ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

An Optimized Sensor Array Identifies All Natural Amino Acids

  • Benhua Wang
    Benhua Wang
    Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
    More by Benhua Wang
  • Jinsong Han
    Jinsong Han
    Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
    More by Jinsong Han
  • N. Maximilian Bojanowski
    N. Maximilian Bojanowski
    Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
  • Markus Bender
    Markus Bender
    Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
  • Chao Ma
    Chao Ma
    Department of Polymer Chemistry and Bioengineering, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
    More by Chao Ma
  • Kai Seehafer
    Kai Seehafer
    Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
    More by Kai Seehafer
  • Andreas Herrmann
    Andreas Herrmann
    Department of Polymer Chemistry and Bioengineering, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
    DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstr. 50, 52056 Aachen, Germany
    Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
  • , and 
  • Uwe H. F. Bunz*
    Uwe H. F. Bunz
    Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
    CAM, Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
    *E-mail: [email protected]
Cite this: ACS Sens. 2018, 3, 8, 1562–1568
Publication Date (Web):June 13, 2018
https://doi.org/10.1021/acssensors.8b00371
Copyright © 2018 American Chemical Society

    Article Views

    5262

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (4 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Wet-chemical discrimination of amino acids is still a challenge due to their structural similarity. Here, an optimized self-assembled eight-member sensor array is reported. The optimized sensor array stems from the combination of elements of different tongues, containing poly(para-phenyleneethynylene)s (PPE) and a supercharged green fluorescent protein (GFP) variant. The responsivity of the sensor dyes (PPEs and GFP) is enhanced in elements that contain adjuvants, such as metal salts but also cucurbit[7]uril (CB[7]) and acridine orange; a suitable and robust eight element array discriminates all of the 20 natural amino acids in water at 25 mM concentration with 100% accuracy. The results group well to the amino acid type, i.e., hydrophobic, polar, and aromatic ones.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acssensors.8b00371.

    • General information, synthetic details and analytical data for P1P7, detailed method for obtaining the fluorescence response pattern, experimental setup, additional screening, and linear discriminant analysis data (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 49 publications.

    1. Changming Hu, Thomas Jochmann, Papri Chakraborty, Marco Neumaier, Pavel A. Levkin, Manfred M. Kappes, Frank Biedermann. Further Dimensions for Sensing in Biofluids: Distinguishing Bioorganic Analytes by the Salt-Induced Adaptation of a Cucurbit[7]uril-Based Chemosensor. Journal of the American Chemical Society 2022, 144 (29) , 13084-13095. https://doi.org/10.1021/jacs.2c01520
    2. Yuyao Jin, Nan Du, Yuanfang Huang, Wanxiang Shen, Ying Tan, Yu Zong Chen, Wei-Tao Dou, Xiao-Peng He, Zijian Yang, Naihan Xu, Chunyan Tan. Fluorescence Analysis of Circulating Exosomes for Breast Cancer Diagnosis Using a Sensor Array and Deep Learning. ACS Sensors 2022, 7 (5) , 1524-1532. https://doi.org/10.1021/acssensors.2c00259
    3. Wanpeng Ma, Bing Yan. Monosystem Discriminative Sensor toward Inorganic Anions via Incorporating Three Different Luminescent Channels in Metal–Organic Frameworks. Analytical Chemistry 2022, 94 (15) , 5866-5874. https://doi.org/10.1021/acs.analchem.2c00019
    4. Qian Zhang, Xiaoyu Wang, Yujie Cong, Yuetong Kang, Zhenglin Wu, Lidong Li. Conjugated Polymer-Functionalized Stretchable Supramolecular Hydrogels to Monitor and Control Cellular Behavior. ACS Applied Materials & Interfaces 2022, 14 (10) , 12674-12683. https://doi.org/10.1021/acsami.2c00460
    5. Joana Krämer, Rui Kang, Laura M. Grimm, Luisa De Cola, Pierre Picchetti, Frank Biedermann. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chemical Reviews 2022, 122 (3) , 3459-3636. https://doi.org/10.1021/acs.chemrev.1c00746
    6. Aaron B. Davis, Michael H. Ihde, Alie M. Busenlehner, Dana L. Davis, Rashid Mia, Jessica Panella, Frank R. Fronczek, Marco Bonizzoni, Karl J. Wallace. Structural Features of a Family of Coumarin–Enamine Fluorescent Chemodosimeters for Ion Pairs. Inorganic Chemistry 2021, 60 (18) , 14238-14252. https://doi.org/10.1021/acs.inorgchem.1c01734
    7. Faezeh Shahdost-Fard, Arafeh Bigdeli, Mohammad Reza Hormozi-Nezhad. A Smartphone-Based Fluorescent Electronic Tongue for Tracing Dopaminergic Agents in Human Urine. ACS Chemical Neuroscience 2021, 12 (17) , 3157-3166. https://doi.org/10.1021/acschemneuro.1c00160
    8. Heng Li, Yingying He, Chuanjie Peng, Guo Wang, Zhengbo Chen. A Dual-Channel Sensor Array: Ultraviolet Absorption and Surface Potential Measurements for Discrimination of Amino Acids Based on Gold Nanorods. ACS Sustainable Chemistry & Engineering 2021, 9 (32) , 10963-10969. https://doi.org/10.1021/acssuschemeng.1c04634
    9. Min Qiao, Junmei Fan, Liping Ding, Yu Fang. Fluorescent Ensemble Sensors and Arrays Based on Surfactant Aggregates Encapsulating Pyrene-Derived Fluorophores for Differentiation Applications. ACS Applied Materials & Interfaces 2021, 13 (16) , 18395-18412. https://doi.org/10.1021/acsami.1c03758
    10. Mengjiao Yi, Lin Ma, Wenrong Zhao, Jie Zhao, Qi Fan, Jingcheng Hao. Amphiphilic Au Nanoclusters Modulated by Magnetic Gemini Surfactants as a Cysteine Chemosensor and an MRI Contrast Agent. Langmuir 2021, 37 (10) , 3130-3138. https://doi.org/10.1021/acs.langmuir.0c03618
    11. Yui Sasaki, Xiaojun Lyu, Riku Kubota, Shin-ya Takizawa, Tsuyoshi Minami. Easy-to-Prepare Mini-Chemosensor Array for Simultaneous Detection of Cysteine and Glutathione Derivatives. ACS Applied Bio Materials 2021, 4 (3) , 2113-2119. https://doi.org/10.1021/acsabm.0c01275
    12. Linda Mitchell, Elizabeth J. New, Clare S. Mahon. Macromolecular Optical Sensor Arrays. ACS Applied Polymer Materials 2021, 3 (2) , 506-530. https://doi.org/10.1021/acsapm.0c01003
    13. Michael H. Ihde, Cara F. Pridmore, Marco Bonizzoni. Pattern-Based Recognition Systems: Overcoming the Problem of Mixtures. Analytical Chemistry 2020, 92 (24) , 16213-16220. https://doi.org/10.1021/acs.analchem.0c04062
    14. Zolaikha Rasouli, Raouf Ghavami. Facile Approach to Fabricate a Chemical Sensor Array Based on Nanocurcumin–Metal Ions Aggregates: Detection and Identification of DNA Nucleobases. ACS Omega 2020, 5 (31) , 19331-19341. https://doi.org/10.1021/acsomega.0c00593
    15. Hadi Parastar, Dmitry Kirsanov. Analytical Figures of Merit for Multisensor Arrays. ACS Sensors 2020, 5 (2) , 580-587. https://doi.org/10.1021/acssensors.9b02531
    16. Somayeh Jafarinejad, Arafeh Bigdeli, Mahmoud Ghazi-Khansari, Pezhman Sasanpour, M. Reza Hormozi-Nezhad. Identification of Catecholamine Neurotransmitters Using a Fluorescent Electronic Tongue. ACS Chemical Neuroscience 2020, 11 (1) , 25-33. https://doi.org/10.1021/acschemneuro.9b00537
    17. Wei Huang, Kai Seehafer, Uwe H. F. Bunz. Discrimination of Flavonoids by a Hypothesis Free Sensor Array. ACS Applied Polymer Materials 2019, 1 (6) , 1301-1307. https://doi.org/10.1021/acsapm.9b00116
    18. Motahareh Alimohammadi, Hoda Sharifi, Javad Tashkhourian, Mojtaba Shamsipur, Bahram Hemmateenejad. A paper-based chemical tongue based on the charge transfer complex of ninhydrin with an array of metal-doped carbon dots discriminates natural amino acids and several of their enantiomers. Lab on a Chip 2023, 23 (17) , 3837-3849. https://doi.org/10.1039/D3LC00424D
    19. Jia-Hong Tian, Yi-Lin Lin, Juan-Juan Li, Rong Ma, Huijuan Yu, Yuefei Wang, Xin-Yue Hu, Dong-Sheng Guo. Supramolecular fluorescence sensing for quality evaluation of traditional Chinese medicine. Arabian Journal of Chemistry 2023, 16 (8) , 104974. https://doi.org/10.1016/j.arabjc.2023.104974
    20. Maohua Yang, Mei Zhang, Mingyan Jia. Optical sensor arrays for the detection and discrimination of natural products. Natural Product Reports 2023, 40 (3) , 628-645. https://doi.org/10.1039/D2NP00065B
    21. Mariah J. Austin, Hattie C. Schunk, Natalie Ling, Adrianne M. Rosales. Peptomer substrates for quantitative pattern-recognition sensing of proteases. Chemical Communications 2023, 59 (12) , 1685-1688. https://doi.org/10.1039/D2CC06587H
    22. Hina Goyal, Ibrahim Annan, Deepali Ahluwalia, Arijit Bag, Rajeev Gupta. Discriminative ‘Turn-on’ Detection of Al3+ and Ga3+ Ions as Well as Aspartic Acid by Two Fluorescent Chemosensors. Sensors 2023, 23 (4) , 1798. https://doi.org/10.3390/s23041798
    23. Yuchen Su, Chunlan Liu, Jiayin Du, Xuemei Jiang, Weili Wei, Xiaoyong Tong. Monitoring of the yogurt fermentation process based on a rapid bio-luminescent chiral pattern recognition of amino acids. The Analyst 2022, 147 (20) , 4570-4577. https://doi.org/10.1039/D2AN01011A
    24. Yingge Fan, Jin Ma, Huijing Liu, Taihong Liu. Water-Soluble Single-Benzene Chromophores: Excited State Dynamics and Fluorescence Detection. Molecules 2022, 27 (17) , 5522. https://doi.org/10.3390/molecules27175522
    25. Davide Cavazzini, Gloria Spagnoli, Filipe Colaco Mariz, Filippo Reggiani, Stefano Maggi, Valentina Franceschi, Gaetano Donofrio, Martin Müller, Angelo Bolchi, Simone Ottonello. Enhanced immunogenicity of a positively supercharged archaeon thioredoxin scaffold as a cell-penetrating antigen carrier for peptide vaccines. Frontiers in Immunology 2022, 13 https://doi.org/10.3389/fimmu.2022.958123
    26. Aco Radujević, Andrej Penavic, Radoslav Z. Pavlović, Jovica D. Badjić, Pavel Anzenbacher. Cross-reactive binding versus selective phosphate sensing in an imine macrocycle sensor. Chem 2022, 8 (8) , 2228-2244. https://doi.org/10.1016/j.chempr.2022.05.010
    27. Yui Sasaki, Xiaojun Lyu, Wei Tang, Hao Wu, Tsuyoshi Minami. Supramolecular optical sensor arrays for on-site analytical devices. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2022, 51 , 100475. https://doi.org/10.1016/j.jphotochemrev.2021.100475
    28. Rong Hu, Xingchun Zhai, Yubin Ding, Guoyue Shi, Min Zhang. Hybrid supraparticles of carbon dots/porphyrin for multifunctional tongue-mimic sensors. Chinese Chemical Letters 2022, 33 (5) , 2715-2720. https://doi.org/10.1016/j.cclet.2021.08.110
    29. Ailin Shykholeslami, Raouf Ghavami, Zolaikha Rasouli. Fully united, easy, and economical sensor array for newborn babies’ amino acids monitoring: Identification of amino acids in healthy and unhealthy with PKU newborn babies. Journal of Pharmaceutical and Biomedical Analysis 2022, 213 , 114683. https://doi.org/10.1016/j.jpba.2022.114683
    30. Nikunjkumar Vagadiya, Mohil Odedara, Aayushi Joshi, Anu Manhas, Nandini Mukherjee. Recent Advances in Fluorescent Chemosensors for Aromatic Amino Acids Detection. 2022, 221-232. https://doi.org/10.1007/978-981-19-2572-6_17
    31. Azam Safarnejad, M. Reza Hormozi-Nezhad, Hamid Abdollahi. Radial basis function-artificial neural network (RBF-ANN) for simultaneous fluorescent determination of cysteine enantiomers in mixtures. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2021, 261 , 120029. https://doi.org/10.1016/j.saa.2021.120029
    32. Li Li, Xuewei Gu, Junli Wang, Zhengbo Chen. Amino Acid Detection with Bare Eyes Based on Two Different Concentrations of Iodides as Sensor Receptors. Food Analytical Methods 2021, 14 (9) , 1927-1935. https://doi.org/10.1007/s12161-021-02023-2
    33. Mariia Pushina, Sepideh Farshbaf, Wakana Mochida, Masashi Kanakubo, Ryuhei Nishiyabu, Yuji Kubo, Pavel Anzenbacher. A Fluorescence Sensor Array Based on Zinc(II)‐Carboxyamidoquinolines: Toward Quantitative Detection of ATP**. Chemistry – A European Journal 2021, 27 (44) , 11344-11351. https://doi.org/10.1002/chem.202100896
    34. Jing Zhang, Rui Huang, Jiajin Zhang, Jun Zhou, Hui Qin, Ping Yang, Changjun Hou, Danqun Huo. A novel colorimetric sensor array for Baijiu discrimination based on gold triangular nanoplates etching. Sensors and Actuators B: Chemical 2021, 337 , 129789. https://doi.org/10.1016/j.snb.2021.129789
    35. Yui Sasaki, Riku Kubota, Tsuyoshi Minami. Molecular self-assembled chemosensors and their arrays. Coordination Chemistry Reviews 2021, 429 , 213607. https://doi.org/10.1016/j.ccr.2020.213607
    36. Hyungi Kim, Sang-Kee Choi, Jungmo Ahn, Hojeong Yu, Kyoungha Min, Changgi Hong, Ik-Soo Shin, Sanghee Lee, Hakho Lee, Hyungsoon Im, JeongGil Ko, Eunha Kim. Kaleidoscopic fluorescent arrays for machine-learning-based point-of-care chemical sensing. Sensors and Actuators B: Chemical 2021, 329 , 129248. https://doi.org/10.1016/j.snb.2020.129248
    37. Chengxiang Chu, Rui Huang, Xianfeng Wang, Yuanyi Deng, Tao Gu, Danqun Huo, Liang Zhang, Daidi Zhong, Changjun Hou. A Turn-on Fluorescent Sensor Based on Copper-Based Metal-Organic Frameworks for Sensitive Detection of L-Histidine. Nano 2021, 16 (02) , 2150015. https://doi.org/10.1142/S1793292021500156
