ACS Publications. Most Trusted. Most Cited. Most Read
Conductance Model for Single-Crystalline/Compact Metal Oxide Gas-Sensing Layers in the Nondegenerate Limit: Example of Epitaxial SnO2(101)
My Activity
    Article

    Conductance Model for Single-Crystalline/Compact Metal Oxide Gas-Sensing Layers in the Nondegenerate Limit: Example of Epitaxial SnO2(101)
    Click to copy article linkArticle link copied!

    • Cristian Eugen Simion
      Cristian Eugen Simion
      National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
    • Federico Schipani
      Federico Schipani
      Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
    • Alexandra Papadogianni
      Alexandra Papadogianni
      Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., Hausvogteiplatz 5−7, 10117 Berlin, Germany
    • Adelina Stanoiu
      Adelina Stanoiu
      National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
    • Melanie Budde
      Melanie Budde
      Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., Hausvogteiplatz 5−7, 10117 Berlin, Germany
    • Alexandru Oprea
      Alexandru Oprea
      Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
    • Udo Weimar
      Udo Weimar
      Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
      More by Udo Weimar
    • Oliver Bierwagen
      Oliver Bierwagen
      Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., Hausvogteiplatz 5−7, 10117 Berlin, Germany
    • Nicolae Barsan*
      Nicolae Barsan
      Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
      *E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    ACS Sensors

    Cite this: ACS Sens. 2019, 4, 9, 2420–2428
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acssensors.9b01018
    Published August 15, 2019
    Copyright © 2019 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Semiconducting metal oxide (SMOX)-based gas sensors are indispensable for safety and health applications, for example, explosive, toxic gas alarms, controls for intake into car cabins, and monitor for industrial processes. In the past, the sensor community has been studying polycrystalline materials as sensors where the porous and random microstructure of the SMOX does not allow a separation of the phenomena involved in the sensing process. This led to conduction models that can model and predict the behavior of the overall response, but they were not capable of giving fundamental information regarding the basic mechanisms taking place. The study of epitaxial layers is a definite improvement, allowing clarifying the different aspects and contributions of the sensing mechanisms. A detailed analytical model of the transduction function for n- and p-type single-crystalline/compact metal oxide gas sensors was developed that directly relates the conductance of the sample with changes in the surface electrostatic potential. Combined dc resistance and work function measurements were used in a compact SnO2(101) layer in operando conditions that allowed us to check the validity of our model in the region where Boltzmann approximation holds to determine the surface and bulk properties of the material.

    Copyright © 2019 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acssensors.9b01018.

    • Full mathematical derivations (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 21 publications.

    1. Pedro H. Suman, Benjamin Junker, Udo Weimar, Marcelo O. Orlandi, Nicolae Barsan. Modeling the Conduction Mechanism in Chemoresistive Gas Sensor Based on Single-Crystalline Sn3O4 Nanobelts: A Phenomenological In Operando Investigation. ACS Sensors 2024, 9 (1) , 149-156. https://doi.org/10.1021/acssensors.3c01810
    2. Christopher Blackman. Do We Need “Ionosorbed” Oxygen Species? (Or, “A Surface Conductivity Model of Gas Sensitivity in Metal Oxides Based on Variable Surface Oxygen Vacancy Concentration”). ACS Sensors 2021, 6 (10) , 3509-3516. https://doi.org/10.1021/acssensors.1c01727
    3. Taku T. Suzuki, Takeshi Ohgaki, Yutaka Adachi, Isao Sakaguchi, Minoru Nakamura, Hideyuki Ohashi, Akihisa Aimi, Kenjiro Fujimoto. Ethanol Gas Sensing by a Zn-Terminated ZnO(0001) Bulk Single-Crystalline Substrate. ACS Omega 2020, 5 (33) , 21104-21112. https://doi.org/10.1021/acsomega.0c02750
    4. Berkan Atman, Gürkan Karakaş, Yusuf Uludağ. Mathematical modeling of response dynamics of n-type SnO2-based thick film gas sensor. Materials Science in Semiconductor Processing 2025, 190 , 109360. https://doi.org/10.1016/j.mssp.2025.109360
    5. Wenshan Chen, Kingsley Egbo, Joe Kler, Andreas Falkenstein, Jonas Lähnemann, Oliver Bierwagen. Kinetics, thermodynamics, and catalysis of the cation incorporation into GeO2, SnO2, and (Sn x Ge1− x )O2 during suboxide molecular beam epitaxy. APL Materials 2025, 13 (1) https://doi.org/10.1063/5.0243858
    6. Muninathan Suresh, Pravina Radhakrishan, Arumugam Sivasamy. Solar driven highly efficient photocatalyst based on Dy2O3 nanorods deposited on reduced graphene oxide nanocomposite for methylene blue dye degradation. Environmental Science and Pollution Research 2024, 31 (50) , 60260-60278. https://doi.org/10.1007/s11356-024-35226-1
    7. Saurabh Rawat, Priyanka Bamola, Karishma, Chanchal Rani, Hemlata Dhoundiyal, Nikita Sharma, Charu Dwivedi, Ujjwal Kumar, Pushp Sen Satyarthi, Mohit Sharma, Rajesh Kumar, Himani Sharma. Surface and Interface Investigation on MoS₂-rGO Hybrids for Room Temperature Gas Sensing. IEEE Sensors Journal 2024, 24 (14) , 22218-22226. https://doi.org/10.1109/JSEN.2024.3396630
    8. Aleksei V. Almaev, Nikita N. Yakovlev, Dmitry A. Almaev, Maksim G. Verkholetov, Grigory A. Rudakov, Kristina I. Litvinova. High Oxygen Sensitivity of TiO2 Thin Films Deposited by ALD. Micromachines 2023, 14 (10) , 1875. https://doi.org/10.3390/mi14101875
    9. Saurabh Rawat, Priyanka Bamola, Chanchal Rani, Vishakha Kaushik, Ujjwal Kumar, Charu Dwivedi, Rekha Rattan, Mohit Sharma, Rajesh Kumar, Himani Sharma. Interdigitated electrodes-based Au-MoS 2 hybrid gas sensor for sensing toxic CO and NH 3 gases at room temperature. Nanotechnology 2023, 34 (30) , 305601. https://doi.org/10.1088/1361-6528/acd0b7
    10. Aleksei Almaev, Nikita Yakovlev, Viktor Kopyev, Vladimir Nikolaev, Pavel Butenko, Jinxiang Deng, Aleksei Pechnikov, Petr Korusenko, Aleksandra Koroleva, Evgeniy Zhizhin. High Sensitivity Low-Temperature Hydrogen Sensors Based on SnO2/κ(ε)-Ga2O3:Sn Heterostructure. Chemosensors 2023, 11 (6) , 325. https://doi.org/10.3390/chemosensors11060325
    11. Jifeng Chu, Jianbin Pan, Qiongyuan Wang, Aijun Yang, Shizhen Song, Huan Yuan, Mingzhe Rong, Xiaohua Wang. Research progress and prospects on gas-sensitive mechanisms of semiconductor sensors. Physical Chemistry Chemical Physics 2023, 25 (18) , 12668-12683. https://doi.org/10.1039/D3CP00030C
    12. Nikita Yakovlev, Aleksei Almaev, Pavel Butenko, David Tetelbaum, Alexey Mikhaylov, Alena Nikolskaya, Aleksei Pechnikov, Sergey Stepanov, Mikhail Boiko, Andrei Chikiryaka, Vladimir Nikolaev. Effect of Si + Ion Implantation in α -Ga 2 O 3 Films on Their Gas Sensitivity. IEEE Sensors Journal 2023, 23 (3) , 1885-1895. https://doi.org/10.1109/JSEN.2022.3229707
    13. Aleksei V. Almaev, Nikita N. Yakovlev, Bogdan O. Kushnarev, Viktor V. Kopyev, Vadim A. Novikov, Mikhail M. Zinoviev, Nikolay N. Yudin, Sergey N. Podzivalov, Nadezhda N. Erzakova, Andrei V. Chikiryaka, Mikhail P. Shcheglov, Houssain Baalbaki, Alexey S. Olshukov. Gas Sensitivity of IBSD Deposited TiO2 Thin Films. Coatings 2022, 12 (10) , 1565. https://doi.org/10.3390/coatings12101565
    14. Anna Staerz, Udo Weimar, Nicolae Barsan. Current state of knowledge on the metal oxide based gas sensing mechanism. Sensors and Actuators B: Chemical 2022, 358 , 131531. https://doi.org/10.1016/j.snb.2022.131531
    15. Yufeng Tao, YunPeng Ren, Xuejiao Wang, Rui Zhao, Jingwei Liu, Chunsan Deng, Chengbo Wang, Wenguang Zhang, Hui Hao. A femtosecond laser-assembled SnO2 microbridge on interdigitated Au electrodes for gas sensing. Materials Letters 2022, 308 , 131120. https://doi.org/10.1016/j.matlet.2021.131120
    16. Georg Hoffmann, Zongzhe Cheng, Oliver Brandt, Oliver Bierwagen. Drastically enhanced cation incorporation in the epitaxy of oxides due to formation and evaporation of suboxides from elemental sources. APL Materials 2021, 9 (11) https://doi.org/10.1063/5.0058541
    17. Stefan Kucharski, Chris Blackman. Atomistic Descriptions of Gas-Surface Interactions on Tin Dioxide. Chemosensors 2021, 9 (9) , 270. https://doi.org/10.3390/chemosensors9090270
    18. Stephan Steinhauer. Gas Sensors Based on Copper Oxide Nanomaterials: A Review. Chemosensors 2021, 9 (3) , 51. https://doi.org/10.3390/chemosensors9030051
    19. Ayman M. Mostafa, Eman A. Mwafy. Effect of dual-beam laser radiation for synthetic SnO2/Au nanoalloy for antibacterial activity. Journal of Molecular Structure 2020, 1222 , 128913. https://doi.org/10.1016/j.molstruc.2020.128913
    20. Somayeh Saadat Niavol, Melanie Budde, Alexandra Papadogianni, Martin Heilmann, Hossain Milani Moghaddam, Celso M. Aldao, Giovanni Ligorio, Emil J.W. List-Kratochvil, Joao Marcelo J. Lopes, Nicolae Barsan, Oliver Bierwagen, Federico Schipani. Conduction mechanisms in epitaxial NiO/Graphene gas sensors. Sensors and Actuators B: Chemical 2020, 325 , 128797. https://doi.org/10.1016/j.snb.2020.128797
    21. Georg Hoffmann, Melanie Budde, Piero Mazzolini, Oliver Bierwagen. Efficient suboxide sources in oxide molecular beam epitaxy using mixed metal + oxide charges: The examples of SnO and Ga2O. APL Materials 2020, 8 (3) https://doi.org/10.1063/1.5134444

    ACS Sensors

    Cite this: ACS Sens. 2019, 4, 9, 2420–2428
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acssensors.9b01018
    Published August 15, 2019
    Copyright © 2019 American Chemical Society

    Article Views

    873

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.