Design of Effective Catalysts Based on ZnLaZrSi Oxide Systems for Obtaining 1,3-Butadiene from Aqueous Ethanol
- Olga V. LarinaOlga V. LarinaL.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine 31 Prosp. Nauky, 03028 Kyiv, UkraineMore by Olga V. Larina
- ,
- Nataliya D. ShcherbanNataliya D. ShcherbanL.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine 31 Prosp. Nauky, 03028 Kyiv, UkraineMore by Nataliya D. Shcherban
- ,
- Pavlo I. Kyriienko*Pavlo I. Kyriienko*Email: [email protected]L.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine 31 Prosp. Nauky, 03028 Kyiv, UkraineMore by Pavlo I. Kyriienko
- ,
- Ivan M. RemezovskyiIvan M. RemezovskyiL.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine 31 Prosp. Nauky, 03028 Kyiv, UkraineMore by Ivan M. Remezovskyi
- ,
- Pavlo S. YaremovPavlo S. YaremovL.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine 31 Prosp. Nauky, 03028 Kyiv, UkraineMore by Pavlo S. Yaremov
- ,
- Ivan KhalakhanIvan KhalakhanDepartment of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague, Czech RepublicMore by Ivan Khalakhan
- ,
- Gregor MaliGregor MaliDepartment of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, SloveniaMore by Gregor Mali
- ,
- Sergiy O. SolovievSergiy O. SolovievL.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine 31 Prosp. Nauky, 03028 Kyiv, UkraineMore by Sergiy O. Soloviev
- ,
- Svitlana M. OrlykSvitlana M. OrlykL.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine 31 Prosp. Nauky, 03028 Kyiv, UkraineMore by Svitlana M. Orlyk
- , and
- Stanislaw Dzwigaj*Stanislaw Dzwigaj*Email: [email protected]Laboratoire de Réactivité de Surface, Sorbonne Université-CNRS, UMR 7197, F-75005 Paris, FranceMore by Stanislaw Dzwigaj
Abstract

ZnLaZrSi oxide systems prepared with a silica component of the different nature have been studied in 1,3-butadiene production from aqueous ethanol. The following silica materials were used: KSKG, A-175, A-380, SBA-15, MCM-41, MCM-48, MCF, and dealuminated BEA zeolites. The characteristics of the porous structure of the silica support, such as porosity, pore size distribution, and specific and external surface areas, were found not to be critical parameters for achieving a high 1,3-butadiene yield during the EtOH–H2O mixture conversion in the presence of ZnLaZrSi oxide catalysts. On the contrary, the quantity and strength of Lewis acid sites, which in turn differ depending on the choice of silica material, have a significant impact on 1,3-butadiene selectivity and yield. The highest values of the selectivity of 1,3-butadiene formation (up to 68%) and yield as well as stability toward deactivation in the presence of H2O were achieved over ZnLaZr–KSKG, ZnLaZr–SBA-15, and ZnLa–Zr1SiBEA (with mononuclear isolated tetrahedral Zr(IV) species). The productivity of ZnLa–Zr1SiBEA catalyst accounts for 0.324 g1,3-BD·gcat–1·h–1 (T = 648 K, WHSV = 2.88 h–1, 80 vol % EtOH in water as an EtOH source). The main reason for the decrease in 1,3-butadiene yield in the presence of H2O in the reaction mixture was shown to be a deactivation of acetaldehyde condensation sites on the catalyst surface, while the rate of acetaldehyde formation decreases slightly. According to 1H–13C CP/MAS NMR spectroscopic results, the use of aqueous ethanol as the feed for the ethanol-to-butadiene process is very advantageous to prevent the carburization of the catalysts.
Cited By
This article is cited by 24 publications.
- Xin-Yu Wang, Qi-Wen He, Dai-Song Tang, Xiao Shang, Xiao-Chun Wang. First-Principles Investigation of Two-Dimensional CuPP-Grid Molecular Sieves for C4 Hydrocarbon Purification by a Double-Bond Effect. ACS Applied Nano Materials 2023, 6 (18) , 16221-16230. https://doi.org/10.1021/acsanm.3c02215
- Denis D. Dochain, Ales Styskalik, Vit Vykoukal, Alexandre Vimont, Arnaud Travert, Damien P. Debecker. Non-hydrolytic Sol–Gel Routes to Bifunctional Cu–Ta–SiO2 Catalysts for the Upgrading of Ethanol to Butadiene. Chemistry of Materials 2023, 35 (17) , 7113-7124. https://doi.org/10.1021/acs.chemmater.3c01407
- Kangzhou Wang, Lisheng Guo, Weizhe Gao, Baizhang Zhang, Heng Zhao, Jiaming Liang, Na Liu, Yingluo He, Peipei Zhang, Guohui Yang, Noritatsu Tsubaki. One-Pot Hydrothermal Synthesis of Multifunctional ZnZrTUD-1 Catalysts for Highly Efficient Direct Synthesis of Butadiene from Ethanol. ACS Sustainable Chemistry & Engineering 2021, 9 (31) , 10569-10578. https://doi.org/10.1021/acssuschemeng.1c02630
- Hongliang Huang, Zefeng Jiang, Lu Wang, Zhi Fang, Wenjuan Xue, Xiangyu Guo, Chongli Zhong. Guest molecule engineered pore aperture of a yttrium-based metal–organic framework for efficient 1,3-butadiene separation from C4 hydrocarbons. Separation and Purification Technology 2023, 327 , 124949. https://doi.org/10.1016/j.seppur.2023.124949
- Na Liu, Yingluo He, Kangzhou Wang, Fei Chen, Jie Yao, Guohui Yang, Shufang Huang, Lishu Shao, Noritatsu Tsubaki. Tuning the Acid–Base Properties of Lignin-Derived Carbon Modulated ZnZr/SiO2 Catalysts for Selective and Efficient Production of Butadiene from Ethanol. Molecules 2023, 28 (18) , 6632. https://doi.org/10.3390/molecules28186632
- Zeyu Chang, Xiaoxia Jia, Tong Li, Yong Wang, Libo Li. Efficient separation of C4 olefins with fluorinated anion-pillared hybrid ultramicroporous materials by gate-opening and size-sieving effect. Separation and Purification Technology 2023, 318 , 123956. https://doi.org/10.1016/j.seppur.2023.123956
- Olga V. Larina, Oksana V. Zikrata, Lidiya M. Alekseenko, Sergiy O. Soloviev, Svitlana M. Orlyk. The effect of modification of Zn–Mg(Zr)Si oxide catalysts with rare-earth elements (Y, La, Ce) in the ethanol-to-1,3-butadiene process. Applied Nanoscience 2023, 60 https://doi.org/10.1007/s13204-023-02876-5
- Svitlana Orlyk, Pavlo Kyriienko, Andriy Kapran, Valeriy Chedryk, Dmytro Balakin, Jacek Gurgul, Malgorzata Zimowska, Yannick Millot, Stanislaw Dzwigaj. CO2-Assisted Dehydrogenation of Propane to Propene over Zn-BEA Zeolites: Impact of Acid–Base Characteristics on Catalytic Performance. Catalysts 2023, 13 (4) , 681. https://doi.org/10.3390/catal13040681
- Kangzhou Wang, Na Liu, Qingxiang Ma, Yugo Kawabata, Fan Wang, Weizhe Gao, Baizhang Zhang, Xiaoyu Guo, Yingluo He, Guohui Yang, Noritatsu Tsubaki. Probing the promotional roles of lanthanum in physicochemical properties and performance of ZnZr/Si-beta catalyst for direct conversion of aqueous ethanol to butadiene. Catalysis Today 2023, 411-412 , 113800. https://doi.org/10.1016/j.cattod.2022.06.015
- Blanka Szabó, Virág Hutkai, Gyula Novodárszki, Ferenc Lónyi, Zoltán Pászti, Zsolt Fogarassy, József Valyon, Róbert Barthos. A study of the conversion of ethanol to 1,3-butadiene: effects of chemical and structural heterogeneity on the activity of MgO–SiO 2 mixed oxide catalysts. Reaction Chemistry & Engineering 2023, 8 (3) , 718-731. https://doi.org/10.1039/D2RE00450J
- Na Liu, Lin Zhang, Kangzhou Wang, Lishu Shao, Xiaoyu Guo, Yingluo He, Zhiping Wu, Peng Zhan, Guangbo Liu, Jinhu Wu, Guohui Yang, Noritatsu Tsubaki. Selective synthesis of butadiene directly from aqueous ethanol over high performance multifunctional catalyst based on ZnZrSi oxide system. Applied Surface Science 2022, 602 , 154299. https://doi.org/10.1016/j.apsusc.2022.154299
- Shu-Xuan Dang, Han-Xuan Liu, Tao Ban, Xin Gao, Zheng-Qing Huang, Dong-Yuan Yang, Chun-Ran Chang. Reaction mechanism of one-step conversion of ethanol to 1,3-butadiene over Zn-Y/BEA and superior catalysts screening. Chinese Journal of Chemical Physics 2022, 35 (4) , 600-610. https://doi.org/10.1063/1674-0068/cjcp2204078
- Blanka Szabó, Gyula Novodárszki, Ferenc Lónyi, László Trif, Zsolt Fogarassy, József Valyon, Róbert Barthos. Texture and morphology-directed activity of magnesia-silica mixed oxide catalysts of ethanol-to-butadiene reaction. Journal of Molecular Structure 2022, 1259 , 132764. https://doi.org/10.1016/j.molstruc.2022.132764
- Kangzhou Wang, Xiaobo Peng, Chengwei Wang, Weizhe Gao, Na Liu, Xiaoyu Guo, Yingluo He, Guohui Yang, Lilong Jiang, Noritatsu Tsubaki. Selective direct conversion of aqueous ethanol into butadiene via rational design of multifunctional catalysts. Catalysis Science & Technology 2022, 12 (7) , 2210-2222. https://doi.org/10.1039/D1CY02149D
- Andrii Kostyniuk, David Bajec, Blaž Likozar. Catalytic hydrocracking reactions of tetralin biomass tar model compound to benzene, toluene and xylenes (BTX) over metal-modified ZSM-5 in ambient pressure reactor. Renewable Energy 2022, 188 , 240-255. https://doi.org/10.1016/j.renene.2022.01.090
- Wang Lu, Hongliang Huang, Zhu Hejin, Chang Yanjiao, Guo Xiangyu, Yang Fan, Chongli Zhong. Efficient separation of 1,3‐butadiene from C4 hydrocarbons by flexible metal–organic framework with gate‐opening effect. AIChE Journal 2022, 68 (4) https://doi.org/10.1002/aic.17568
- Pavlo I. Kyriienko, Olga V. Larina, Dmytro Yu. Balakin, Sergiy O. Soloviev, Svitlana M. Orlyk. Influence of Copper and Silver on Catalytic Performance of MgO–SiO2 System for 1,3-Butadiene Production from Aqueous Ethanol. Catalysis Letters 2022, 152 (3) , 921-930. https://doi.org/10.1007/s10562-021-03704-7
- G.M. Cabello González, A.L. Villanueva Perales, A. Martínez, M. Campoy, F. Vidal-Barrero. Conversion of aqueous ethanol/acetaldehyde mixtures into 1,3-butadiene over a mesostructured Ta-SBA-15 catalyst: Effect of reaction conditions and kinetic modelling. Fuel Processing Technology 2022, 226 , 107092. https://doi.org/10.1016/j.fuproc.2021.107092
- Kangzhou Wang, Weizhe Gao, Fei Chen, Guangbo Liu, Jinhu Wu, Na Liu, Yugo Kawabata, Xiaoyu Guo, Yingluo He, Peipei Zhang, Guohui Yang, Noritatsu Tsubaki. Hierarchical nano-sized ZnZr-Silicalite-1 multifunctional catalyst for selective conversion of ethanol to butadiene. Applied Catalysis B: Environmental 2022, 301 , 120822. https://doi.org/10.1016/j.apcatb.2021.120822
- O. V. Larina, P. I. Kyriienko, O. V. Morozov, T. I. Obushenko, N. M. Tolstopalova, S. O. Soloviev. Influence of Modification of Zn-Mg(Zr)Si Oxide Systems by Sodium and Potassium on their Catalytic Properties in the Process of Obtaining 1,3-Butadiene from Ethanol. Theoretical and Experimental Chemistry 2022, 57 (6) , 443-450. https://doi.org/10.1007/s11237-022-09714-9
- O. V. Larina, M. M. Kurmach, P. I. Kyriienko, L. M. Alekseenko, O. V. Shvets, S. O. Soloviev. Influence of Acid–Base Characteristics of Hierarchical Cu/Zr-MTW Zeolites on their Catalytic Properties in 1,3-Butadiene Production from Ethanol–Water Mixtures. Theoretical and Experimental Chemistry 2021, 57 (5) , 343-350. https://doi.org/10.1007/s11237-021-09703-4
- G.M. Cabello González, A.L. Villanueva Perales, M. Campoy, J.R. López Beltran, A. Martínez, F. Vidal-Barrero. Kinetic modelling of the one-step conversion of aqueous ethanol into 1,3-butadiene over a mixed hemimorphite-HfO2/SiO2 catalyst. Fuel Processing Technology 2021, 216 , 106767. https://doi.org/10.1016/j.fuproc.2021.106767
- Pavlo I. Kyriienko, Olga V. Larina, Dmytro Yu. Balakin, Anatolii O. Stetsuk, Yurii M. Nychiporuk, Sergiy O. Soloviev, Svitlana M. Orlyk. 1,3-Butadiene production from aqueous ethanol over ZnO/MgO-SiO2 catalysts: Insight into H2O effect on catalytic performance. Applied Catalysis A: General 2021, 616 , 118081. https://doi.org/10.1016/j.apcata.2021.118081
- P. I. Kyriienko, O. V. Larina, N. D. Scherban, I. M. Remezovskyi, L. M. Alekseenko, P. S. Yaremov, S. O. Soloviev, S. M. Orlyk. Catalytic Properties of ZnLaZrSi-Oxide Systems in the Process of Obtaining 1,3-Butadiene from Ethanol–Aqueous Mixtures. Theoretical and Experimental Chemistry 2020, 56 (5) , 329-337. https://doi.org/10.1007/s11237-020-09662-2