ACS Publications. Most Trusted. Most Cited. Most Read
Naturally Hydrophobic Foams from Lignocellulosic Fibers Prepared by Oven-Drying
My Activity

Figure 1Loading Img
    Research Article

    Naturally Hydrophobic Foams from Lignocellulosic Fibers Prepared by Oven-Drying
    Click to copy article linkArticle link copied!

    • Elisa S. Ferreira
      Elisa S. Ferreira
      Institute of Chemistry, University of Campinas, P.O. Box 6154, Campinas, São Paulo 13083-970, Brazil
      Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
    • Emily D. Cranston*
      Emily D. Cranston
      Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
      Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
      Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
      *Email: [email protected]
    • Camila A. Rezende*
      Camila A. Rezende
      Institute of Chemistry, University of Campinas, P.O. Box 6154, Campinas, São Paulo 13083-970, Brazil
      *Email: [email protected]
    Other Access OptionsSupporting Information (2)

    ACS Sustainable Chemistry & Engineering

    Cite this: ACS Sustainable Chem. Eng. 2020, 8, 22, 8267–8278
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acssuschemeng.0c01480
    Published May 13, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Lignocellulosic sugarcane biomass underwent an alkaline treatment for partial lignin extraction and then foams with very low apparent density (0.09 g/cm3) were easily obtained by oven-drying aqueous dispersions of fibers. The fiber networks were covalently reinforced through cross-linking by heating the dried material in the presence of citric acid. The lignocellulosic foams were naturally hydrophobic (water contact angle = 117°), without requiring any further chemical modification. The hydrophobicity is attributed to the combination of (1) residual lignin, (2) redeposited lignin that has undergone thermal treatment, (3) the fiber and foam surface roughness, and (4) the structure’s ability to trap air. The cross-linked fiber networks showed shape-recovery properties under compressive stress, high absorption capacity, and mechanical resistance when immersed in water and oil. This work demonstrates that lignocellulosic foams from sugarcane bagasse, processed following low cost and green methods, are promising for selective removal of hydrophobic compounds in aqueous environments and in a range of insulating and packaging products.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acssuschemeng.0c01480.

    • Compositional information of sugarcane bagasse samples; basis weight and density of foams and other lightweight fiber materials; cross-section of cross-linked foams by FESEM; reconstructed view of a cross-linked foam by micro-CT analysis; elemental composition of bagasse samples by XPS; surface roughness profile by micro-CT analysis; and photographs of wettability and lignin precipitation tests (PDF)

    • Micro-CT video showing the foam structure (MP4)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 81 publications.

    1. Hongping Dong, Song Wei, Wenshuai Chen, Bingan Lu, Zhiyong Cai, Bin Yang, Xiazhen Li, Xianjun Li. Bioinspired Lignocellulose Foam: Exceptional Toughness and Thermal Insulation. ACS Nano 2025, 19 (12) , 11712-11727. https://doi.org/10.1021/acsnano.4c11945
    2. Yeling Zhu, Jiaying Zhu, Yutong Li, Jingqian Chen, Orlando Rojas, Feng Jiang. Chemical Binder-Free and Oven-Dried Lignocellulose/Clay Composite Foams: Flame Resistance, Thermal Insulation, and Recyclability. ACS Sustainable Chemistry & Engineering 2023, 11 (46) , 16499-16508. https://doi.org/10.1021/acssuschemeng.3c04108
    3. Oriana M. Vanderfleet, Francesco D’Acierno, Akira Isogai, Mark J. MacLachlan, Carl A. Michal, Emily D. Cranston. Effects of Surface Chemistry and Counterion Selection on the Thermal Behavior of Carboxylated Cellulose Nanocrystals. Chemistry of Materials 2022, 34 (18) , 8248-8261. https://doi.org/10.1021/acs.chemmater.2c01665
    4. Ruiliu Wang, Chaoji Chen, Zhenqian Pang, Xizheng Wang, Yubing Zhou, Qi Dong, Miao Guo, Jinlong Gao, Upamanyu Ray, Qinqin Xia, Zhiwei Lin, Shuaiming He, Bob Foster, Teng Li, Liangbing Hu. Fabrication of Cellulose–Graphite Foam via Ion Cross-linking and Ambient-Drying. Nano Letters 2022, 22 (10) , 3931-3938. https://doi.org/10.1021/acs.nanolett.2c00167
    5. Islam Hafez, Mehdi Tajvidi. Comprehensive Insight into Foams Made of Thermomechanical Pulp Fibers and Cellulose Nanofibrils via Microwave Radiation. ACS Sustainable Chemistry & Engineering 2021, 9 (30) , 10113-10122. https://doi.org/10.1021/acssuschemeng.1c01816
    6. Binqing Sun, Haolun Qiu, Xiangtao Ding, Chenfeng Han, Yuanfeng Yi. Effects of citric acid and polyamide-epichlorohydrin composite modification on the mechanical, hydrophobic, and thermal properties of starch/plant fiber foaming tableware materials. Industrial Crops and Products 2025, 229 , 121011. https://doi.org/10.1016/j.indcrop.2025.121011
    7. Yifan Xue, Ben Niu, Yanchao Han, Weijie Wu, Guannan Wang, Ming Yin, Xiangjun Fang, Ruiling Liu, Hangjun Chen, Haiyan Gao, Honglei Mu. Development of cushioning-antibacterial dual-functional cellulose packaging and its application for the Chinese bayberry during simulated transportation vibration. Food Packaging and Shelf Life 2025, 49 , 101490. https://doi.org/10.1016/j.fpsl.2025.101490
    8. Florencia Muratore, Lautaro Lujan, Ezequiel Pérez, María L. Goñi, Raquel E. Martini. Biobased insulating materials from rapeseed harvest residues: Effect of fiber extraction treatment on final properties. Biomass and Bioenergy 2025, 197 , 107825. https://doi.org/10.1016/j.biombioe.2025.107825
    9. Fernando Visconti, Claudia Sillero-Vizcaíno, Amparo López-Rubio, Isaac Benito-González. Potentials and limitations of sandwiched layers of raw lignocellulosic aerogels for soil water content enhancement under drought conditions. Journal of Environmental Management 2025, 385 , 125609. https://doi.org/10.1016/j.jenvman.2025.125609
    10. Pontree Itkor, Athip Boonsiriwit, Chatchai Rodwihok, Ubonrat Siripatrawan, Youn Suk Lee. Active bio-foam packaging based on sodium alginate incorporated with vanillin for extending the shelf life of cherry tomatoes. International Journal of Biological Macromolecules 2025, 306 , 141610. https://doi.org/10.1016/j.ijbiomac.2025.141610
    11. Zonghong Lu, Hao Zhang, Qingbo Wang, Martti Toivakka, Chunlin Xu, Xiaoju Wang. Hierarchical Assembly of Cellulose Fibrils and Tannin in Biocomposite Foam: Scalable Production via Oven Drying and Customizable Metal Ions Release for Antimicrobial Activity. Small 2025, 33 https://doi.org/10.1002/smll.202501776
    12. Zicong Zhang, Fayi Hao, Dan Hu, Weili Liu, Xingyu Chen. Natural Plant Fiber‐Based Materials for Packaging Applications – A Review of Recent Innovations and Developments. Advanced Materials Technologies 2025, 10 (7) https://doi.org/10.1002/admt.202401020
    13. Peipei Wang, Luxin Fang, Shihao Wang, Shaohua Jin, Pan Chen, Ang Lu, Junfeng Wang. Thermal insulating cellulose/wood foam for passive radiant cooling. International Journal of Biological Macromolecules 2025, 294 , 139438. https://doi.org/10.1016/j.ijbiomac.2024.139438
    14. Mahnaz Montazeri, Reza Norouzbeigi. Ambient-dried, natural palm tree trunk–based hydrophobic foam for efficient oil sorption. Industrial Crops and Products 2025, 225 , 120551. https://doi.org/10.1016/j.indcrop.2025.120551
    15. Pontree Itkor, Ajit Kumar Singh, Athip Boonsiriwit, Myungho Lee, Ubonrat Siripatrawan, Youn Suk Lee. Fabrication of novel sodium alginate‐based biofoam and evaluation of its packaging cushion performance on banana fruit. Journal of Food Science 2025, 90 (3) https://doi.org/10.1111/1750-3841.70140
    16. Na Cheng, Chao Liu, Yufa Gao, Meiyan Wu, Guang Yu, Chaoji Chen, Mehdi Rahmaninia, Jing Shen, Bin Li. Ultra‐Elastic, Durable, Bio‐Degradable, and Recyclable Pulp Foam as an Air Dielectric Substitute for Sustainable Capacitive Pressure Sensing. Advanced Functional Materials 2025, 2 https://doi.org/10.1002/adfm.202423122
    17. Xinyu Cao, Xu Guo, Tianyuan Xiao, Wenchao Jia, Xiaodi Liu, Changgeng Li, He Zhang, Pedram Fatehi, Haiqiang Shi. Superhydrophobic biomass-based aerogel fabricated in lithium bromide trihydrate for oil adsorption. Separation and Purification Technology 2025, 354 , 129421. https://doi.org/10.1016/j.seppur.2024.129421
    18. Keya Mondal, Kushagra Advani, Snigdha Ghosh, Kadhiravan Shanmugnathan, Goutam Kulsi, Swaminathan Sivaram, Sayam Sen Gupta. Shola : a 3D porous hydrophobic–oleophilic lignocellulosic material for efficient oil/water separation. Journal of Materials Chemistry A 2025, 13 (3) , 1983-1995. https://doi.org/10.1039/D4TA06463A
    19. Pontree Itkor, Youn Suk Lee, Ajit Kumar Singh, Athip Boonsiriwit, Chattraya Ngamlerst, Myungho Lee, Seok Choi. Facile production of recycled paper bio-foam via citric acid crosslinking: an eco-friendly thermal insulation packaging material. Cellulose 2025, 32 (1) , 313-327. https://doi.org/10.1007/s10570-024-06277-x
    20. E. Orzan, A. Barrio, V. Biegler, J.B. Schaubeder, A. Bismarck, S. Spirk, T. Nypelö. Foaming and cross-linking of cellulose fibers using phytic acid. Carbohydrate Polymers 2025, 347 , 122617. https://doi.org/10.1016/j.carbpol.2024.122617
    21. Markus Wagner, Veronika Biegler, Sebastian Wurm, Georg Baumann, Tiina Nypelö, Alexander Bismarck, Florian Feist. Pulp fibre foams: Morphology and mechanical performance. Composites Part A: Applied Science and Manufacturing 2025, 188 , 108515. https://doi.org/10.1016/j.compositesa.2024.108515
    22. Yonggang Du, Yongfei Zhu, Jiayi Li, Yuxuan Li, Jianrui Xiao. Multifunctional superhydrophobic sugarcane bagasse capable of efficiently separating oil-water mixtures and degrading MB. International Journal of Biological Macromolecules 2024, 283 , 137386. https://doi.org/10.1016/j.ijbiomac.2024.137386
    23. Yiru Zheng, Jianming Liao, Ye Fang, Renbing Gui, Yansu Hou, Min Zhang, Yunyuan Dong, Qifu Zheng, Pengcheng Luan, Xiaobin Chen. Innovative fabrication of eco-friendly bio-based foam from sugarcane bagasse and sodium alginate with enhanced properties and sustainable applications for plastic replacement. International Journal of Biological Macromolecules 2024, 282 , 137464. https://doi.org/10.1016/j.ijbiomac.2024.137464
    24. Maryam El Hajam, Wenjing Sun, Rakibul Hossain, Islam Hafez, Caitlin Howell, Mehdi Tajvidi. Surfactant-assisted foam-forming of high performance ultra-low density structures made from lignocellulosic materials and cellulose nanofibrils (CNFs). Industrial Crops and Products 2024, 221 , 119357. https://doi.org/10.1016/j.indcrop.2024.119357
    25. Namuundari Bat-Ochir, Aichen Zhao, Yu Liu, Xiaodong Zhu. Biomass-derived wood foam: a solution for efficient thermal insulation in construction. Wood Material Science & Engineering 2024, , 1-11. https://doi.org/10.1080/17480272.2024.2432452
    26. Rouillon Charlie, Foucat Loïc, Chaunier Laurent, Maigret Jean-Eudes, El Maana Sana, Duchemin Benoit, Cathala Bernard, Villares Ana, Celine Moreau. From water molecule mobility to water-resistance of swollen oriented and non-oriented cellulose nanofibril cryogels. Cellulose 2024, 31 (17) , 10191-10207. https://doi.org/10.1007/s10570-024-06178-z
    27. Catarina Fernandes, María José Aliaño-González, Leandro Cid Gomes, Diana Bernin, Rita Gaspar, Pedro Fardim, Marco S. Reis, Luís Alves, Bruno Medronho, Maria Graça Rasteiro, Carla Varela. Lignin extraction from acacia wood: Crafting deep eutectic solvents with a systematic D-optimal mixture-process experimental design. International Journal of Biological Macromolecules 2024, 280 , 135936. https://doi.org/10.1016/j.ijbiomac.2024.135936
    28. Isaac Yair Miranda‐Valdez, Tero Mäkinen, Xiang Hu, Juha Lejon, Mohamed Elamir, Leevi Viitanen, Luisa Jannuzzi, Juha Koivisto, Mikko Juhani Alava. Bio‐Based Foams to Function as Future Plastic Substitutes by Biomimicry: Inducing Hydrophobicity with Lignin. Advanced Engineering Materials 2024, 26 (20) https://doi.org/10.1002/adem.202400233
    29. Eliott Orzan, Aitor Barrio, Stefan Spirk, Tiina Nypelö. Elucidation of cellulose phosphorylation with phytic acid. Industrial Crops and Products 2024, 218 , 118858. https://doi.org/10.1016/j.indcrop.2024.118858
    30. Yu Sun, Yongjian Xu, Wenjing Li, Xiaopeng Yue. Functional modification of softwood fiber and its application in natural fiber-based sound-absorbing composite. Industrial Crops and Products 2024, 218 , 119044. https://doi.org/10.1016/j.indcrop.2024.119044
    31. Jianming Liao, Yansu Hou, Xi Zhang, Jun Li, Min Zhang, Yunyuan Dong, Qifu Zheng, Xiaobin Chen. Bird-nest inspired cellulose-based biofoam with excellent performance enabled by gas–liquid interface co-assembly and thermal welding for plastic replacement. Chemical Engineering Journal 2024, 495 , 153412. https://doi.org/10.1016/j.cej.2024.153412
    32. Shuai Liu, Yuting Gao, Rui Zhang, Rina Wu, Peng Lu. Hydrophobic bio-based foam with improved mechanical strength and antibacterial activity via rosin coating. Industrial Crops and Products 2024, 216 , 118750. https://doi.org/10.1016/j.indcrop.2024.118750
    33. Dong Wu, Hao li, Guangxing Pan, Mi Wang, Wen Yu, Gui-Gen Wang, Jiaheng Zhang. Sustainable superwetting membrane for effective separation of oil–water emulsion and dye removal. Separation and Purification Technology 2024, 343 , 127084. https://doi.org/10.1016/j.seppur.2024.127084
    34. Xinyu An, Chang Ma, Ling Gong, Chang Liu, Ning Li, Zhiming Liu, Xu Li. Ionic-physical–chemical triple cross-linked all-biomass-based aerogel for thermal insulation applications. Journal of Colloid and Interface Science 2024, 668 , 678-690. https://doi.org/10.1016/j.jcis.2024.04.138
    35. Mahnaz Montazeri, Reza Norouzbeigi. Fabrication and Characterization of Renewable Alginate-Lignin Aerogel for Efficient Oil Absorption. Journal of Polymers and the Environment 2024, 32 (7) , 2937-2951. https://doi.org/10.1007/s10924-023-03121-4
    36. Xin Li, Tuhua Zhong, Yunyan Xiao, Haitao Cheng, Hong Chen. Mechanically robust, thermal insulating sustainable foams fully derived from bamboo fibers through high temperature drying. Carbohydrate Polymers 2024, 333 , 121966. https://doi.org/10.1016/j.carbpol.2024.121966
    37. Sangeeta Sankhla, Swati Neogi. Ambient-dried, scalable and biodegradable cellulose nanofibers aerogel for oil-spill cleanup. Journal of Environmental Chemical Engineering 2024, 12 (3) , 112745. https://doi.org/10.1016/j.jece.2024.112745
    38. Yansu Hou, Jianming Liao, Long Li, Zhan Liu, Chuan Xu, Lihuan Mo, Jun Li. A novel eco-friendly lightweight cellulose-based foam with superior resilience and hydrophobicity for selective oil/water separation. Cellulose 2024, 31 (7) , 4409-4420. https://doi.org/10.1007/s10570-024-05888-8
    39. Yingqi Gu, Yucai Shen, Tinghao Wu, Fangzhou Hu, Tingwei Wang. Comprehensive enhancement of flame retardant starch/cellulose/diatomite composite foams via metal-organic coordination. International Journal of Biological Macromolecules 2024, 266 , 131313. https://doi.org/10.1016/j.ijbiomac.2024.131313
    40. Maria C.S. Oliveira, Diego M. Nascimento, Elisa S. Ferreira, Juliana S. Bernardes. Combining and concentrating nanocelluloses for cryogels with remarkable strength and wet resilience. Carbohydrate Polymers 2024, 330 , 121740. https://doi.org/10.1016/j.carbpol.2023.121740
    41. Guiyang Zheng, Xuelian Kang, Haoran Ye, Wei Fan, Christian Sonne, Su Shiung Lam, Rock Keey Liew, Changlei Xia, Yang Shi, Shengbo Ge. Recent advances in functional utilisation of environmentally friendly and recyclable high-performance green biocomposites: A review. Chinese Chemical Letters 2024, 35 (4) , 108817. https://doi.org/10.1016/j.cclet.2023.108817
    42. Hao Sun, Dingyuan Zheng, Yeling Zhu, Penghui Zhu, Yuhang Ye, Yifan Zhang, Zhengyang Yu, Pu Yang, Xia Sun, Feng Jiang. Multiscale Design for Robust, Thermal Insulating, and Flame Self‐Extinguishing Cellulose Foam. Small 2024, 20 (12) https://doi.org/10.1002/smll.202306942
    43. Angelo Cezar Lucizani, Matheus Samponi Tucunduva Arantes, Victor Verissimo Cardoso Lima, Rosinaldo Rabelo Aparício, Egon Petersohn Junior, Oscar Giordani Paniz, Washington Luiz Esteves Magalhães, José Pedro Mansueta Serbena. Permeability of cellulose pulp membranes with nanocellulose. Matéria (Rio de Janeiro) 2024, 29 (4) https://doi.org/10.1590/1517-7076-rmat-2024-0260
    44. Isaac Y. Miranda-Valdez, Maryam Roza Yazdani, Tero Mäkinen, Sebastian Coffeng, Leevi Viitanen, Juha Koivisto, Mikko J. Alava. Cellulose foams as scalable templates for phase change materials. Journal of Energy Storage 2023, 73 , 109036. https://doi.org/10.1016/j.est.2023.109036
    45. Shuai Liu, Yuting Gao, Liyan Ma, Rina Wu, Peng Lu. Plant fiber foam reinforced with distiller's grains and its static cushioning properties. Industrial Crops and Products 2023, 206 , 117658. https://doi.org/10.1016/j.indcrop.2023.117658
    46. Srishti, Aditya Kumar. Sustainable approach to oil recovery from oil spills through superhydrophobic jute fabric. Marine Pollution Bulletin 2023, 197 , 115701. https://doi.org/10.1016/j.marpolbul.2023.115701
    47. Zhi-Zhou Chen, Sha Si, Zhi-Hao Cai, Wen-Jie Jiang, Ya-Nan Liu, Dan Zhao. Application of metal-organic skeletons and cellulose composites in nanomedicine. Cellulose 2023, 30 (16) , 9955-9972. https://doi.org/10.1007/s10570-023-05523-y
    48. Filipe V. Ferreira, Alana G. Souza, Rubina Ajdary, Lucas P. de Souza, João H. Lopes, Daniel S. Correa, Gilberto Siqueira, Hernane S. Barud, Derval dos S. Rosa, Luiz H.C. Mattoso, Orlando J. Rojas. Nanocellulose-based porous materials: Regulation and pathway to commercialization in regenerative medicine. Bioactive Materials 2023, 29 , 151-176. https://doi.org/10.1016/j.bioactmat.2023.06.020
    49. Jianming Liao, Yansu Hou, Jun Li, Min Zhang, Yunyuan Dong, Xiaobin Chen. Lightweight and recyclable hybrid multifunctional foam based cellulose fibers with excellent flame retardant, thermal, and acoustic insulation property. Composites Science and Technology 2023, 244 , 110315. https://doi.org/10.1016/j.compscitech.2023.110315
    50. Yuheng Zhang, Xinyan Wang, Yujia Duan, Chao Li, Yi Cheng, Yehan Tao, Jie Lu, Jian Du, Haisong Wang. Biological-mechanical pretreated rice straw for constructing foam with mechanically robust and fire-retardant behaviors. Industrial Crops and Products 2023, 204 , 117409. https://doi.org/10.1016/j.indcrop.2023.117409
    51. Amir Varamesh, Brett David Abraham, Hui Wang, Paula Berton, Heng Zhao, Keith Gourlay, Gurminder Minhas, Qingye Lu, Steven L. Bryant, Jinguang Hu. Multifunctional fully biobased aerogels for water remediation: Applications for dye and heavy metal adsorption and oil/water separation. Journal of Hazardous Materials 2023, 457 , 131824. https://doi.org/10.1016/j.jhazmat.2023.131824
    52. Eupidio Scopel, Camilla H. M. Camargos, Lidiane O. Pinto, Henrique Trevisan, Elisa S. Ferreira, Camila A. Rezende. Broadening the product portfolio with cellulose and lignin nanoparticles in an elephant grass biorefinery. Biofuels, Bioproducts and Biorefining 2023, 17 (4) , 859-872. https://doi.org/10.1002/bbb.2476
    53. Yucheng Jiang, Chao Li, Lijun Zhang, Haisheng Lin, Shu Zhang, Yi Wang, Song Hu, Jun Xiang, Xun Hu. Influence of torrefaction with microwave and furnace heating on pyrolysis of poplar sawdust. Fuel Processing Technology 2023, 245 , 107696. https://doi.org/10.1016/j.fuproc.2023.107696
    54. Zhichao Lou, Yao Zhang, Yanjun Li, Lei Xu. Study on microscopic physical and chemical properties of biomass materials by AFM. Journal of Materials Research and Technology 2023, 24 , 10005-10026. https://doi.org/10.1016/j.jmrt.2023.05.176
    55. Sourav Bej, Hemen Sarma, Meenakshi Ghosh, Priyabrata Banerjee. Metal-organic frameworks/cellulose hybrids with their modern technological implementation towards water treatment. Environmental Pollution 2023, 323 , 121278. https://doi.org/10.1016/j.envpol.2023.121278
    56. Yongxing Zhou, Wenbo Yin, Yuliang Guo, Chenni Qin, Yizheng Qin, Yang Liu. Green Preparation of Lightweight, High-Strength Cellulose-Based Foam and Evaluation of Its Adsorption Properties. Polymers 2023, 15 (8) , 1879. https://doi.org/10.3390/polym15081879
    57. Isaac Y. Miranda-Valdez, Sebastian Coffeng, Yu Zhou, Leevi Viitanen, Xiang Hu, Luisa Jannuzzi, Antti Puisto, Mauri A. Kostiainen, Tero Mäkinen, Juha Koivisto, Mikko J. Alava. Foam-formed biocomposites based on cellulose products and lignin. Cellulose 2023, 30 (4) , 2253-2266. https://doi.org/10.1007/s10570-022-05041-3
    58. Mengling Xie, Mingqiang Zhong, Chenni Qin, Yang Liu, Hui Zhao, Wenbo Yin. Novel bagasse cellulose-based foams with pH-responsive wetting properties for controlled oil/water separation. Industrial Crops and Products 2023, 193 , 116192. https://doi.org/10.1016/j.indcrop.2022.116192
    59. Dan Ouyang, Xiaotian Lei, Honglei Zheng. Recent Advances in Biomass-Based Materials for Oil Spill Cleanup. Nanomaterials 2023, 13 (3) , 620. https://doi.org/10.3390/nano13030620
    60. Elisa S. Ferreira, Elizabeth Dobrzanski, Praphulla Tiwary, Prashant Agrawal, Richard Chen, Emily D. Cranston. Insulative wood materials templated by wet foams. Materials Advances 2023, 4 (2) , 641-650. https://doi.org/10.1039/D2MA00852A
    61. Longfei Sun, Lin Liu, Mingbang Wu, Dengfeng Wang, Rongsheng Shen, Hanfei Zhao, Jing Lu, Juming Yao. Nanocellulose interface enhanced all-cellulose foam with controllable strength via a facile liquid phase exchange route. Carbohydrate Polymers 2023, 299 , 120192. https://doi.org/10.1016/j.carbpol.2022.120192
    62. Yeling Zhu, Jiaying Zhu, Zhengyang Yu, Yuhang Ye, Xia Sun, Yifan Zhang, Penghui Zhu, Feng Jiang. Air drying scalable production of hydrophobic, mechanically stable, and thermally insulating lignocellulosic foam. Chemical Engineering Journal 2022, 450 , 138300. https://doi.org/10.1016/j.cej.2022.138300
    63. Lana S. Maia, Noelle C. Zanini, Paulo H. Camani, Rennan F.S. Barbosa, Alana G. Souza, Simone F. Medeiros, Derval S. Rosa. Coffee husks residues incorporated into polyurethane foam towards greener material for diesel S10 and S500 removal and recovery. Industrial Crops and Products 2022, 189 , 115747. https://doi.org/10.1016/j.indcrop.2022.115747
    64. M. Stanisz, Ł. Klapiszewski, M.N. Collins, T. Jesionowski. Recent progress in biomedical and biotechnological applications of lignin-based spherical nano- and microstructures: a comprehensive review. Materials Today Chemistry 2022, 26 , 101198. https://doi.org/10.1016/j.mtchem.2022.101198
    65. Qinwei Fan, Tao Lu, Yankang Deng, Yingying Zhang, Wenjing Ma, Ranhua Xiong, Chaobo Huang. Bio-based materials with special wettability for oil-water separation. Separation and Purification Technology 2022, 297 , 121445. https://doi.org/10.1016/j.seppur.2022.121445
    66. Jianming Liao, Pengcheng Luan, Yuxiang Zhang, Li Chen, Luyao Huang, Lihuan Mo, Jun Li, Qingang Xiong. A lightweight, biodegradable, and recyclable cellulose-based bio-foam with good mechanical strength and water stability. Journal of Environmental Chemical Engineering 2022, 10 (3) , 107788. https://doi.org/10.1016/j.jece.2022.107788
    67. Daniel J. da Silva, Derval S. Rosa. Chromium removal capability, water resistance and mechanical behavior of foams based on cellulose nanofibrils with citric acid. Polymer 2022, 253 , 125023. https://doi.org/10.1016/j.polymer.2022.125023
    68. Xiaotao Zhu, Zhongshuai Gao, Fangchao Li, Gan Miao, Ting Xu, Xiao Miao, Yuanming Song, Xiangming Li, Guina Ren. Superlyophobic graphene oxide/polydopamine coating under liquid system for liquid/liquid separation, dye removal, and anti-corrosion. Carbon 2022, 190 , 329-336. https://doi.org/10.1016/j.carbon.2022.01.018
    69. Zhuolun Jiang, To Ngai. Recent Advances in Chemically Modified Cellulose and Its Derivatives for Food Packaging Applications: A Review. Polymers 2022, 14 (8) , 1533. https://doi.org/10.3390/polym14081533
    70. Tia Lohtander, Reima Herrala, Päivi Laaksonen, Sami Franssila, Monika Österberg. Lightweight lignocellulosic foams for thermal insulation. Cellulose 2022, 29 (3) , 1855-1871. https://doi.org/10.1007/s10570-021-04385-6
    71. Hani Nasser Abdelhamid, Aji P. Mathew. Cellulose–metal organic frameworks (CelloMOFs) hybrid materials and their multifaceted Applications: A review. Coordination Chemistry Reviews 2022, 451 , 214263. https://doi.org/10.1016/j.ccr.2021.214263
    72. Jianming Liao, Pengcheng Luan, Yuxiang Zhang, Li Chen, Luyao Huang, Lihuan Mo, Jun Li, Qingang Xiong. A Lightweight, Biodegradable, and Recyclable Cellulose-Based Bio-Foam with Good Mechanical Strength and Water Stability. SSRN Electronic Journal 2022, 201 https://doi.org/10.2139/ssrn.4013266
    73. Dingyuan Zheng, Wenrui Yao, Ce Sun, Xiaojian Chen, Jiyuan Zhou, Baiwang Wang, Haiyan Tan, Yanhua Zhang, Yonggui Wang. Fluorescent wood sponge toward selective detection and efficient removal of Cr( vi ). Environmental Science: Nano 2021, 8 (11) , 3331-3342. https://doi.org/10.1039/D1EN00637A
    74. Jingwei Lu, Fangchao Li, Gan Miao, Xiao Miao, Guina Ren, Bo Wang, Yuanming Song, Xiangming Li, Xiaotao Zhu. Superhydrophilic/superoleophobic shell powder coating as a versatile platform for both oil/water and oil/oil separation. Journal of Membrane Science 2021, 637 , 119624. https://doi.org/10.1016/j.memsci.2021.119624
    75. Hongliang Ding, Shuilai Qiu, Xin Wang, Lei Song, Yuan Hu. Highly flame retardant, low thermally conducting, and hydrophobic phytic acid-guanazole-cellulose nanofiber composite foams. Cellulose 2021, 28 (15) , 9769-9783. https://doi.org/10.1007/s10570-021-04159-0
    76. Selorm Torgbo, Vo Minh Quan, Prakit Sukyai. Cellulosic value-added products from sugarcane bagasse. Cellulose 2021, 28 (9) , 5219-5240. https://doi.org/10.1007/s10570-021-03918-3
    77. Xiaoxiao Jiang, Rui Zhai, Mingjie Jin. Increased mixing intensity is not necessary for more efficient cellulose hydrolysis at high solid loading. Bioresource Technology 2021, 329 , 124911. https://doi.org/10.1016/j.biortech.2021.124911
    78. Elisa S. Ferreira, Camila A. Rezende, Emily D. Cranston. Fundamentals of cellulose lightweight materials: bio-based assemblies with tailored properties. Green Chemistry 2021, 23 (10) , 3542-3568. https://doi.org/10.1039/D1GC00326G
    79. Eupídio Scopel, Camila A. Rezende. Biorefinery on-demand: Modulating pretreatments to recover lignin, hemicellulose, and extractives as co-products during ethanol production. Industrial Crops and Products 2021, 163 , 113336. https://doi.org/10.1016/j.indcrop.2021.113336
    80. Marcin Masłowski, Andrii Aleksieiev, Justyna Miedzianowska, Krzysztof Strzelec. Common Nettle (Urtica dioica L.) as an Active Filler of Natural Rubber Biocomposites. Materials 2021, 14 (7) , 1616. https://doi.org/10.3390/ma14071616
    81. Kai Li, Denver Mcgrady, Xianhui Zhao, Darby Ker, Halil Tekinalp, Xin He, Jun Qu, Tolga Aytug, Ercan Cakmak, Jon Phipps, Sean Ireland, Vlastimil Kunc, Soydan Ozcan. Surface-modified and oven-dried microfibrillated cellulose reinforced biocomposites: Cellulose network enabled high performance. Carbohydrate Polymers 2021, 256 , 117525. https://doi.org/10.1016/j.carbpol.2020.117525

    ACS Sustainable Chemistry & Engineering

    Cite this: ACS Sustainable Chem. Eng. 2020, 8, 22, 8267–8278
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acssuschemeng.0c01480
    Published May 13, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    3983

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.