richardson, Susana Y. Kimura. Water Analysis: Emerging Contaminants and Current Issues. Analytical Chemistry 2020, 92 (1) , 473-505. https://doi.org/10.1021/acs.analchem.9b05269
    15. Dushyant Barpaga, Jian Zheng, Kee Sung Han, Jennifer A. Soltis, Vaithiyalingam Shutthanandan, Sagnik Basuray, B. Peter McGrail, Sayandev Chatterjee, Radha Kishan Motkuri. Probing the Sorption of Perfluorooctanesulfonate Using Mesoporous Metal–Organic Frameworks from Aqueous Solutions. Inorganic Chemistry 2019, 58 (13) , 8339-8346. https://doi.org/10.1021/acs.inorgchem.9b00380
    16. Xiaoyu Su, Kaiyi Zheng, Xiaoyu Tian, Xuan Zhou, Xiaobo Zou, Xuechao Xu, Zongbao Sun, Wen Zhang. An advanced ratiometric molecularly imprinted sensor based on metal ion reoxidation for indirect and ultrasensitive glyphosate detection in fruit. Food Chemistry 2023, 429 , 136927. https://doi.org/10.1016/j.foodchem.2023.136927
    17. Gabriel Jiménez-Skrzypek, Javier González-Sálamo, Javier Hernández-Borges. Analytical methodologies and occurrence of per- and polyfluorinated alkyl substances – A review. Journal of Chromatography Open 2023, 4 , 100089. https://doi.org/10.1016/j.jcoa.2023.100089
    18. Yan-Jun Li, Li-Li Yang, Li Ni, Jia-Min Xiong, Jia-Yuan He, Lian-Di Zhou, Ling Luo, Qi-Hui Zhang, Chun-Su Yuan. Constructing electrochemical sensor using molecular-imprinted polysaccharide for rapid identification and determination of l-tryptophan in diet. Food Chemistry 2023, 425 , 136486. https://doi.org/10.1016/j.foodchem.2023.136486
    19. Mattia Pierpaoli, Małgorzata Szopińska, Adrian Olejnik, Jacek Ryl, Sylwia Fudala-Ksiażek, Aneta Łuczkiewicz, Robert Bogdanowicz. Engineering boron and nitrogen codoped carbon nanoarchitectures to tailor molecularly imprinted polymers for PFOS determination. Journal of Hazardous Materials 2023, 458 , 131873. https://doi.org/10.1016/j.jhazmat.2023.131873
    20. Ryo IWASAKI, Junya UCHIDA, Yudai YAMANA, Yui NAKAMURA, Kohji MAEDA, Shingo SOTOMA, Yumi YOSHIDA. Coulometric Determination of Perfluoroalkyl Substances (PFAS) with the Thin-layer Electrolysis Flow Cell for the Ion Transfer. Electrochemistry 2023, 91 (8) , 087004-087004. https://doi.org/10.5796/electrochemistry.23-00066
    21. Mahmoud A. Soliman, Amr M. Mahmoud, Eman S. Elzanfaly, Laila E. Abdel Fattah. Electrochemical sensor based on bio-inspired molecularly imprinted polymer for sofosbuvir detection. RSC Advances 2023, 13 (36) , 25129-25139. https://doi.org/10.1039/D3RA03870J
    22. Yingmei Wei, Hongjie Liu, Shaopeng Wang, Kefu Yu, Liwei Wang. A portable molecularly imprinted polymer-modified microchip sensor for the rapid detection of perfluorooctanoic acid. The Analyst 2023, 148 (16) , 3851-3859. https://doi.org/10.1039/D3AN00653K
    23. Giulia Moro, Rui Campos, Elise Daems, Ligia Maria Moretto, Karolien De Wael. Haem-mediated albumin biosensing: Towards voltammetric detection of PFOA. Bioelectrochemistry 2023, 152 , 108428. https://doi.org/10.1016/j.bioelechem.2023.108428
    24. Hum Bahadur Lamichhane, Damien W.M. Arrigan. Electroanalytical chemistry of per- and polyfluoroalkyl substances. Current Opinion in Electrochemistry 2023, 40 , 101309. https://doi.org/10.1016/j.coelec.2023.101309
    25. Hum Bahadur Lamichhane, Damien W. M. Arrigan. Ion-transfer electroanalytical detection of perfluorooctanoic acid at a liquid–liquid micro-interface array. Sensors & Diagnostics 2023, 2 (4) , 938-947. https://doi.org/10.1039/D3SD00080J
    26. Yunxiang Shen, Ling Wang, Yi Ding, Shunman Liu, Yuan Li, Zhen Zhou, Yong Liang. Trends in the Analysis and Exploration of per- and Polyfluoroalkyl Substances (PFAS) in Environmental Matrices: A Review. Critical Reviews in Analytical Chemistry 2023, , 1-25. https://doi.org/10.1080/10408347.2023.2231535
    27. Ruchiranga Ranaweera, Shizhong An, Yue Cao, Long Luo. Highly efficient preconcentration using anodically generated shrinking gas bubbles for per- and polyfluoroalkyl substances (PFAS) detection. Analytical and Bioanalytical Chemistry 2023, 415 (18) , 4153-4162. https://doi.org/10.1007/s00216-022-04175-4
    28. Aicha Tasfaout, Farah Ibrahim, Aoife Morrin, Hugues Brisset, Ilaria Sorrentino, Clément Nanteuil, Guillaume Laffite, Ian A. Nicholls, Fiona Regan, Catherine Branger. Molecularly imprinted polymers for per- and polyfluoroalkyl substances enrichment and detection. Talanta 2023, 258 , 124434. https://doi.org/10.1016/j.talanta.2023.124434
    29. Yanmei Gao, Wanglei Gou, Wanpen Zeng, Wen Chen, Jinlong Jiang, Jie Lu. Determination of Perfluorooctanesulfonic acid in water by polydopamine molecularly imprinted /Gold nanoparticles sensor. Microchemical Journal 2023, 187 , 108378. https://doi.org/10.1016/j.microc.2022.108378
    30. Abd Ur Rehman, Michelle Crimi, Silvana Andreescu. Current and emerging analytical techniques for the determination of PFAS in environmental samples. Trends in Environmental Analytical Chemistry 2023, 37 , e00198. https://doi.org/10.1016/j.teac.2023.e00198
    31. Fatemeh Ahmadi Tabar, Joseph W. Lowdon, Manlio Caldara, Thomas J. Cleij, Patrick Wagner, Hanne Diliën, Kasper Eersels, Bart van Grinsven. Thermal determination of perfluoroalkyl substances in environmental samples employing a molecularly imprinted polyacrylamide as a receptor layer. Environmental Technology & Innovation 2023, 29 , 103021. https://doi.org/10.1016/j.eti.2023.103021
    32. Tan Mao, Xiaoting Shi, Liyuan Lin, Youliang Cheng, Xueke Luo, Changqing Fang. Research Progress on Up-Conversion Fluorescence Probe for Detection of Perfluorooctanoic Acid in Water Treatment. Polymers 2023, 15 (3) , 605. https://doi.org/10.3390/polym15030605
    33. Pratahdeep Gogoi, Yu Yao, Yuguang C. Li. Understanding PFOS Adsorption on a Pt Electrode for Electrochemical Sensing Applications. ChemElectroChem 2023, 10 (2) https://doi.org/10.1002/celc.202201006
    34. Benedikt Keitel, Alex D. Batista, Boris Mizaikoff, Beatriz Fresco-Cala. Molecularly Imprinted Polymer Sensors for Environmental Analysis. 2023, 851-867. https://doi.org/10.1016/B978-0-12-822548-6.00158-8
    35. Eric J. Choi, Nicholas P. Drago, Nicholas J. Humphrey, Justin Van Houten, Jaewan Ahn, Jiyoung Lee, Il-Doo Kim, Alana F. Ogata, Reginald M. Penner. Electrodeposition-enabled, electrically-transduced sensors and biosensors. Materials Today 2023, 62 , 129-150. https://doi.org/10.1016/j.mattod.2022.11.021
    36. Robert G. Hjort, Cicero C. Pola, Raquel R.A. Soares, Daniela A. Oliveira, Loreen Stromberg, Jonathan C. Claussen, Carmen L. Gomes. Advances in Biosensors for Detection of Foodborne Microorganisms, Toxins, and Chemical Contaminants. 2023https://doi.org/10.1016/B978-0-12-822521-9.00187-8
    37. Soumya Rajpal, Sanjay Singh, Prashant Mishra, Snehasis Bhakta. Role of monomer compositions for molecularly imprinted polymers (MIPs). 2023, 81-99. https://doi.org/10.1016/B978-0-323-91925-8.00002-8
    38. Soumya Rajpal, Prashant Mishra, Snehasis Bhakta. MIP-based commercial materials. 2023, 391-415. https://doi.org/10.1016/B978-0-323-91925-8.00003-X
    39. Meenakshi Singh. Commercialization prospects for MIPs: A summary. 2023, 417-431. https://doi.org/10.1016/B978-0-323-91925-8.00007-7
    40. Meenakshi Singh, Ritu Singh. An introduction to molecularly imprinted polymers. 2023, 1-48. https://doi.org/10.1016/B978-0-323-91925-8.00012-0
    41. Davide Campagnol, Najmeh Karimian, Dino Paladin, Flavio Rizzolio, Paolo Ugo. Molecularly imprinted electrochemical sensor for the ultrasensitive detection of cytochrome c. Bioelectrochemistry 2022, 148 , 108269. https://doi.org/10.1016/j.bioelechem.2022.108269
    42. Mohamed H. Hassan, Reem Khan, Silvana Andreescu. Advances in electrochemical detection methods for measuring contaminants of emerging concerns. Electrochemical Science Advances 2022, 2 (6) https://doi.org/10.1002/elsa.202100184
    43. Reem Khan, Daniel Andreescu, Mohamed H. Hassan, Jingyun Ye, Silvana Andreescu. Nanoelectrochemistry Reveals Selective Interactions of Perfluoroalkyl Substances (PFASs) with Silver Nanoparticles. Angewandte Chemie International Edition 2022, 61 (42) https://doi.org/10.1002/anie.202209164
    44. Reem Khan, Daniel Andreescu, Mohamed H. Hassan, Jingyun Ye, Silvana Andreescu. Nanoelectrochemistry Reveals Selective Interactions of Perfluoroalkyl Substances (PFASs) with Silver Nanoparticles. Angewandte Chemie 2022, 134 (42) https://doi.org/10.1002/ange.202209164
    45. Sunantha Ganesan, Chamorn Chawengkijwanich, Mohan Gopalakrishnan, Dao Janjaroen. Detection methods for sub-nanogram level of emerging pollutants – Per and polyfluoroalkyl substances. Food and Chemical Toxicology 2022, 168 , 113377. https://doi.org/10.1016/j.fct.2022.113377
    46. Zhiming Gou, Aijing Wang, Xiaomei Zhang, Yujing Zuo, Weiying Lin. Multi-head cationic siloxane based “turn on” fluorescent system for selective detection of perfluorooctanoic sulfonate (PFOS). Sensors and Actuators B: Chemical 2022, 367 , 132017. https://doi.org/10.1016/j.snb.2022.132017
    47. Matthew W. Glasscott, Jeffrey E. Dick. Progress in the Detection and Quantification of Per- and Polyfluoroalkyl Substances (PFASs) in Surface Water. 2022, 516-537. https://doi.org/10.1039/9781839167591-00516
    48. Teklit Gebregiorgis Ambaye, Mentore Vaccari, Shiv Prasad, Sami Rtimi. Recent progress and challenges on the removal of per- and poly-fluoroalkyl substances (PFAS) from contaminated soil and water. Environmental Science and Pollution Research 2022, 29 (39) , 58405-58428. https://doi.org/10.1007/s11356-022-21513-2
    49. Xinning Dong, Congcong Zhang, Xin Du, Zhenguo Zhang. Recent Advances of Nanomaterials-Based Molecularly Imprinted Electrochemical Sensors. Nanomaterials 2022, 12 (11) , 1913. https://doi.org/10.3390/nano12111913
    50. Rafael G. Araújo, Jesús A. Rodríguez-Hernandéz, Reyna Berenice González-González, Rodrigo Macias-Garbett, Manuel Martínez-Ruiz, Humberto Reyes-Pardo, Saúl Antonio Hernández Martínez, Lizeth Parra-Arroyo, Elda M. Melchor-Martínez, Juan Eduardo Sosa-Hernández, Karina G. Coronado-Apodaca, Sunita Varjani, Damià Barceló, Hafiz M. N. Iqbal, Roberto Parra-Saldívar. Detection and Tertiary Treatment Technologies of Poly-and Perfluoroalkyl Substances in Wastewater Treatment Plants. Frontiers in Environmental Science 2022, 10 https://doi.org/10.3389/fenvs.2022.864894
    51. Shafali Garg, Pankaj Kumar, George W. Greene, Vandana Mishra, Dror Avisar, Radhey Shyam Sharma, Ludovic F. Dumée. Nano-enabled sensing of per-/poly-fluoroalkyl substances (PFAS) from aqueous systems – A review. Journal of Environmental Management 2022, 308 , 114655. https://doi.org/10.1016/j.jenvman.2022.114655
    52. Dingnan Lu, David Z. Zhu, Huihui Gan, Zhiyuan Yao, Jiayue Luo, Shiran Yu, Pradeep Kurup. An ultra-sensitive molecularly imprinted polymer (MIP) and gold nanostars (AuNS) modified voltammetric sensor for facile detection of perfluorooctance sulfonate (PFOS) in drinking water. Sensors and Actuators B: Chemical 2022, 352 , 131055. https://doi.org/10.1016/j.snb.2021.131055
    53. Madison M. Mann, James D. Tang, Bryan W. Berger. Engineering human liver fatty acid binding protein for detection of poly‐ and perfluoroalkyl substances. Biotechnology and Bioengineering 2022, 119 (2) , 513-522. https://doi.org/10.1002/bit.27981
    54. Sweta Modak, Hadi Mokarizadeh, Elika Karbassiyazdi, Ahmad Hosseinzadeh, Milad Rabbabni Esfahani. The AI-assisted removal and sensor-based detection of contaminants in the aquatic environment. 2022, 211-244. https://doi.org/10.1016/B978-0-323-90508-4.00005-8
    55. Junyoung Park, Kyung-Ae Yang, Yongju Choi, Jong Kwon Choe. Novel ssDNA aptamer-based fluorescence sensor for perfluorooctanoic acid detection in water. Environment International 2022, 158 , 107000. https://doi.org/10.1016/j.envint.2021.107000
    56. Rebecca B. Clark, Jeffrey E. Dick. Towards deployable electrochemical sensors for per- and polyfluoroalkyl substances (PFAS). Chemical Communications 2021, 57 (66) , 8121-8130. https://doi.org/10.1039/D1CC02641K
    57. Sapana Jadoun, Ufana Riaz, Jorge Yáñez, Narendra Pal Singh Chauhan. Synthesis, characterization and potential applications of Poly(o-phenylenediamine) based copolymers and Nanocomposites: A comprehensive review. European Polymer Journal 2021, 156 , 110600. https://doi.org/10.1016/j.eurpolymj.2021.110600
    58. Ruth F. Menger, Emily Funk, Charles S. Henry, Thomas Borch. Sensors for detecting per- and polyfluoroalkyl substances (PFAS): A critical review of development challenges, current sensors, and commercialization obstacles. Chemical Engineering Journal 2021, 417 , 129133. https://doi.org/10.1016/j.cej.2021.129133
    59. Heejeong Ryu, Baikun Li, Sylvain De Guise, Jeffrey McCutcheon, Yu Lei. Recent progress in the detection of emerging contaminants PFASs. Journal of Hazardous Materials 2021, 408 , 124437. https://doi.org/10.1016/j.jhazmat.2020.124437
    60. Elise Daems, Giulia Moro, Herald Berghmans, Ligia M. Moretto, Silvia Dewilde, Alessandro Angelini, Frank Sobott, Karolien De Wael. Native mass spectrometry for the design and selection of protein bioreceptors for perfluorinated compounds. The Analyst 2021, 146 (6) , 2065-2073. https://doi.org/10.1039/D0AN02005B
    61. Ganesan Sunantha, Namasivayam Vasudevan. A method for detecting perfluorooctanoic acid and perfluorooctane sulfonate in water samples using genetically engineered bacterial biosensor. Science of The Total Environment 2021, 759 , 143544. https://doi.org/10.1016/j.scitotenv.2020.143544
    62. Rosa A. S. Couto, Constantino Coelho, Bassim Mounssef, Sara F. de A. Morais, Camila D. Lima, Wallans T. P. dos Santos, Félix Carvalho, Cecília M. P. Rodrigues, Ataualpa A. C. Braga, Luís Moreira Gonçalves, M. Beatriz Quinaz. 3,4-Methylenedioxypyrovalerone (MDPV) Sensing Based on Electropolymerized Molecularly Imprinted Polymers on Silver Nanoparticles and Carboxylated Multi-Walled Carbon Nanotubes. Nanomaterials 2021, 11 (2) , 353. https://doi.org/10.3390/nano11020353
    63. Joseph W. Lowdon, Hanne Diliën, Pankaj Singla, Marloes Peeters, Thomas J. Cleij, Bart van Grinsven, Kasper Eersels. MIPs for commercial application in low-cost sensors and assays – An overview of the current status quo. Sensors and Actuators B: Chemical 2020, 325 , 128973. https://doi.org/10.1016/j.snb.2020.128973
    64. Ke Gao, Yu Chen, Qiao Xue, Jie Fu, Kehan Fu, Jianjie Fu, Aiqian Zhang, Zongwei Cai, Guibin Jiang. Trends and perspectives in per-and polyfluorinated alkyl substances (PFASs) determination: Faster and broader. TrAC Trends in Analytical Chemistry 2020, 133 , 116114. https://doi.org/10.1016/j.trac.2020.116114
    65. Yingmin Liao, Xin Ouyang, Min Lu, Jinghe Peng, Xiaojia Huang. Approach based on multiple monolithic fiber solid-phase microextraction coupled to liquid chromatography-tandem mass spectrometry for sensitive determination of perfluoroalkyl acids in fish and seafood. Microchemical Journal 2020, 158 , 105189. https://doi.org/10.1016/j.microc.2020.105189
    66. Nicole Jaffrezic-Renault, Jing Kou, Duo Tan, Zhenzhong Guo. New trends in the electrochemical detection of endocrine disruptors in complex media. Analytical and Bioanalytical Chemistry 2020, 412 (24) , 5913-5923. https://doi.org/10.1007/s00216-020-02516-9
    67. Jincan He, Yuyuan Su, Zijun Sun, Runkun Zhang, Fuhai Wu, Yan Bai. A chitosan-mediated “turn-on” strategy for rapid fluorometric detection of perfluorooctane sulfonate. Microchemical Journal 2020, 157 , 105030. https://doi.org/10.1016/j.microc.2020.105030
    68. Jincan He, Peipei Qiu, Jiayi Song, Shiyun Zhang, Yan Bai. A resonance Rayleigh scattering and colorimetric dual-channel sensor for sensitive detection of perfluorooctane sulfonate based on toluidine blue. Analytical and Bioanalytical Chemistry 2020, 412 (22) , 5329-5339. https://doi.org/10.1007/s00216-020-02748-9
    69. Benjamín N. Viada, Lidia M. Yudi, Damien W. M. Arrigan. Detection of perfluorooctane sulfonate by ion-transfer stripping voltammetry at an array of microinterfaces between two immiscible electrolyte solutions. The Analyst 2020, 145 (17) , 5776-5786. https://doi.org/10.1039/D0AN00884B
    70. Yufei Guo, Li Wang, Lijuan Xu, Canwei Peng, Yonghai Song. A ascorbic acid-imprinted poly(o-phenylenediamine)/zeolite imidazole frameworks-67/carbon cloth for electrochemical sensing ascorbic acid. Journal of Materials Science 2020, 55 (22) , 9425-9435. https://doi.org/10.1007/s10853-020-04687-3
    71. Kelsey L. Rodriguez, Jae-Hoon Hwang, Amirsalar R. Esfahani, A H M Anwar Sadmani, Woo Hyoung Lee. Recent Developments of PFAS-Detecting Sensors and Future Direction: A Review. Micromachines 2020, 11 (7) , 667. https://doi.org/10.3390/mi11070667
    72. Burcin Bozal-Palabiyik, Cem Erkmen, Bengi Uslu. Molecularly Imprinted Electrochemical Sensors: Analytical and Pharmaceutical Applications Based on Ortho-Phenylenediamine Polymerization. Current Pharmaceutical Analysis 2020, 16 (4) , 350-366. https://doi.org/10.2174/1573412915666190304150159
    73. Giulia Moro, Fabio Bottari, Nick Sleegers, Anca Florea, Todd Cowen, Ligia Maria Moretto, Sergey Piletsky, Karolien De Wael. Conductive imprinted polymers for the direct electrochemical detection of β-lactam antibiotics: The case of cefquinome. Sensors and Actuators B: Chemical 2019, 297 , 126786. https://doi.org/10.1016/j.snb.2019.126786
    74. Giulia Moro, Davide Cristofori, Fabio Bottari, Elti Cattaruzza, Karolien De Wael, Ligia Maria Moretto. Redesigning an Electrochemical MIP Sensor for PFOS: Practicalities and Pitfalls. Sensors 2019, 19 (20) , 4433. https://doi.org/10.3390/s19204433
    75. Yunrui Cao, Tingyu Feng, Jie Xu, Changhu Xue. Recent advances of molecularly imprinted polymer-based sensors in the detection of food safety hazard factors. Biosensors and Bioelectronics 2019, 141 , 111447. https://doi.org/10.1016/j.bios.2019.111447
    76. Giulia Moro, Karolien De Wael, Ligia Maria Moretto. Challenges in the electrochemical (bio)sensing of nonelectroactive food and environmental contaminants. Current Opinion in Electrochemistry 2019, 16 , 57-65. https://doi.org/10.1016/j.coelec.2019.04.019
    77. Rosa A.S. Couto, Séfora S. Costa, Bassim Mounssef, João G. Pacheco, Eduarda Fernandes, Félix Carvalho, Cecília M.P. Rodrigues, Cristina Delerue-Matos, Ataualpa A.C. Braga, Luís Moreira Gonçalves, M. Beatriz Quinaz. Electrochemical sensing of ecstasy with electropolymerized molecularly imprinted poly(o-phenylenediamine) polymer on the surface of disposable screen-printed carbon electrodes. Sensors and Actuators B: Chemical 2019, 290 , 378-386. https://doi.org/10.1016/j.snb.2019.03.138
    78. Zhenping Liu, Mingliang Jin, Han Lu, Jiyuan Yao, Xin Wang, Guofu Zhou, Lingling Shui. Molecularly imprinted polymer decorated 3D-framework of functionalized multi-walled carbon nanotubes for ultrasensitive electrochemical sensing of Norfloxacin in pharmaceutical formulations and rat plasma. Sensors and Actuators B: Chemical 2019, 288 , 363-372. https://doi.org/10.1016/j.snb.2019.02.097
    79. Yubo Wei, Qiang Zeng, Min Wang, Jianzhi Huang, Xinrong Guo, Lishi Wang. Near-infrared light-responsive electrochemical protein imprinting biosensor based on a shape memory conducting hydrogel. Biosensors and Bioelectronics 2019, 131 , 156-162. https://doi.org/10.1016/j.bios.2019.02.015
    80. Maísa Azevedo Beluomini, Najmeh Karimian, Nelson Ramos Stradiotto, Paolo Ugo. Tailor-made 3D-nanoelectrode ensembles modified with molecularly imprinted poly(o-phenylenediamine) for the sensitive detection of L-arabitol. Sensors and Actuators B: Chemical 2019, 284 , 250-257. https://doi.org/10.1016/j.snb.2018.12.091

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect