ACS Publications. Most Trusted. Most Cited. Most Read
Fully Integrated, Simple, and Low-Cost Electrochemical Sensor Array for in Situ Water Quality Monitoring
My Activity
    Article

    Fully Integrated, Simple, and Low-Cost Electrochemical Sensor Array for in Situ Water Quality Monitoring
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (1)

    ACS Sensors

    Cite this: ACS Sens. 2020, 5, 2, 412–422
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acssensors.9b02095
    Published February 7, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Rapid, accurate and inexpensive monitoring of water quality parameters is indispensable for continued water safety, especially in resource-limited areas. Most conventional sensing systems either can only monitor one parameter at a time or lack user-friendly on-site monitoring capabilities. A fully integrated electrochemical sensor array is an excellent solution to this barrier. Electrochemical sensing methods involve transduction of water quality parameters where chemical interactions are converted to electrical signals. The challenge remains in designing low-cost, easy-to-use, and highly sensitive sensor array that can continuously monitor major water quality parameters such as pH, free chlorine, temperature along with emerging pharmaceutical contaminants, and heavy metal without the use of expensive laboratory-based techniques and trained personnel. Here, we overcame this challenge through realizing a fully integrated electrochemical sensing system that offers simultaneous monitoring of pH (57.5 mV/pH), free chlorine (186 nA/ppm), and temperature (16.9 mV/°C) and on-demand monitoring of acetaminophen and 17β-estradiol (<10 nM) and heavy metal (<10 ppb), bridging the technological gap between signal transduction, processing, wireless transmission, and smartphone interfacing. This was achieved by merging nanomaterials and carbon nanotube-based sensors fabricated on microscopic glass slides controlled by a custom-designed readout circuit, a potentiostat, and an Android app. The sensing system can be easily modified and programmed to integrate other sensors, a capability that can be exploited to monitor a range of water quality parameters. We demonstrate the integrated system for monitoring tap, swimming pool, and lake water. This system opens the possibility for a wide range of low-cost and ubiquitous environmental monitoring applications.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acssensors.9b02095.

    • Costs breakdown of the FIWQMS system; comparison of commercial multiparameter WQM sensors; voltammetric curves and linear ranges in pharmaceuticals and heavy metal sensing; screenshot of the FIWQMS Android application on a Smartphone; Wheatstone-bridge temperature sensor; long-term chronoamperometric free chlorine measurement of real-water samples (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 98 publications.

    1. Zhenjie Zheng, Zhuozhen Qian, Da Huang, Zuquan Weng, Jian Wang, Cuiying Lin, Bin Qiu, Zhenyu Lin, Fang Luo. Ultrasensitive Homogeneous Electrochemiluminescence Biosensor for N-Nitrosodimethylamine Detection Based on Vertically-Ordered Mesoporous Silica Film-Modified Electrode and CRISPR/Cas12a-Driven HRCA with Triple Signal Amplification. Analytical Chemistry 2025, 97 (10) , 5828-5835. https://doi.org/10.1021/acs.analchem.5c00555
    2. Suparna Das, Kamil Reza Khondakar, Hirak Mazumdar, Ajeet Kaushik, Yogendra Kumar Mishra. AI and IoT: Supported Sixth Generation Sensing for Water Quality Assessment to Empower Sustainable Ecosystems. ACS ES&T Water 2025, 5 (2) , 490-510. https://doi.org/10.1021/acsestwater.4c00360
    3. Liza R. White, Jordan N. Miner, Luke D. McKinney, Lindsay E. Pierce, Anna Folley, Ariel Larrabee, Lea Scrapchansky, Wyatt Fessler, Manisha Choudhary, Manoj Kamalanathan, Ramin Pouria, Saman Zare, Emma Perry, Sheila Edalatpour, Onur G. Apul, Caitlin Howell. Variable-Area Sensor Permits Near-Continuous Multipoint Measurements of Aqueous Biological and Chemical Analytes. Industrial & Engineering Chemistry Research 2025, 64 (1) , 382-391. https://doi.org/10.1021/acs.iecr.4c02774
    4. Zi Wang, Devendra Pal, Abolghasem Pilechi, Parisa A. Ariya. Nanoplastics in Water: Artificial Intelligence-Assisted 4D Physicochemical Characterization and Rapid In Situ Detection. Environmental Science & Technology 2024, 58 (20) , 8919-8931. https://doi.org/10.1021/acs.est.3c10408
    5. Mahtab Taheri, Mohsen Ketabi, Ahmad M. Al Shboul, Shirin Mahinnezhad, Ricardo Izquierdo, M. Jamal Deen. Integrated pH Sensors Based on RuO2/GO Nanocomposites Fabricated Using the Aerosol Jet Printing Method. ACS Omega 2023, 8 (49) , 46794-46803. https://doi.org/10.1021/acsomega.3c06309
    6. Debashis Sen, Robert A. Lazenby. Selective Aptamer Modification of Au Surfaces in a Microelectrode Sensor Array for Simultaneous Detection of Multiple Analytes. Analytical Chemistry 2023, 95 (17) , 6828-6835. https://doi.org/10.1021/acs.analchem.2c05335
    7. Ruijin Zeng, Hexiang Gong, Yanli Li, Yuxuan Li, Wei Lin, Dianping Tang, Dietmar Knopp. CRISPR-Cas12a-Derived Photoelectrochemical Biosensor for Point-Of-Care Diagnosis of Nucleic Acid. Analytical Chemistry 2022, 94 (20) , 7442-7448. https://doi.org/10.1021/acs.analchem.2c01373
    8. Baixiang Ren, Yaxin Yu, Rama-Krishnan Poopal, Linlin Qiao, Baichuan Ren, Zongming Ren. IR-Based Novel Device for Real-Time Online Acquisition of Fish Heart ECG Signals. Environmental Science & Technology 2022, 56 (7) , 4262-4271. https://doi.org/10.1021/acs.est.1c07732
    9. Sushant P. Sahu, Subarna Kole, Christopher G. Arges, Manas Ranjan Gartia. Rapid and Direct Perfluorooctanoic Acid Sensing with Selective Ionomer Coatings on Screen-Printed Electrodes under Environmentally Relevant Concentrations. ACS Omega 2022, 7 (6) , 5001-5007. https://doi.org/10.1021/acsomega.1c05847
    10. Thaisa A. Baldo, Lucas Felipe de Lima, Letícia F. Mendes, William R. de Araujo, Thiago R. L. C. Paixão, Wendell K. T. Coltro. Wearable and Biodegradable Sensors for Clinical and Environmental Applications. ACS Applied Electronic Materials 2021, 3 (1) , 68-100. https://doi.org/10.1021/acsaelm.0c00735
    11. Eugenio H. Otal, Manuela Leticia Kim, Steffen Dietrich, Ryogo Takada, Shinji Nakaya, Mutsumi Kimura. Open-Source Portable Device for the Determination of Fluoride in Drinking Water. ACS Sensors 2021, 6 (1) , 259-266. https://doi.org/10.1021/acssensors.0c02273
    12. Anastasiia Surkova, Andrey Bogomolov, Andrey Legin, Dmitry Kirsanov. Calibration Transfer for LED-Based Optical Multisensor Systems. ACS Sensors 2020, 5 (8) , 2587-2595. https://doi.org/10.1021/acssensors.0c01018
    13. Mbuyamba Divin Mukendi, Oluseyi Sikiru Salami, Nomvano Mketo. An In-Depth Review of Molecularly Imprinted Electrochemical Sensors as an Innovative Analytical Tool in Water Quality Monitoring: Architecture, Principles, Fabrication, and Applications. Micromachines 2025, 16 (3) , 251. https://doi.org/10.3390/mi16030251
    14. Xianbao Xu, Bingxiong Wang, Zhuangzhuang Du, Zhuangzhuang Bai, Shuaixing Wang, Cong Wang, Daoliang Li. A novel nonplanar multi-chamber flexible array dissolved oxygen sensor for aquaculture robotic fish. Computers and Electronics in Agriculture 2025, 230 , 109903. https://doi.org/10.1016/j.compag.2025.109903
    15. Jiawen Yin, Shengkang Lu, Hanyang Tong, Jianqian Li, Rentao Cao, Shouhong Li, Wanlei Gao, Jie Zou, Qinghui Jin. Batch preparation of multi-parameter sensor for online and in-situ monitoring of tap water. Electrochimica Acta 2025, 514 , 145664. https://doi.org/10.1016/j.electacta.2025.145664
    16. Lin Duan, Ming-Liang Jin. A biocompatible integrated bladder electronics for wireless capacity monitoring assessment. Soft Science 2025, 5 (1) https://doi.org/10.20517/ss.2024.46
    17. Kobun Rovina, Felicia Ling Wen Xia. Nano-engineering approaches for food analysis and related biosensing applications. 2025, 491-510. https://doi.org/10.1016/B978-0-443-21691-6.00021-4
    18. Nikila Nair, A. V. Akshaya, Michael John Bosco, G. K. Ananthasuresh, Jose Joseph. A Robust Sensor for Inline pH Measurements. IEEE Sensors Journal 2025, 25 (1) , 167-174. https://doi.org/10.1109/JSEN.2024.3489659
    19. Syed Hassan Ali, Raphaël Trouillon. Paper sensors for the measurement of nitric oxide release from endothelial cells. Sensors & Diagnostics 2025, 1 https://doi.org/10.1039/D4SD00154K
    20. Balamurugan Muthukutty, Mani Sivakumar, Seong-Cheol Kim, Krishnapandi Alagumalai, Daeho Lee. Pyrochlore stannate synthesis: Unlocking temperature's influence on electrochemical detection of caffeic acid in food samples. Materials Today Chemistry 2024, 42 , 102402. https://doi.org/10.1016/j.mtchem.2024.102402
    21. Fengyuan Liu, Leandro Lorenzelli. Toward all flexible sensing systems for next-generation wearables. Wearable Electronics 2024, 1 , 137-149. https://doi.org/10.1016/j.wees.2024.07.003
    22. E. B. Priyanka, S. Thangavel, R. Mohanasundaram, R. Anand. Solar powered integrated multi sensors to monitor inland lake water quality using statistical data fusion technique with Kalman filter. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-76068-8
    23. Jie Su, Weining Xu, Ziyu Lin. Algorithm for monitoring water quality parameters in optical systems based on artificial intelligence data mining. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-76700-7
    24. Shuang Zhao, Zhao Yue, Dingcheng Zhu, Jann Harberts, Robert H. Blick, Robert Zierold, Fred Lisdat, Wolfgang J. Parak. Quantum Dot/TiO 2 Nanocomposite‐Based Photoelectrochemical Sensor for Enhanced H 2 O 2 Detection Applied for Cell Monitoring and Visualization. Small 2024, 20 (45) https://doi.org/10.1002/smll.202401703
    25. Sang-Jun Han, Joo Young Han, Jung-Ho Wee. Real-Time Estimation of CO2 Absorption Capacity Using Ionic Conductivity of Protonated Di-Methyl-Ethanolamine (DMEA) and Electrical Conductivity in Low-Concentration DMEA Aqueous Solutions. Processes 2024, 12 (11) , 2495. https://doi.org/10.3390/pr12112495
    26. Wei Wang, Sonali Srivastava, Peter J. Vikesland. Overcoming barriers and embracing advances: Nanosensor implementation for practical water contaminant surveillance. One Earth 2024, 7 (8) , 1351-1361. https://doi.org/10.1016/j.oneear.2024.07.006
    27. Tugba Ozer, Ismail Agir, Thomas Borch. Water monitoring with an automated smart sensor supported with solar power for real-time and long range detection of ferrous iron. The Analyst 2024, 149 (9) , 2671-2679. https://doi.org/10.1039/D4AN00055B
    28. Wang Suqi, Calvin Lin Jia Rong, Hayder A. Abdulbari, Wafaa K. Mahmood. Microfluidic Approaches in Water Quality Monitoring: An Insight and a Comprehensive Review. ChemBioEng Reviews 2024, 11 (2) , 215-230. https://doi.org/10.1002/cben.202300033
    29. Alessandro Moretti, Heidi Lynn Ivan, Jan Skvaril. A review of the state-of-the-art wastewater quality characterization and measurement technologies. Is the shift to real-time monitoring nowadays feasible?. Journal of Water Process Engineering 2024, 60 , 105061. https://doi.org/10.1016/j.jwpe.2024.105061
    30. Jiayi Cai, Yue Wang, Naif Abdullah Al-Dhabi, Gaoying Wu, Ying Pu, Wangwang Tang, Xueming Chen, Yong Jiang, Raymond Jianxiong Zeng. Refining microbial potentiometric sensor performance with unique cathodic catalytic properties for targeted application scenarios. Environmental Research 2024, 247 , 118285. https://doi.org/10.1016/j.envres.2024.118285
    31. Hainan Wang, Rama-Krishnan Poopal, Zongming Ren. Biological-based techniques for real-time water-quality studies: Assessment of non-invasive (swimming consistency and respiration) and toxicity (antioxidants) biomarkers of zebrafish. Chemosphere 2024, 352 , 141268. https://doi.org/10.1016/j.chemosphere.2024.141268
    32. Anupma Thakur, Pooja Devi. A Comprehensive Review on Water Quality Monitoring Devices: Materials Advances, Current Status, and Future Perspective. Critical Reviews in Analytical Chemistry 2024, 54 (2) , 193-218. https://doi.org/10.1080/10408347.2022.2070838
    33. Lizhen Lian, Qian Zhang, Wenbo Li, Bin Wang, Qijie Liang. A shadow enabled non-invasive probe for multi-feature intelligent liquid surveillance system. Nanoscale 2024, 16 (3) , 1176-1187. https://doi.org/10.1039/D3NR04983C
    34. Sohayb Khaoulani, Chouki Zerrouki, Najla Fourati. Recent Progress and Trends in Water Pollutant Monitoring with Smart Devices. 2024, 83-94. https://doi.org/10.1007/978-3-031-48228-1_6
    35. Surendar Ganesan, Balasubramanian Esakki, Jae Sung Choi, S. Sridevi, C. Sarath Kumar, P. Vikram. Development of Unmanned Surface Vehicle for In-Situ Water Quality Measurement Using IoT. 2024, 91-103. https://doi.org/10.1007/978-981-97-6591-1_9
    36. Robert K. Franklin, Steven M. Martin, Timothy D. Strong, Richard B. Brown. Chemical and biological systems: Chemical sensing systems for liquids. 2024https://doi.org/10.1016/B978-0-323-95478-5.00019-4
    37. Muhammad Izz Hakimi Zaidi Farouk, Zadariana Jamil, Mohd Fuad Abdul Latip. Towards online surface water quality monitoring technology: A review. Environmental Research 2023, 238 , 117147. https://doi.org/10.1016/j.envres.2023.117147
    38. , Changhan Lee, Sangsu An, Youngji Cho, Jiho Chang, Hyungsoo Ahn, Jaejin Park, Moonjin Lee. Implementation of Low Limit of Detection through Optimization of Metal Oxide Printed Thin Film Sensor for Detecting Harmful Substances in Water. Journal of the Korean Society of Marine Environment and Safety 2023, 29 (S) , 1-7. https://doi.org/10.7837/kosomes.2023.29.s.001
    39. Priyanka Ganguly. Sensors for Water Quality Assessment in Extreme Environmental Conditions. 2023, 253-282. https://doi.org/10.1002/9781119775843.ch11
    40. Upasana Choudhari, Shweta Jagtap, Niranjan Ramgir, Anil K. Debnath, Kunal P. Muthe. Screen-printed electrochemical sensors for environmental monitoring of heavy metal ion detection. Reviews in Chemical Engineering 2023, 39 (7) , 1227-1268. https://doi.org/10.1515/revce-2022-0002
    41. Junaid Siddiqui, Mahtab Taheri, Mohammad Nami, Imran A. Deen, Muthukumaran Packirisamy, M. Jamal Deen. Carbon‐Based Electrochemical‐Free Chlorine Sensors. Advanced Materials Technologies 2023, 8 (19) https://doi.org/10.1002/admt.202300717
    42. Yasser GadelHak, Sarah H.M. Hafez, Hamdy F.M. Mohamed, E.E. Abdel-Hady, Rehab Mahmoud. Nanomaterials-modified disposable electrodes and portable electrochemical systems for heavy metals detection in wastewater streams: A review. Microchemical Journal 2023, 193 , 109043. https://doi.org/10.1016/j.microc.2023.109043
    43. Tianning Chen, Shuqi Liang, Yuemei Chen, Jiajia Han, Shanyue Guan, Xiaohong Chen, Wei Li, Junlang Qiu, Xin Yang, Fang Zhu, Gangfeng Ouyang. Advances in the analysis of odorous substances derived from drinking water disinfection. TrAC Trends in Analytical Chemistry 2023, 167 , 117224. https://doi.org/10.1016/j.trac.2023.117224
    44. Maryam Saleh-Mohammadnia, Masoumeh Ghalkhani, Hossein Roghani-Mamaqani, Salar Hemmati, Hanieh Mardani. Amine-Grafted Graphene Oxide Functionalized With N,S-Doped Carbon Dots: Sensitive Electrochemical Sensor for Metronidazole Determination. IEEE Sensors Journal 2023, 23 (17) , 18986-18993. https://doi.org/10.1109/JSEN.2023.3295870
    45. Óscar Álvarez-Silva, Andrés F. Osorio, David Quintero, Cesar Jaramillo, Freddy Bolaños, Juan D. Osorio-Cano, Fabio A. Suárez-Bustamante. Development and validation of a versatile low-cost instrument for monitoring water level in coastal applications: BlueLog.. Journal of Coastal Conservation 2023, 27 (4) https://doi.org/10.1007/s11852-023-00958-8
    46. Gabriel Antonio Cerrón-Calle, Alexsandro J. dos Santos, Marcos R.V. Lanza, Ming-Chun Lu, Sergi Garcia-Segura. Electrified technologies for physical separation of arsenic from water. Current Opinion in Environmental Science & Health 2023, 34 , 100477. https://doi.org/10.1016/j.coesh.2023.100477
    47. Kartikay Lal, Swapna A. Jaywant, Khalid Mahmood Arif. Electrochemical and Optical Sensors for Real-Time Detection of Nitrate in Water. Sensors 2023, 23 (16) , 7099. https://doi.org/10.3390/s23167099
    48. S. Nazila Hosseini, Mohammad Makhdoumi Akram, Partha Sarati Das, Vahid Khojasteh Lazarjan, Denise M. Tremblay, Sylvain Moineau, Younès Messaddeq, Benoit Gosselin. Multimodal CMOS Biosensor for Microbial Growth Monitoring. IEEE Sensors Journal 2023, 23 (13) , 14670-14684. https://doi.org/10.1109/JSEN.2023.3272620
    49. Hyusim Park, Yuze Sun, Sungyong Jung. Balanced Resistive Matrix Array for High-Density Electrochemical Sensor Array. IEEE Sensors Journal 2023, 23 (13) , 14323-14329. https://doi.org/10.1109/JSEN.2023.3274645
    50. Auwal M. Musa, Janice Kiely, Richard Luxton, Kevin C. Honeychurch. Graphene-Based Electrodes for Monitoring of Estradiol. Chemosensors 2023, 11 (6) , 337. https://doi.org/10.3390/chemosensors11060337
    51. Qingchuan Zhu, Frédéric Cherqui, Jean-Luc Bertrand-Krajewski. End-user perspective of low-cost sensors for urban stormwater monitoring: a review. Water Science & Technology 2023, 43 https://doi.org/10.2166/wst.2023.142
    52. Stephanie G. Fulton, James C. Stegen, Matthew H. Kaufman, John Dowd, Aaron Thompson, . Laboratory evaluation of open source and commercial electrical conductivity sensor precision and accuracy: How do they compare?. PLOS ONE 2023, 18 (5) , e0285092. https://doi.org/10.1371/journal.pone.0285092
    53. Jun Hyuk Heo, Minchul Sung, Tran Quang Trung, Yullim Lee, Do Hyeon Jung, Hajeong Kim, Sandeep Kaushal, Nae‐Eung Lee, Jin Woong Kim, Jung Heon Lee, Soo‐Yeon Cho. Sensor design strategy for environmental and biological monitoring. EcoMat 2023, 5 (5) https://doi.org/10.1002/eom2.12332
    54. Maryam Saleh Mohammadnia, Hossein Roghani-Mamaqani, Masoumeh Ghalkhani, Salar Hemmati. A Modified Electrochemical Sensor Based on N,S-Doped Carbon Dots/Carbon Nanotube-Poly(Amidoamine) Dendrimer Hybrids for Imatinib Mesylate Determination. Biosensors 2023, 13 (5) , 547. https://doi.org/10.3390/bios13050547
    55. Norilhamiah Yahya, Nur Afifah Mat Razali. Review on Electrochemical and Biosensors and Their Application. 2023, 173-198. https://doi.org/10.1007/978-3-031-21959-7_13
    56. Amina Othmani. Overview of the Major Types of Nanomaterials Used for Environmental and Energy Applications: Challenges and Prospects. 2023, 1-13. https://doi.org/10.1007/978-981-99-6924-1_1
    57. Luca Gerevini, Gianni Cerro, Alessandro Bria, Claudio Marrocco, Luigi Ferrigno, Michele Vitelli, Andrea Ria, Mario Molinara. An end-to-end real-time pollutants spilling recognition in wastewater based on the IoT-ready SENSIPLUS platform. Journal of King Saud University - Computer and Information Sciences 2023, 35 (1) , 499-513. https://doi.org/10.1016/j.jksuci.2022.12.018
    58. Wan Mohammad Eizairy Wan Mohd Yusri, Mohd Hanif Mohd Ramli, Nurul Syuhadah Khusaini, Zulkifli Mohamed. IoT based water quality monitoring system and test for swimming pool water physicochemical quality. 2023, 020002. https://doi.org/10.1063/5.0124195
    59. Mohamed H. Hassan, Reem Khan, Silvana Andreescu. Advances in electrochemical detection methods for measuring contaminants of emerging concerns. Electrochemical Science Advances 2022, 2 (6) https://doi.org/10.1002/elsa.202100184
    60. Brandon K. Ashley, Umer Hassan. Digital filtering dissemination for optimizing impedance cytometry signal quality and counting accuracy. Biomedical Microdevices 2022, 24 (4) https://doi.org/10.1007/s10544-022-00636-w
    61. Nurul Hidayah Ramli, Noorhashimah Mohamad Nor, Nor Dyana Zakaria, Khairunisak Abdul Razak. Fabrication of platinum nanodendrites-modified ITO electrode for electrochemical detection of Pb (II). Journal of Materials Science: Materials in Electronics 2022, 33 (35) , 26564-26579. https://doi.org/10.1007/s10854-022-09333-z
    62. Hong Wei, Yongsheng Luan, Dawei Pan. All-in-one portable microsystem for on-site electrochemical determination of phosphate in turbid coastal waters. Microchemical Journal 2022, 183 , 108079. https://doi.org/10.1016/j.microc.2022.108079
    63. Chao Zhang, Chi Zhang, Xinyue Wu, Jianfeng Ping, Yibin Ying. An integrated and robust plant pulse monitoring system based on biomimetic wearable sensor. npj Flexible Electronics 2022, 6 (1) https://doi.org/10.1038/s41528-022-00177-5
    64. Shuo-En Wu, Napasorn Phongphaew, Yichen Zhai, Lulu Yao, Hsun-Hao Hsu, Alan Shiller, Jason D. Azoulay, Tse Nga Ng. Multiplexed printed sensors for in situ monitoring in bivalve aquaculture. Nanoscale 2022, 14 (43) , 16110-16119. https://doi.org/10.1039/D2NR04382C
    65. Razieh Salahandish, Pezhman Jalali, Hamed Osouli Tabrizi, Jae Eun Hyun, Fatemeh Haghayegh, Mahmood Khalghollah, Azam Zare, Byron M. Berenger, Yan Dong Niu, Ebrahim Ghafar-Zadeh, Amir Sanati-Nezhad. A compact, low-cost, and binary sensing (BiSense) platform for noise-free and self-validated impedimetric detection of COVID-19 infected patients. Biosensors and Bioelectronics 2022, 213 , 114459. https://doi.org/10.1016/j.bios.2022.114459
    66. Daniele Strigaro, Massimiliano Cannata, Fabio Lepori, Camilla Capelli, Andrea Lami, Dario Manca, Silvio Seno. Open and Cost-Effective Digital Ecosystem for Lake Water Quality Monitoring. Sensors 2022, 22 (17) , 6684. https://doi.org/10.3390/s22176684
    67. A. S. Holmes, M. E. Kiziroglou, S. K. E. Yang, C. Yuan, D. E. Boyle, D. M. Lincoln, J. D. J. McCabe, P. Szasz, S. C. Keeping, D. R. Williams, E. M. Yeatman. Minimally Invasive Online Water Monitor. IEEE Internet of Things Journal 2022, 9 (16) , 14325-14335. https://doi.org/10.1109/JIOT.2021.3074081
    68. Brandon K. Ashley, Jianye Sui, Mehdi Javanmard, Umer Hassan. Antibody-functionalized aluminum oxide-coated particles targeting neutrophil receptors in a multifrequency microfluidic impedance cytometer. Lab on a Chip 2022, 22 (16) , 3055-3066. https://doi.org/10.1039/D2LC00563H
    69. Junaid Siddiqui, M. Jamal Deen. Biodegradable asparagine–graphene oxide free chlorine sensors fabricated using solution-based processing. The Analyst 2022, 147 (16) , 3643-3651. https://doi.org/10.1039/D2AN00533F
    70. Rogier Westerhoff, Richard McDowell, James Brasington, Mark Hamer, Kohji Muraoka, Maryam Alavi, Richard Muirhead, Abigail Lovett, Ian Ruru, Blair Miller, Neale Hudson, Moritz Lehmann, Maïwenn Herpe, James King, Magali Moreau, Olivier Ausseil. Towards implementation of robust monitoring technologies alongside freshwater improvement policy in Aotearoa New Zealand. Environmental Science & Policy 2022, 132 , 1-12. https://doi.org/10.1016/j.envsci.2022.01.020
    71. Amoli Belsare, Labhesh Bokde, Himanshu Wadyalkar, Piyush Kokate. Wireless Floating WQ(Water Quality) Monitoring System. 2022, 1-5. https://doi.org/10.1109/INCET54531.2022.9824080
    72. Ana-Maria Nasture, Eusebiu Ilarian Ionete, Florin Alexandru Lungu, Stefan Ionut Spiridon, Laurentiu Gabriel Patularu. Water Quality Carbon Nanotube-Based Sensors Technological Barriers and Late Research Trends: A Bibliometric Analysis. Chemosensors 2022, 10 (5) , 161. https://doi.org/10.3390/chemosensors10050161
    73. Gabriel Marinho e Silva, Daiane Ferreira Campos, José Artur Teixeira Brasil, Marcel Tremblay, Eduardo Mario Mendiondo, Filippo Ghiglieno. Advances in Technological Research for Online and In Situ Water Quality Monitoring—A Review. Sustainability 2022, 14 (9) , 5059. https://doi.org/10.3390/su14095059
    74. Brandon K Ashley, Jianye Sui, Mehdi Javanmard, Umer Hassan. Aluminum Oxide-Coated Particle Differentiation Employing Supervised Machine Learning and Impedance Cytometry. 2022, 211-216. https://doi.org/10.1109/NEMS54180.2022.9791160
    75. Mahtab Taheri, M. Jamal Deen. Green Approach Using RuO 2 /GO Nanocomposite for Low Cost and Highly Sensitive pH Sensing. Journal of The Electrochemical Society 2022, 169 (4) , 047501. https://doi.org/10.1149/1945-7111/ac5f1f
    76. Menyar Ben Jaballah, Najib Ben Messaoud, Chérif Dridi. Development of cost-effective and sustainable sensing nanoplatform based on green AgNPs for the determination of BPA in water. Journal of Materials Science: Materials in Electronics 2022, 33 (9) , 6981-6998. https://doi.org/10.1007/s10854-022-07877-8
    77. Nivedita Priyadarshni, Nripen Chanda. Gold Nanoparticle-Based Colorimetric Sensing of Metal Toxins. 2022, 273-308. https://doi.org/10.1007/978-981-16-9897-2_12
    78. Tanvi Gupte, Thalappil Pradeep. Nanosensors for water quality monitoring. 2022, 37-53. https://doi.org/10.1016/B978-0-323-90763-7.00010-X
    79. Auwal M. Musa, Janice Kiely, Richard Luxton, Kevin C. Honeychurch. Application of Graphene-Based Screen-Printed Electrodes for the Amperometric Determination of Estradiol in Water Samples. SSRN Electronic Journal 2022, 58 https://doi.org/10.2139/ssrn.4016991
    80. Razieh Salahandish, Pezhman Jalali, Hamed Osouli Tabrizi, Jae Eun Hyun, Fatemeh Haghayegh, Mahmood Khalghollah, Azam Zare, Byron M. Berenger, Yan Dong Niu, Ebrahim Ghafar-Zadeh, Amir Sanati Nezhad. A Compact, Low-Cost, and Binary Sensing (BiSense) Platform for Noise-Free and Self-Validated Impedimetric Detection of COVID-19 Infected Patients. SSRN Electronic Journal 2022, 79 https://doi.org/10.2139/ssrn.4119291
    81. Prabha Shanker Arya, Mohit Gangwar. A Proposed Architecture: Detecting Freshness of Vegetables using Internet of Things (IoT) & Deep Learning Prediction Algorithm. 2021, 718-723. https://doi.org/10.1109/ICAC3N53548.2021.9725428
    82. Siping Niu, Xiaolong Song, Jianghua Yu, Jing Wu. Evaluation of spatial and seasonal water quality variation of urban lake by multivariate statistical approaches for water quality improvement. Desalination and Water Treatment 2021, 239 , 137-149. https://doi.org/10.5004/dwt.2021.27715
    83. Alex Cabral, Asta Roseway, Paul Johns. Design and Implementation of A Mobile Urban Low-Cost Environmental Sensor Network. 2021, 1-4. https://doi.org/10.1109/SENSORS47087.2021.9639703
    84. Libu Manjakkal, Srinjoy Mitra, Yvan R. Petillot, Jamie Shutler, E. Marian Scott, Magnus Willander, Ravinder Dahiya. Connected Sensors, Innovative Sensor Deployment, and Intelligent Data Analysis for Online Water Quality Monitoring. IEEE Internet of Things Journal 2021, 8 (18) , 13805-13824. https://doi.org/10.1109/JIOT.2021.3081772
    85. Christa Kelleher, Anna Braswell. Introductory overview: Recommendations for approaching scientific visualization with large environmental datasets. Environmental Modelling & Software 2021, 143 , 105113. https://doi.org/10.1016/j.envsoft.2021.105113
    86. Lei Cheng, Xiyue Tan, Dong Yao, Wenxia Xu, Huaiyu Wu, Yang Chen. A Fishery Water Quality Monitoring and Prediction Evaluation System for Floating UAV Based on Time Series. Sensors 2021, 21 (13) , 4451. https://doi.org/10.3390/s21134451
    87. Arif Ul Alam, Dennis Clyne, M. Jamal Deen. A Low-Cost Multi-Parameter Water Quality Monitoring System. Sensors 2021, 21 (11) , 3775. https://doi.org/10.3390/s21113775
    88. Tugba Ozer, Charles S. Henry. Review—Recent Advances in Sensor Arrays for the Simultaneous Electrochemical Detection of Multiple Analytes. Journal of The Electrochemical Society 2021, 168 (5) , 057507. https://doi.org/10.1149/1945-7111/abfc9f
    89. Arif Ul Alam, Dennis Clyne, Will Lush, M. Jamal Deen. A reusable, reagent-less free chlorine sensor using gold thin film electrode. The Analyst 2021, 146 (8) , 2626-2631. https://doi.org/10.1039/D1AN00038A
    90. Zhen Wu, Jingjing Liu, Minmin Liang, Haoyue Zheng, Chuansheng Zhu, Yan Wang. Detection of Imatinib Based on Electrochemical Sensor Constructed Using Biosynthesized Graphene-Silver Nanocomposite. Frontiers in Chemistry 2021, 9 https://doi.org/10.3389/fchem.2021.670074
    91. Angela Mihaela Baracu, Livia Alexandra Dinu Gugoasa. Review—Recent Advances in Microfabrication, Design and Applications of Amperometric Sensors and Biosensors. Journal of The Electrochemical Society 2021, 168 (3) , 037503. https://doi.org/10.1149/1945-7111/abe8b6
    92. Natsumi Koga, Masaru Tanioka, Shinichiro Kamino, Daisuke Sawada. Morpholine‐Substituted Rhodamine Analogue with Multi‐Configurational Switches for Optical Sensing of pH Gradient under Extreme Acidic Environments. Chemistry – A European Journal 2021, 27 (11) , 3761-3765. https://doi.org/10.1002/chem.202004254
    93. Arif U. Alam, Pranali Rathi, Heba Beshai, Gursimran K. Sarabha, M. Jamal Deen. Fruit Quality Monitoring with Smart Packaging. Sensors 2021, 21 (4) , 1509. https://doi.org/10.3390/s21041509
    94. Afida Jemat, Salman Yussof, Sera Syarmila Sameon, Nur Adriana Alya Rosnizam. IoT-Based System for Real-Time Swimming Pool Water Quality Monitoring. 2021, 332-341. https://doi.org/10.1007/978-3-030-90235-3_29
    95. Saber Kazeminasab, M. Kathrine Banks. A Localization and Navigation Method for an In-Pipe Robot in Water Distribution System Through Wireless Control Towards Long-Distance Inspection. IEEE Access 2021, 9 , 117496-117511. https://doi.org/10.1109/ACCESS.2021.3106880
    96. Ramp Pal Singh, Vasudevan Mangottiri, Balaganesh Pandiyan. Understanding the Variability in Estimation of Water Quality of Lakes and Reservoirs. IOP Conference Series: Materials Science and Engineering 2020, 955 (1) , 012085. https://doi.org/10.1088/1757-899X/955/1/012085
    97. Heba Beshai, Gursimran Sarabha, Pranali Rathi, Arif Alam, M. Deen. Freshness Monitoring of Packaged Vegetables. Applied Sciences 2020, 10 (21) , 7937. https://doi.org/10.3390/app10217937
    98. Aidan Murphy, Ian Seymour, James Rohan, Alan OrRiordan, Ivan OrConnell. Portable Data Acquisition System for Nano and Ultra-Micro Scale Electrochemical Sensors. IEEE Sensors Journal 2020, 137 , 1-1. https://doi.org/10.1109/JSEN.2020.3021941

    ACS Sensors

    Cite this: ACS Sens. 2020, 5, 2, 412–422
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acssensors.9b02095
    Published February 7, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    4860

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.