ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVResearch ArticleNEXT

Design of Effective Catalysts Based on ZnLaZrSi Oxide Systems for Obtaining 1,3-Butadiene from Aqueous Ethanol

  • Olga V. Larina
    Olga V. Larina
    L.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine 31 Prosp. Nauky, 03028 Kyiv, Ukraine
  • Nataliya D. Shcherban
    Nataliya D. Shcherban
    L.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine 31 Prosp. Nauky, 03028 Kyiv, Ukraine
  • Pavlo I. Kyriienko*
    Pavlo I. Kyriienko
    L.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine 31 Prosp. Nauky, 03028 Kyiv, Ukraine
    *Email: [email protected]
  • Ivan M. Remezovskyi
    Ivan M. Remezovskyi
    L.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine 31 Prosp. Nauky, 03028 Kyiv, Ukraine
  • Pavlo S. Yaremov
    Pavlo S. Yaremov
    L.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine 31 Prosp. Nauky, 03028 Kyiv, Ukraine
  • Ivan Khalakhan
    Ivan Khalakhan
    Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague, Czech Republic
  • Gregor Mali
    Gregor Mali
    Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
    More by Gregor Mali
  • Sergiy O. Soloviev
    Sergiy O. Soloviev
    L.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine 31 Prosp. Nauky, 03028 Kyiv, Ukraine
  • Svitlana M. Orlyk
    Svitlana M. Orlyk
    L.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine 31 Prosp. Nauky, 03028 Kyiv, Ukraine
  • , and 
  • Stanislaw Dzwigaj*
    Stanislaw Dzwigaj
    Laboratoire de Réactivité de Surface, Sorbonne Université-CNRS, UMR 7197, F-75005 Paris, France
    *Email: [email protected]
Cite this: ACS Sustainable Chem. Eng. 2020, 8, 44, 16600–16611
Publication Date (Web):October 23, 2020
https://doi.org/10.1021/acssuschemeng.0c05925
Copyright © 2020 American Chemical Society

    Article Views

    667

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (4 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    ZnLaZrSi oxide systems prepared with a silica component of the different nature have been studied in 1,3-butadiene production from aqueous ethanol. The following silica materials were used: KSKG, A-175, A-380, SBA-15, MCM-41, MCM-48, MCF, and dealuminated BEA zeolites. The characteristics of the porous structure of the silica support, such as porosity, pore size distribution, and specific and external surface areas, were found not to be critical parameters for achieving a high 1,3-butadiene yield during the EtOH–H2O mixture conversion in the presence of ZnLaZrSi oxide catalysts. On the contrary, the quantity and strength of Lewis acid sites, which in turn differ depending on the choice of silica material, have a significant impact on 1,3-butadiene selectivity and yield. The highest values of the selectivity of 1,3-butadiene formation (up to 68%) and yield as well as stability toward deactivation in the presence of H2O were achieved over ZnLaZr–KSKG, ZnLaZr–SBA-15, and ZnLa–Zr1SiBEA (with mononuclear isolated tetrahedral Zr(IV) species). The productivity of ZnLa–Zr1SiBEA catalyst accounts for 0.324 g1,3-BD·gcat–1·h–1 (T = 648 K, WHSV = 2.88 h–1, 80 vol % EtOH in water as an EtOH source). The main reason for the decrease in 1,3-butadiene yield in the presence of H2O in the reaction mixture was shown to be a deactivation of acetaldehyde condensation sites on the catalyst surface, while the rate of acetaldehyde formation decreases slightly. According to 1H–13C CP/MAS NMR spectroscopic results, the use of aqueous ethanol as the feed for the ethanol-to-butadiene process is very advantageous to prevent the carburization of the catalysts.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acssuschemeng.0c05925.

    • 29Si and 1H–29Si CP MAS NMR spectra of ZnLa–Zr3SiBEA sample, SEM images of the ZnLaZrSi samples at three magnifications, the indices of EtOH–water mixture conversion in the presence of ZnLaZrSi oxide systems, and the indices of the ETB process in the presence of 2% ZnO/6% ZrO2-KSKG (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 24 publications.

    1. Xin-Yu Wang, Qi-Wen He, Dai-Song Tang, Xiao Shang, Xiao-Chun Wang. First-Principles Investigation of Two-Dimensional CuPP-Grid Molecular Sieves for C4 Hydrocarbon Purification by a Double-Bond Effect. ACS Applied Nano Materials 2023, 6 (18) , 16221-16230. https://doi.org/10.1021/acsanm.3c02215
    2. Denis D. Dochain, Ales Styskalik, Vit Vykoukal, Alexandre Vimont, Arnaud Travert, Damien P. Debecker. Non-hydrolytic Sol–Gel Routes to Bifunctional Cu–Ta–SiO2 Catalysts for the Upgrading of Ethanol to Butadiene. Chemistry of Materials 2023, 35 (17) , 7113-7124. https://doi.org/10.1021/acs.chemmater.3c01407
    3. Kangzhou Wang, Lisheng Guo, Weizhe Gao, Baizhang Zhang, Heng Zhao, Jiaming Liang, Na Liu, Yingluo He, Peipei Zhang, Guohui Yang, Noritatsu Tsubaki. One-Pot Hydrothermal Synthesis of Multifunctional ZnZrTUD-1 Catalysts for Highly Efficient Direct Synthesis of Butadiene from Ethanol. ACS Sustainable Chemistry & Engineering 2021, 9 (31) , 10569-10578. https://doi.org/10.1021/acssuschemeng.1c02630
    4. Hongliang Huang, Zefeng Jiang, Lu Wang, Zhi Fang, Wenjuan Xue, Xiangyu Guo, Chongli Zhong. Guest molecule engineered pore aperture of a yttrium-based metal–organic framework for efficient 1,3-butadiene separation from C4 hydrocarbons. Separation and Purification Technology 2023, 327 , 124949. https://doi.org/10.1016/j.seppur.2023.124949
    5. Na Liu, Yingluo He, Kangzhou Wang, Fei Chen, Jie Yao, Guohui Yang, Shufang Huang, Lishu Shao, Noritatsu Tsubaki. Tuning the Acid–Base Properties of Lignin-Derived Carbon Modulated ZnZr/SiO2 Catalysts for Selective and Efficient Production of Butadiene from Ethanol. Molecules 2023, 28 (18) , 6632. https://doi.org/10.3390/molecules28186632
    6. Zeyu Chang, Xiaoxia Jia, Tong Li, Yong Wang, Libo Li. Efficient separation of C4 olefins with fluorinated anion-pillared hybrid ultramicroporous materials by gate-opening and size-sieving effect. Separation and Purification Technology 2023, 318 , 123956. https://doi.org/10.1016/j.seppur.2023.123956
    7. Olga V. Larina, Oksana V. Zikrata, Lidiya M. Alekseenko, Sergiy O. Soloviev, Svitlana M. Orlyk. The effect of modification of Zn–Mg(Zr)Si oxide catalysts with rare-earth elements (Y, La, Ce) in the ethanol-to-1,3-butadiene process. Applied Nanoscience 2023, 60 https://doi.org/10.1007/s13204-023-02876-5
    8. Svitlana Orlyk, Pavlo Kyriienko, Andriy Kapran, Valeriy Chedryk, Dmytro Balakin, Jacek Gurgul, Malgorzata Zimowska, Yannick Millot, Stanislaw Dzwigaj. CO2-Assisted Dehydrogenation of Propane to Propene over Zn-BEA Zeolites: Impact of Acid–Base Characteristics on Catalytic Performance. Catalysts 2023, 13 (4) , 681. https://doi.org/10.3390/catal13040681
    9. Kangzhou Wang, Na Liu, Qingxiang Ma, Yugo Kawabata, Fan Wang, Weizhe Gao, Baizhang Zhang, Xiaoyu Guo, Yingluo He, Guohui Yang, Noritatsu Tsubaki. Probing the promotional roles of lanthanum in physicochemical properties and performance of ZnZr/Si-beta catalyst for direct conversion of aqueous ethanol to butadiene. Catalysis Today 2023, 411-412 , 113800. https://doi.org/10.1016/j.cattod.2022.06.015
    10. Blanka Szabó, Virág Hutkai, Gyula Novodárszki, Ferenc Lónyi, Zoltán Pászti, Zsolt Fogarassy, József Valyon, Róbert Barthos. A study of the conversion of ethanol to 1,3-butadiene: effects of chemical and structural heterogeneity on the activity of MgO–SiO 2 mixed oxide catalysts. Reaction Chemistry & Engineering 2023, 8 (3) , 718-731. https://doi.org/10.1039/D2RE00450J
    11. Na Liu, Lin Zhang, Kangzhou Wang, Lishu Shao, Xiaoyu Guo, Yingluo He, Zhiping Wu, Peng Zhan, Guangbo Liu, Jinhu Wu, Guohui Yang, Noritatsu Tsubaki. Selective synthesis of butadiene directly from aqueous ethanol over high performance multifunctional catalyst based on ZnZrSi oxide system. Applied Surface Science 2022, 602 , 154299. https://doi.org/10.1016/j.apsusc.2022.154299
    12. Shu-Xuan Dang, Han-Xuan Liu, Tao Ban, Xin Gao, Zheng-Qing Huang, Dong-Yuan Yang, Chun-Ran Chang. Reaction mechanism of one-step conversion of ethanol to 1,3-butadiene over Zn-Y/BEA and superior catalysts screening. Chinese Journal of Chemical Physics 2022, 35 (4) , 600-610. https://doi.org/10.1063/1674-0068/cjcp2204078
    13. Blanka Szabó, Gyula Novodárszki, Ferenc Lónyi, László Trif, Zsolt Fogarassy, József Valyon, Róbert Barthos. Texture and morphology-directed activity of magnesia-silica mixed oxide catalysts of ethanol-to-butadiene reaction. Journal of Molecular Structure 2022, 1259 , 132764. https://doi.org/10.1016/j.molstruc.2022.132764
    14. Kangzhou Wang, Xiaobo Peng, Chengwei Wang, Weizhe Gao, Na Liu, Xiaoyu Guo, Yingluo He, Guohui Yang, Lilong Jiang, Noritatsu Tsubaki. Selective direct conversion of aqueous ethanol into butadiene via rational design of multifunctional catalysts. Catalysis Science & Technology 2022, 12 (7) , 2210-2222. https://doi.org/10.1039/D1CY02149D
    15. Andrii Kostyniuk, David Bajec, Blaž Likozar. Catalytic hydrocracking reactions of tetralin biomass tar model compound to benzene, toluene and xylenes (BTX) over metal-modified ZSM-5 in ambient pressure reactor. Renewable Energy 2022, 188 , 240-255. https://doi.org/10.1016/j.renene.2022.01.090
    16. Wang Lu, Hongliang Huang, Zhu Hejin, Chang Yanjiao, Guo Xiangyu, Yang Fan, Chongli Zhong. Efficient separation of 1,3‐butadiene from C4 hydrocarbons by flexible metal–organic framework with gate‐opening effect. AIChE Journal 2022, 68 (4) https://doi.org/10.1002/aic.17568
    17. Pavlo I. Kyriienko, Olga V. Larina, Dmytro Yu. Balakin, Sergiy O. Soloviev, Svitlana M. Orlyk. Influence of Copper and Silver on Catalytic Performance of MgO–SiO2 System for 1,3-Butadiene Production from Aqueous Ethanol. Catalysis Letters 2022, 152 (3) , 921-930. https://doi.org/10.1007/s10562-021-03704-7
    18. G.M. Cabello González, A.L. Villanueva Perales, A. Martínez, M. Campoy, F. Vidal-Barrero. Conversion of aqueous ethanol/acetaldehyde mixtures into 1,3-butadiene over a mesostructured Ta-SBA-15 catalyst: Effect of reaction conditions and kinetic modelling. Fuel Processing Technology 2022, 226 , 107092. https://doi.org/10.1016/j.fuproc.2021.107092
    19. Kangzhou Wang, Weizhe Gao, Fei Chen, Guangbo Liu, Jinhu Wu, Na Liu, Yugo Kawabata, Xiaoyu Guo, Yingluo He, Peipei Zhang, Guohui Yang, Noritatsu Tsubaki. Hierarchical nano-sized ZnZr-Silicalite-1 multifunctional catalyst for selective conversion of ethanol to butadiene. Applied Catalysis B: Environmental 2022, 301 , 120822. https://doi.org/10.1016/j.apcatb.2021.120822
    20. O. V. Larina, P. I. Kyriienko, O. V. Morozov, T. I. Obushenko, N. M. Tolstopalova, S. O. Soloviev. Influence of Modification of Zn-Mg(Zr)Si Oxide Systems by Sodium and Potassium on their Catalytic Properties in the Process of Obtaining 1,3-Butadiene from Ethanol. Theoretical and Experimental Chemistry 2022, 57 (6) , 443-450. https://doi.org/10.1007/s11237-022-09714-9
    21. O. V. Larina, M. M. Kurmach, P. I. Kyriienko, L. M. Alekseenko, O. V. Shvets, S. O. Soloviev. Influence of Acid–Base Characteristics of Hierarchical Cu/Zr-MTW Zeolites on their Catalytic Properties in 1,3-Butadiene Production from Ethanol–Water Mixtures. Theoretical and Experimental Chemistry 2021, 57 (5) , 343-350. https://doi.org/10.1007/s11237-021-09703-4
    22. G.M. Cabello González, A.L. Villanueva Perales, M. Campoy, J.R. López Beltran, A. Martínez, F. Vidal-Barrero. Kinetic modelling of the one-step conversion of aqueous ethanol into 1,3-butadiene over a mixed hemimorphite-HfO2/SiO2 catalyst. Fuel Processing Technology 2021, 216 , 106767. https://doi.org/10.1016/j.fuproc.2021.106767
    23. Pavlo I. Kyriienko, Olga V. Larina, Dmytro Yu. Balakin, Anatolii O. Stetsuk, Yurii M. Nychiporuk, Sergiy O. Soloviev, Svitlana M. Orlyk. 1,3-Butadiene production from aqueous ethanol over ZnO/MgO-SiO2 catalysts: Insight into H2O effect on catalytic performance. Applied Catalysis A: General 2021, 616 , 118081. https://doi.org/10.1016/j.apcata.2021.118081
    24. P. I. Kyriienko, O. V. Larina, N. D. Scherban, I. M. Remezovskyi, L. M. Alekseenko, P. S. Yaremov, S. O. Soloviev, S. M. Orlyk. Catalytic Properties of ZnLaZrSi-Oxide Systems in the Process of Obtaining 1,3-Butadiene from Ethanol–Aqueous Mixtures. Theoretical and Experimental Chemistry 2020, 56 (5) , 329-337. https://doi.org/10.1007/s11237-020-09662-2

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect