A Mirror Image Fluorogenic Aptamer Sensor for Live-Cell Imaging of MicroRNAs
- Wenrui ZhongWenrui ZhongDepartment of Chemistry, Texas A&M University, College Station, Texas 77842, United StatesMore by Wenrui Zhong
- and
- Jonathan T. Sczepanski*Jonathan T. Sczepanski*E-mail: [email protected]Department of Chemistry, Texas A&M University, College Station, Texas 77842, United StatesMore by Jonathan T. Sczepanski
Abstract

Development of biocompatible tools for intracellular imaging of RNA expression remains a central challenge. Herein, we report the use of heterochiral strand-displacement to sequence-specifically interface endogenous d-miRNAs with an l-RNA version of the fluorogenic aptamer Mango III, thereby generating a novel class of biocompatible miRNA sensors. Fluorescence activation of the sensor is achieved through the displacement of an achiral blocking strand from the l-Mango aptamer by the d-RNA target. In contrast to d-Mango, we show that the l-Mango sensor retains full functionality in serum, enabling a light-up fluorescence response to the target. Importantly, we employ a self-delivering version of the l-Mango sensor to image the expression of microRNA-155 in living cells, representing the first time l-oligonucleotides have been interfaced with a living system. Overall, this work provides a new paradigm for the development of biocompatible hybridization-based sensors for live-cell imaging of RNAs and greatly expands the utility of fluorogenic aptamers for cellular applications.
Cited By
This article is cited by 29 publications.
- Miguel López-Tena, Si-Kai Chen, Nicolas Winssinger. Supernatural: Artificial Nucleobases and Backbones to Program Hybridization-Based Assemblies and Circuits. Bioconjugate Chemistry 2023, 34 (1) , 111-123. https://doi.org/10.1021/acs.bioconjchem.2c00292
- Cole Emanuelson, Anirban Bardhan, Alexander Deiters. DNA Computing: NOT Logic Gates See the Light. ACS Synthetic Biology 2021, 10 (7) , 1682-1689. https://doi.org/10.1021/acssynbio.1c00062
- Wenrui Zhong, Jonathan T. Sczepanski. Direct Comparison of d-DNA and l-DNA Strand-Displacement Reactions in Living Mammalian Cells. ACS Synthetic Biology 2021, 10 (1) , 209-212. https://doi.org/10.1021/acssynbio.0c00527
- Tracy L. Mallette, Milan N. Stojanovic, Darko Stefanovic, Matthew R. Lakin. Robust Heterochiral Strand Displacement Using Leakless Translators. ACS Synthetic Biology 2020, 9 (7) , 1907-1910. https://doi.org/10.1021/acssynbio.0c00131
- Brian E. Young, Jonathan T. Sczepanski. Heterochiral DNA Strand-Displacement Based on Chimeric d/l-Oligonucleotides. ACS Synthetic Biology 2019, 8 (12) , 2756-2759. https://doi.org/10.1021/acssynbio.9b00335
- Qi Wang, Feng Xiao, Xiang Zhou. Recent advances in fluorescence imaging methods for endogenous RNA in living cells. SCIENTIA SINICA Chimica 2023, 53 (3) , 349-358. https://doi.org/10.1360/SSC-2022-0214
- Oksana S Bychenko, Alexei A Khrulev, Julia I Svetlova, Vladimir B Tsvetkov, Polina N Kamzeeva, Yulia V Skvortsova, Boris S Tupertsev, Igor A Ivanov, Leonid V Aseev, Yuriy M Khodarovich, Evgeny S Belyaev, Liubov I Kozlovskaya, Timofei S Zatsepin, Tatyana L Azhikina, Anna M Varizhuk, Andrey V Aralov. Red light-emitting short Mango-based system enables tracking a mycobacterial small noncoding RNA in infected macrophages. Nucleic Acids Research 2023, 38 https://doi.org/10.1093/nar/gkad100
- Chen-Hsu Yu, Jonathan T. Sczepanski. The influence of chirality on the behavior of oligonucleotides inside cells: revealing the potent cytotoxicity of G-rich l -RNA. Chemical Science 2023, 14 (5) , 1145-1154. https://doi.org/10.1039/D2SC05511B
- Gerald Zon. Recent advances in aptamer applications for analytical biochemistry. Analytical Biochemistry 2022, 644 , 113894. https://doi.org/10.1016/j.ab.2020.113894
- Yeyu Wang, Qiqi Yang, Zhuangqiang Gao, Haifeng Dong. Recent advance of RNA aptamers and DNAzymes for MicroRNA detection. Biosensors and Bioelectronics 2022, 431 , 114423. https://doi.org/10.1016/j.bios.2022.114423
- Adam M. Kabza, Nandini Kundu, Wenrui Zhong, Jonathan T. Sczepanski. Integration of chemically modified nucleotides with DNA strand displacement reactions for applications in living systems. WIREs Nanomedicine and Nanobiotechnology 2022, 14 (2) https://doi.org/10.1002/wnan.1743
- Md. Mahbubur Rahman, Nasrin Siraj Lopa, Jae‐Joon Lee. Advances in electrochemical aptasensing for cardiac biomarkers. Bulletin of the Korean Chemical Society 2022, 43 (1) , 51-68. https://doi.org/10.1002/bkcs.12434
- Chen-Hsu Yu, Adam M. Kabza, Jonathan T. Sczepanski. Assembly of long l -RNA by native RNA ligation. Chemical Communications 2021, 57 (81) , 10508-10511. https://doi.org/10.1039/D1CC04296C
- Danyang Ji, Kaixin Lyu, Haizhou Zhao, Chun Kit Kwok. Circular L-RNA aptamer promotes target recognition and controls gene activity. Nucleic Acids Research 2021, 49 (13) , 7280-7291. https://doi.org/10.1093/nar/gkab593
- Nandini Kundu, Brian E Young, Jonathan T Sczepanski. Kinetics of heterochiral strand displacement from PNA–DNA heteroduplexes. Nucleic Acids Research 2021, 3 https://doi.org/10.1093/nar/gkab499
- Zike Huang, Liping Qiu, Tao Zhang, Weihong Tan. Integrating DNA Nanotechnology with Aptamers for Biological and Biomedical Applications. Matter 2021, 4 (2) , 461-489. https://doi.org/10.1016/j.matt.2020.11.002
- Erika Schaudy, Mark M. Somoza, Jory Lietard. l ‐DNA Duplex Formation as a Bioorthogonal Information Channel in Nucleic Acid‐Based Surface Patterning. Chemistry – A European Journal 2020, 26 (63) , 14310-14314. https://doi.org/10.1002/chem.202001871
- Alessandro Bertucci, Alessandro Porchetta, Erica Del Grosso, Tania Patiño, Andrea Idili, Francesco Ricci. Protein‐Controlled Actuation of Dynamic Nucleic Acid Networks by Using Synthetic DNA Translators**. Angewandte Chemie 2020, 132 (46) , 20758-20762. https://doi.org/10.1002/ange.202008553
- Alessandro Bertucci, Alessandro Porchetta, Erica Del Grosso, Tania Patiño, Andrea Idili, Francesco Ricci. Protein‐Controlled Actuation of Dynamic Nucleic Acid Networks by Using Synthetic DNA Translators**. Angewandte Chemie International Edition 2020, 59 (46) , 20577-20581. https://doi.org/10.1002/anie.202008553
- Mubarak I Umar, Chun Kit Kwok. Specific suppression of D-RNA G-quadruplex–protein interaction with an L-RNA aptamer. Nucleic Acids Research 2020, 48 (18) , 10125-10141. https://doi.org/10.1093/nar/gkaa759
- Arnaud Gautier, Alison G. Tebo. Sensing cellular biochemistry with fluorescent chemical–genetic hybrids. Current Opinion in Chemical Biology 2020, 57 , 58-64. https://doi.org/10.1016/j.cbpa.2020.04.005
- Fanny Broch, Arnaud Gautier. Illuminating Cellular Biochemistry: Fluorogenic Chemogenetic Biosensors for Biological Imaging. ChemPlusChem 2020, 85 (7) , 1487-1497. https://doi.org/10.1002/cplu.202000413
- Adam M. Kabza, Jonathan T. Sczepanski. l-DNA-Based Catalytic Hairpin Assembly Circuit. Molecules 2020, 25 (4) , 947. https://doi.org/10.3390/molecules25040947
- Shanni Hong, Xiaoting Zhang, Ryan J. Lake, Gregory T. Pawel, Zijian Guo, Renjun Pei, Yi Lu. A photo-regulated aptamer sensor for spatiotemporally controlled monitoring of ATP in the mitochondria of living cells. Chemical Science 2020, 11 (3) , 713-720. https://doi.org/10.1039/C9SC04773E
- Michael Ryckelynck. Development and Applications of Fluorogen/Light-Up RNA Aptamer Pairs for RNA Detection and More. 2020, 73-102. https://doi.org/10.1007/978-1-0716-0712-1_5
- Baozhang Guan, Xingwang Zhang. <p>Aptamers as Versatile Ligands for Biomedical and Pharmaceutical Applications</p>. International Journal of Nanomedicine 2020, Volume 15 , 1059-1071. https://doi.org/10.2147/IJN.S237544
- Tiphaine Péresse, Arnaud Gautier. Next-Generation Fluorogen-Based Reporters and Biosensors for Advanced Bioimaging. International Journal of Molecular Sciences 2019, 20 (24) , 6142. https://doi.org/10.3390/ijms20246142
- Mohammed Dwidar, Yohei Yokobayashi. Development of a histamine aptasensor for food safety monitoring. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-52876-1
- , Adam M. Kabza, Brian E. Young, Nandini Kundu, Jonathan T. Sczepanski. Heterochiral nucleic acid circuits. Emerging Topics in Life Sciences 2019, 3 (5) , 501-506. https://doi.org/10.1042/ETLS20190102