    38. Elizaveta A. Rukosueva, Valeria A. Belikova, Ivan N. Krylov, Vladislav S. Orekhov, Evgenii V. Skorobogatov, Andrei V. Garmash, Mikhail K. Beklemishev. Evaluation of Discrimination Performance in Case for Multiple Non-Discriminated Samples: Classification of Honeys by Fluorescent Fingerprinting. Sensors 2020, 20 (18) , 5351. https://doi.org/10.3390/s20185351
    39. Hao Zhang, Benhua Wang, Kai Seehafer, Uwe H. F. Bunz. Sensor Array Based Determination of Edman Degradated Amino Acids Using Poly( p ‐phenyleneethynylene)s. Chemistry – A European Journal 2020, 26 (35) , 7779-7782. https://doi.org/10.1002/chem.202001262
    40. Mhejabeen Sayed, Dona M. Tom, Haridas Pal. Multimode binding and stimuli responsive displacement of acridine orange dye complexed with p -sulfonatocalix[4/6]arene macrocycles. Physical Chemistry Chemical Physics 2020, 22 (23) , 13306-13319. https://doi.org/10.1039/D0CP00030B
    41. Jing Wang, Huihui Jiang, Hai-Bo Liu, Lebao Liang, Junrong Tao. Pyrene–imidazole conjugate as a fluorescent sensor for the sequential detection of iron(III) and histidine in aqueous solution. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2020, 228 , 117725. https://doi.org/10.1016/j.saa.2019.117725
    42. Tao Yang, Chuying Feng, Peng Zhao, Yusen Wu, Yun Ding, Guiyou Wang, Aiguo Hu. Fluorescent electronic tongue supported with water-borne polyurethane for the discrimination of nitroaromatics in aqueous solution. Journal of Materials Chemistry C 2020, 8 (7) , 2500-2506. https://doi.org/10.1039/C9TC06759K
    43. Yang Gao, Fei Gao, Guolin Zhang, Lijiang Chen, Qiuhua Wu, Xue Liu. Sensor array based on single carbon quantum dot for fluorometric differentiation of all natural amino acids. Microchimica Acta 2019, 186 (12) https://doi.org/10.1007/s00604-019-3864-0
    44. Andreas Hennig, Werner. M. Nau. Cucurbituril-based Sensors and Assays. 2019, 121-149. https://doi.org/10.1039/9781788015967-00121
    45. Qian Cheng, Hang Yin, Ian W. Wyman, Ruibing Wang. Supramolecular Interactions of Cucurbit[ n ]uril Homologues and Derivatives with Biomolecules and Drugs. 2019, 193-216. https://doi.org/10.1039/9781788015950-00193
    46. Udayadasan Sathiskumar, Shanmugam Easwaramoorthi. Red‐Emitting Ratiometric Fluorescence Chemodosimeter for the Discriminative Detection of Aromatic and Aliphatic Amines. ChemistrySelect 2019, 4 (25) , 7486-7494. https://doi.org/10.1002/slct.201901254
    47. Chen Song, Zhen Zhao, Youhui Lin, Yang Zhao, Xiang-yang Liu, Changxu Lin, Chenxu Wu. A nanoneedle-based reactional wettability variation sensor array for on-site detection of metal ions with a smartphone. Journal of Colloid and Interface Science 2019, 547 , 330-338. https://doi.org/10.1016/j.jcis.2019.04.015
    48. Wooseok Ko, Hyun Soo Lee. Development of specific l -methionine sensors by FRET-based protein engineering. RSC Advances 2019, 9 (27) , 15648-15656. https://doi.org/10.1039/C9RA01317B
    49. Frescilia Octa‐Smolin, Jochen Niemeyer. Stereoselective Sensing of l ‐ and d ‐Amino Acids: Development of a Fluorescence‐Array Based on Readily Available Chiral Phosphoric Acids. Chemistry – A European Journal 2018, 24 (62) , 16506-16510. https://doi.org/10.1002/chem.201805003

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect