ACS Publications. Most Trusted. Most Cited. Most Read
Methane Hydrate Growth Promoted by Microporous Zeolitic Imidazolate Frameworks ZIF-8 and ZIF-67 for Enhanced Methane Storage
My Activity

Figure 1Loading Img
    Research Article

    Methane Hydrate Growth Promoted by Microporous Zeolitic Imidazolate Frameworks ZIF-8 and ZIF-67 for Enhanced Methane Storage
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (1)

    ACS Sustainable Chemistry & Engineering

    Cite this: ACS Sustainable Chem. Eng. 2021, 9, 27, 9001–9010
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acssuschemeng.1c01488
    Published June 28, 2021
    Copyright © 2021 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The demand for natural gas globally is rising due to the need for energy caused by population and economic growth. This demand calls for more effective approaches to store and transport natural gas, which consists primarily of methane. Gas hydrates, ice-like materials that encapsulate gas molecules, possess the potential for high energy density. The feasibility of this methane storage method relies upon the efficiency of hydrate formation, which must be improved before it can be developed commercially. In this study, two microporous zeolitic imidazolate frameworks, ZIF-8 (zinc based) and ZIF-67 (cobalt based), were evaluated as methane hydrate formation promoters. ZIF-8 and ZIF-67 increased the water-to-hydrate conversion in a water-and-methane system from 4.5% to 85.6% and 87.7%, respectively, thus remarkably improving the gas storage by a factor of 14.4 and 14.7, respectively. Isothermal tests revealed that ZIF-8 and ZIF-67 reduced the methane hydrate nucleation induction time by 51.6% and 92.2%, respectively. Both ZIFs maintained their structural integrity and exhibited consistent recyclability, which indicates that the materials would have a long lifecycle as promoters. These results show that ZIF-8 and ZIF-67 are effective gas hydrate growth promoters, and application of these ZIFs makes methane storage in gas hydrates industrially appealing.

    Copyright © 2021 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acssuschemeng.1c01488.

    • Table summarizing literature review of MOFs as methane hydrate growth promoters, schematic of the high pressure differential scanning calorimeter (HP-DSC), full HP-DSC cooling and warming profiles, methane adsorption isotherms, water-to-hydrate conversion for three cycles of ZIF-8 (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 82 publications.

    1. Wenhui Ma, Li Li, Yan Lin, Fei Wang. Management of Formation Kinetics and Energy Storage Capacity of Methane Hydrates via Ag-Modified Graphene Aerogel. Energy & Fuels 2025, 39 (23) , 10980-10989. https://doi.org/10.1021/acs.energyfuels.5c00762
    2. Xiangen Wu, Yaqin Shi, Lin Wang. Kinetic Characterization of CH4 Hydrate Formation in Metal–Organic Framework Nanomaterials and l-Tryptophan Complex Systems. Energy & Fuels 2025, 39 (22) , 10544-10553. https://doi.org/10.1021/acs.energyfuels.5c01110
    3. Yogendra Kumar, Jitendra Sangwai. Direct Flue Gas and CO2 Injection for Simultaneous Energy Recovery and CO2 Sequestration in Ocean: Feasibility Analysis and Perspective. Energy & Fuels 2025, 39 (11) , 5007-5033. https://doi.org/10.1021/acs.energyfuels.4c05264
    4. Aaush Bhardwaj Singh, Manishkumar D. Yadav. Advances and Perspectives in ZIF-67 Synthesis for Hydrogen Applications: A Review. Energy & Fuels 2025, 39 (10) , 4610-4647. https://doi.org/10.1021/acs.energyfuels.4c05867
    5. Fei Wang, Mengqi Liu, Peng Zhang, Yifan Xu, Daiming Liu, Guodong Zhang. Insights into the Storage of Adsorption–Hydration Natural Gas in Preadsorbed Water Nanoporous Materials. Langmuir 2025, 41 (8) , 5581-5590. https://doi.org/10.1021/acs.langmuir.4c05302
    6. Fengyi Mi, Zhongjin He, Jiangtao Pang, Othonas A. Moultos, Thijs J. H. Vlugt, Fulong Ning. Molecular Insights into Hybrid CH4 Physisorption-Hydrate Formation in Spiral Halloysite Nanotubes: Implications for Energy Storage. ACS Applied Materials & Interfaces 2024, 16 (49) , 67587-67596. https://doi.org/10.1021/acsami.4c11288
    7. Xiaoming Wang, Li Li, Yan Lin, Jin Xu, Jiatao Zhao, Xiaoguang Zhang, Fei Wang, Xiaolin Wang. Methane Hydrates Formed in a Porous Graphene Aerogel for Energy Storage. Crystal Growth & Design 2024, 24 (21) , 9223-9234. https://doi.org/10.1021/acs.cgd.4c01220
    8. Yanning Zhang, Shixin Cai, Xinzhang Li, Linpei Zhang, Menglu Li, Yuting Zhang, Xiaoli Wang, Nandi Zhou. Antimicrobial Efficacy of Cubic, Single-Leaf, and Flower-like Zeolitic Imidazolate Frameworks. ACS Applied Nano Materials 2024, 7 (19) , 22843-22854. https://doi.org/10.1021/acsanm.4c04025
    9. Shi-Xiao Wei, Hao-Tian Tong, Han Chen, Ting-Liang Xie, Qiang Liu, Jia-Ni Zhang, Shuang-Feng Yin. CFD Simulation of Chaotic Flow Characteristics in an Oscillating Feedback Microreactor and Its Application for Preparing Zeolitic Imidazolate Framework-8 Nanoparticles. Industrial & Engineering Chemistry Research 2024, 63 (36) , 15761-15777. https://doi.org/10.1021/acs.iecr.4c01628
    10. Jinrui Deng, Huaquan Jiang, Yang Liu, Ying Yang, Fangwei Luo, Bingcai Sun, Jiawen Chen, Chuanshuo Wang, De Tang, Tingjun Wen. Effect of ZIF-8 on Methane Hydrate Growth Kinetics in Oil–Water Systems. Industrial & Engineering Chemistry Research 2024, 63 (6) , 2632-2641. https://doi.org/10.1021/acs.iecr.3c03534
    11. Samreen Sadiq, Iltaf Khan, Muhammad Humayun, Ping Wu, Abbas Khan, Sohail Khan, Aftab Khan, Shoaib Khan, Amal Faleh Alanazi, Mohamed Bououdina. Synthesis of Metal–Organic Framework-Based ZIF-8@ZIF-67 Nanocomposites for Antibiotic Decomposition and Antibacterial Activities. ACS Omega 2023, 8 (51) , 49244-49258. https://doi.org/10.1021/acsomega.3c07606
    12. Ngoc N. Nguyen. Prospect and Challenges of Hydrate-Based Hydrogen Storage in the Low-Carbon Future. Energy & Fuels 2023, 37 (14) , 9771-9789. https://doi.org/10.1021/acs.energyfuels.3c00174
    13. Ye Zhang, Huanzhi Xu, Gaurav Bhattacharjee, Praveen Linga. Methane Storage in Simulated Seawater Enabled by 1,3-Dioxane as an Environmentally Benign Promoter. Energy & Fuels 2023, 37 (12) , 8272-8283. https://doi.org/10.1021/acs.energyfuels.3c01036
    14. Saphir Venet, Patrick Bouriat, Subahong Yusufujiang, Catherine Monge-Daugé, Daniel Broseta, Ross Brown. Crystal Dewetting at the Water–Guest Interface in Macropores Sidesteps the Hydrate Mass-Transfer Bottleneck. Crystal Growth & Design 2023, 23 (5) , 3144-3153. https://doi.org/10.1021/acs.cgd.2c01313
    15. Abdolreza Farhadian, Ulukbek Zh. Mirzakimov, Matvei E. Semenov, Mina Maddah, Yulia F. Chirkova, Roman S. Pavelyev, Atousa Heydari, Sergei A. Nazarychev, Aleksandr M. Aimaletdinov, Mikhail A. Varfolomeev. Solidified Methane Storage Using an Efficient Class of Anionic Surfactants under Dynamic and Static Conditions: An Experimental and Computational Investigation. ACS Applied Energy Materials 2023, 6 (8) , 4119-4132. https://doi.org/10.1021/acsaem.2c03240
    16. Shamil E. Gainullin, Abdolreza Farhadian, Polina Y. Kazakova, Matvei E. Semenov, Yulia F. Chirkova, Atousa Heydari, Roman S. Pavelyev, Mikhail A. Varfolomeev. Novel Amino Acid Derivatives for Efficient Methane Solidification Storage via Clathrate Hydrates without Foam Formation. Energy & Fuels 2023, 37 (4) , 3208-3217. https://doi.org/10.1021/acs.energyfuels.2c03923
    17. Liang Yang, Jiajie Wang, Ni Liu, Yingming Xie, Guomin Cui, Daoping Liu. Clathrate Hydrate Framework Construction Enhanced by Waste Bio-Shavings for Efficient Methane Storage. ACS Sustainable Chemistry & Engineering 2022, 10 (37) , 12127-12138. https://doi.org/10.1021/acssuschemeng.2c02335
    18. M. Fahed Qureshi, Vikas Dhamu, Adam Usadi, Timothy A. Barckholtz, Ashish B. Mhadeshwar, Praveen Linga. CO2 Hydrate Formation Kinetics and Morphology Observations Using High-Pressure Liquid CO2 Applicable to Sequestration. Energy & Fuels 2022, 36 (18) , 10627-10641. https://doi.org/10.1021/acs.energyfuels.1c03840
    19. Liang-Meng Wu, Xi-Yue Li, Feng-Mei Xie, Dong-Liang Zhong, Peter Englezos, Jin Yan. Minireview of Hydrate-Based CO2 Separation from a CO2/CH4 Gas Mixture: Progress and Outlook. Energy & Fuels 2022, 36 (18) , 10478-10488. https://doi.org/10.1021/acs.energyfuels.2c01533
    20. Ngoc N. Nguyen, Anh V. Nguyen. “Nanoreactors” for Boosting Gas Hydrate Formation toward Energy Storage Applications. ACS Nano 2022, 16 (8) , 11504-11515. https://doi.org/10.1021/acsnano.2c04640
    21. Yinghua Gong, Matvei E. Semenov, Dmitrii A. Emelianov, Airat G. Kiiamov, Kirill A. Cherednichenko, Andrei A. Novikov, Anton P. Semenov, Tianduo Li, Vladimir Vinokurov, Andrey S. Stoporev. Carriers for Methane Hydrate Production: Cellulose-Based Materials as a Case Study. ACS Sustainable Chemistry & Engineering 2022, 10 (31) , 10119-10131. https://doi.org/10.1021/acssuschemeng.2c00791
    22. Jinjie Liu, Ran Fu, Yanwen Lin, Qiao Shi, Yisi Liu, Tong Li, Zhisen Zhang, Jianyang Wu. Mechanical Destabilization and Cage Transformations in Water Vacancy-Contained CO2 Hydrates. ACS Sustainable Chemistry & Engineering 2022, 10 (31) , 10339-10350. https://doi.org/10.1021/acssuschemeng.2c03072
    23. Abdolreza Farhadian, Andrey S. Stoporev, Mikhail A. Varfolomeev, Yulia F. Zaripova, Vladimir V. Yarkovoi, Matvei E. Semenov, Airat G. Kiiamov, Roman S. Pavelyev, Aleksandr M. Aimaletdinov, Tharaa Mohammad, Danis K. Nurgaliev. Sulfonated Castor Oil as an Efficient Biosurfactant for Improving Methane Storage in Clathrate Hydrates. ACS Sustainable Chemistry & Engineering 2022, 10 (30) , 9921-9932. https://doi.org/10.1021/acssuschemeng.2c02329
    24. Shurraya Denning, Ahmad A. A. Majid, Carolyn A. Koh. Stability and Growth of Methane Hydrates in Confined Media for Carbon Sequestration. The Journal of Physical Chemistry C 2022, 126 (28) , 11800-11809. https://doi.org/10.1021/acs.jpcc.2c02936
    25. Ngoc N. Nguyen, Cuong V. Nguyen, Tuan A. H. Nguyen, Anh V. Nguyen. Surface Science in the Research and Development of Hydrate-Based Sustainable Technologies. ACS Sustainable Chemistry & Engineering 2022, 10 (13) , 4041-4058. https://doi.org/10.1021/acssuschemeng.2c00028
    26. Shurraya Denning, Ahmad AA Majid, James M. Crawford, Moises A. Carreon, Carolyn A. Koh. Promoting Methane Hydrate Formation for Natural Gas Storage over Chabazite Zeolites. ACS Applied Energy Materials 2021, 4 (12) , 13420-13424. https://doi.org/10.1021/acsaem.1c02902
    27. Ahmad A. A. Majid, Joshua Worley, Carolyn A. Koh. Thermodynamic and Kinetic Promoters for Gas Hydrate Technological Applications. Energy & Fuels 2021, 35 (23) , 19288-19301. https://doi.org/10.1021/acs.energyfuels.1c02786
    28. Juan Zhang, Hongquan Fu, Xia Chu. Metal–Organic Framework Nanoparticles Power DNAzyme Logic Circuits for Aberrant MicroRNA Imaging. Analytical Chemistry 2021, 93 (44) , 14675-14684. https://doi.org/10.1021/acs.analchem.1c02878
    29. Shurraya Denning, Jolie M. Lucero, Ahmad A. A. Majid, James M. Crawford, Moises A. Carreon, Carolyn A. Koh. Porous Organic Cage CC3: An Effective Promoter for Methane Hydrate Formation for Natural Gas Storage. The Journal of Physical Chemistry C 2021, 125 (37) , 20512-20521. https://doi.org/10.1021/acs.jpcc.1c04657
    30. Dujuan Wu, Ruiqi Xin, Lingling Hu, Onder Tor, Ye Song, Song Li, Meiling Chen, Wenkai Zhu. Construction of Zn-based metal–organic frameworks in bamboo by in-situ and ex-situ growth strategies for indoor environmental remediation. Industrial Crops and Products 2025, 230 , 121102. https://doi.org/10.1016/j.indcrop.2025.121102
    31. Zhengyao Zhang, Kui Sun, Yuqi Bao, Hong Lei, Jun Yang. Green synthesis of ZIF-8 for selective adsorption of dyes in water purification. Open Chemistry 2025, 23 (1) https://doi.org/10.1515/chem-2025-0140
    32. Jiyapa Sripirom, Onpreeya Raksawong, Sudarat Maowong, Sirilak Kamonwannasit, Pongtanawat Khemthong, Saran Youngjan, Teera Butburee, Khongvit Prasitnok, Orrasa Prasitnok, Piaw Phatai. Basil seed mucilage-templated hydroxyapatite incorporated with ZIF-8 and ZIF-67 for enhanced antibacterial activity. Materials Chemistry and Physics 2025, 334 , 130329. https://doi.org/10.1016/j.matchemphys.2024.130329
    33. Zhibing Xuan, Daiming Liu, Xinran Sun, Yuming Chen, Haoran Li, Yongtao Zhang, Guodong Zhang, Fei Wang. Recent advances in high-efficiency formation of gas hydrates within fixed beds: Classification, mechanism, applications and challenges. Chemical Engineering Journal 2025, 505 , 159611. https://doi.org/10.1016/j.cej.2025.159611
    34. Yaxue Zhang, Shuanshi Fan, Yanhong Wang, Xuemei Lang, Gang Li. Enhanced methane hydrate formation through lignocellulose fiber. Fuel 2025, 380 , 133194. https://doi.org/10.1016/j.fuel.2024.133194
    35. Mengqi Liu, Honglin Yu, Daiming Liu, Guodong Zhang, Fei Wang. Methane dense storage in ZIF-8@cu under low pressure via adsorption-absorption synergy. Journal of Energy Storage 2024, 103 , 114400. https://doi.org/10.1016/j.est.2024.114400
    36. Wonhyeong Lee, Dong Woo Kang, Yun-Ho Ahn, Kwangbum Kim, Jae W. Lee. Self-supporting hydrate template with hydrate seeds and promoter liquids for semi-continuous formation of hydrogen hydrates. Applied Energy 2024, 373 , 123987. https://doi.org/10.1016/j.apenergy.2024.123987
    37. Aseem Dubey, Akhilesh Arora. Effect of promoters in hydrates based carbon dioxide capture: A review. Gas Science and Engineering 2024, 131 , 205459. https://doi.org/10.1016/j.jgsce.2024.205459
    38. Honglin Yu, Mengqi Liu, Guodong Zhang, Fei Wang. Water-based Silicalite-1 porous liquid facilitates adsorption and absorption for CH4 capture. Chemical Engineering Journal 2024, 499 , 156453. https://doi.org/10.1016/j.cej.2024.156453
    39. Xiaobing Lan, Jun Chen, Dongdong Li, Junjie Zheng, Praveen Linga. Gas storage via clathrate hydrates: Advances, challenges, and prospects. Gas Science and Engineering 2024, 129 , 205388. https://doi.org/10.1016/j.jgsce.2024.205388
    40. Xuemin Zhang, Qingqing Liu, Jiajin He, Qing Yuan, Jinping Li, Qingbai Wu, Yingmei Wang, Peng Zhang. Research progress of incremental synthesis and enhancement mechanism of natural gas hydrates: A review. Renewable and Sustainable Energy Reviews 2024, 202 , 114695. https://doi.org/10.1016/j.rser.2024.114695
    41. Joseph Lantos, Narendra Kumar, Basudeb Saha. A Comprehensive Review of Fine Chemical Production Using Metal-Modified and Acidic Microporous and Mesoporous Catalytic Materials. Catalysts 2024, 14 (5) , 317. https://doi.org/10.3390/catal14050317
    42. Jintao Hu, Naihao Chen, Zhi Li, Nan Li, Jingyu Kan, Tianduo Li, Guangjin Chen. Experimental study on synergistic promotion of reciprocating impact and porous materials on methane capture based on hydrate method. Chemical Engineering Journal 2024, 483 , 149137. https://doi.org/10.1016/j.cej.2024.149137
    43. Abdolreza Farhadian, Abolfazl Mohammadi, Mina Maddah, Elaheh Sadeh, Reza Nowruzi, Ruhollah Sharifi, Zahra Taheri Rizi, Mahbobeh Mohammad Taheri, Yongwon Seo. Enhanced methane hydrate formation using a newly synthesized biosurfactant: Application to solidified gas storage. Energy 2024, 291 , 130290. https://doi.org/10.1016/j.energy.2024.130290
    44. Zhongjin He, Jianwen Jiang, Guosheng Jiang, Fulong Ning. Competition between CH 4 hydrate formation and phase separation in a wetted metal–organic framework MIL-101 at moderate subcooling: molecular insights into CH 4 storage. Journal of Materials Chemistry A 2024, 12 (8) , 4447-4459. https://doi.org/10.1039/D3TA06952D
    45. Shujun Chen, Jun Duan, Xianfeng Xie, Yue Fu, Mucong Zi. Adsorption enhances CH4 transport-driven hydrate formation in size-varied ZIF-8: Micro-mechanism for CH4 storage by adsorption-hydration hybrid technology. Chemical Engineering Journal 2024, 482 , 148957. https://doi.org/10.1016/j.cej.2024.148957
    46. Elaheh Sadeh, Abdolreza Farhadian, Andrey S. Stoporev, Matvei E. Semenov, Yulia F. Chirkova, Parisa Naeiji, Mikhail A. Varfolomeev. Methane storage as a hydrate. 2024, 275-321. https://doi.org/10.1016/B978-0-443-19067-4.00001-2
    47. Ayat A.-E. Sakr. Natural gas resources, emission, and climate change. 2024, 19-53. https://doi.org/10.1016/B978-0-443-19215-9.00015-3
    48. Yang Zhao, Aoxing Qu, Mingzhao Yang, Hongsheng Dong, Yang Ge, Qingping Li, Yanzhen Liu, Lunxiang Zhang, Yu Liu, Lei Yang, Yongchen Song, Jiafei Zhao. Modified balsa wood with natural, flexible porous structure for gas storage. Applied Energy 2024, 353 , 122026. https://doi.org/10.1016/j.apenergy.2023.122026
    49. Xinran Sun, Daiming Liu, Yongtao Zhang, Guodong Zhang, Fei Wang, Xiaolin Wang. Methane hydrate formation enhanced by thermally expanded graphite with multi-sized pores. Chemical Engineering Journal 2024, 480 , 148280. https://doi.org/10.1016/j.cej.2023.148280
    50. Ningru Sun, Ye Zhang, Gaurav Bhattacharjee, Yanjun Li, Nianxiang Qiu, Shiyu Du, Praveen Linga. Seawater-based sII hydrate formation promoted by 1,3-Dioxolane for energy storage. Energy 2024, 286 , 129606. https://doi.org/10.1016/j.energy.2023.129606
    51. Xiaofang Lv, XingYa Ni, Yi Zhao, Tianhui Liu, Shu Jing, Boyu Bai, Shangbin Liang, Yang Liu, Qianli Ma, Chuanshuo Wang, Shidong Zhou. Characterization of Carbon Dioxide Hydrate Growth Kinetics in Carbon Micron Tube Oil–Water System. Journal of Energy Resources Technology 2024, 146 (1) https://doi.org/10.1115/1.4063328
    52. Timoth Mkilima, Yerkebulan Zharkenov, Laura Utepbergenova, Aisulu Abduova, Nursulu Sarypbekova, Elmira Smagulova, Gulnara Abdukalikova, Fazylov Kamidulla, Iliyas Zhumadilov. Harnessing graphene oxide-enhanced composite metal-organic frameworks for efficient wastewater treatment. Water Cycle 2024, 5 , 86-98. https://doi.org/10.1016/j.watcyc.2024.02.005
    53. Nithin B. Kummamuru, Geert Watson, Radu-George Ciocarlan, Sammy W. Verbruggen, Pegie Cool, Pascal Van Der Voort, Patrice Perreault. Accelerated methane storage in clathrate hydrates using mesoporous (Organo-) silica materials. Fuel 2023, 354 , 129403. https://doi.org/10.1016/j.fuel.2023.129403
    54. Xiaobo Gong, Lingrui Zhang, Yong Liu, Meng Zhu. A review on zeolitic imidazolate framework-8 based materials with special wettability for oil/water separation. Journal of Environmental Chemical Engineering 2023, 11 (6) , 111360. https://doi.org/10.1016/j.jece.2023.111360
    55. Shujun Chen, Di Wang, Zeyuan Wang, Yue Fu, Yiheng Xu, Dandan Liu. Kinetic study of methane storage in hydrophobic ZIF-8 by adsorption-hydration hybrid technology. Energy 2023, 283 , 129013. https://doi.org/10.1016/j.energy.2023.129013
    56. Yaning Kong, Fei Wang, Guodong Zhang, Xiaolin Wang. Enhanced formation kinetics of mixed H2/THF hydrate in the presence of nano promoters. Chemical Engineering Journal 2023, 474 , 145901. https://doi.org/10.1016/j.cej.2023.145901
    57. Elaheh Sadeh, Abdolreza Farhadian, Abolfazl Mohammadi, Mina Maddah, Mahdi Pourfath, Mingjun Yang. Energy-efficient storage of methane and carbon dioxide capture in the form of clathrate hydrates using a novel non-foaming surfactant: An experimental and computational investigation. Energy Conversion and Management 2023, 293 , 117475. https://doi.org/10.1016/j.enconman.2023.117475
    58. Chen Chen, FengZe Ma, XiaoMing Wang, Li Li, Ying Miao, Yang Bai, Yan He, Fei Wang. Carbon nanotubes-based porous media constructed via 3D printing for methane hydrate formation. Fuel 2023, 349 , 128645. https://doi.org/10.1016/j.fuel.2023.128645
    59. Guodong Zhang, Zhe Liu, Yaning Kong, Fei Wang. Hydrate-based adsorption-hydration hybrid approach enhances methane storage in wet MIL-101(Cr)@AC under mild condition. Chemical Engineering Journal 2023, 472 , 145068. https://doi.org/10.1016/j.cej.2023.145068
    60. Yu Wei, Nobuo Maeda. Dry Water as a Promoter for Gas Hydrate Formation: A Review. Molecules 2023, 28 (9) , 3731. https://doi.org/10.3390/molecules28093731
    61. Jun Duan, Xinyu Jiang, Yue Fu, Shujun Chen, Mucong Zi. Molecular insights into CH4/H2O transport and hydrate formation in hydrophobic metal-organic frameworks ZIF-8: Implication for CH4 storage by adsorption-hydration hybrid method. Fuel 2023, 337 , 126851. https://doi.org/10.1016/j.fuel.2022.126851
    62. Anrui Dong, Dandan Chen, Qipeng Li, Jinjie Qian. Metal‐Organic Frameworks for Greenhouse Gas Applications. Small 2023, 19 (10) https://doi.org/10.1002/smll.202201550
    63. Yongshi Li, Peng Shan, Fuyou Yu, Hui Li, Lincai Peng. Fabrication and characterization of waste fish scale-derived gelatin/sodium alginate/carvacrol loaded ZIF-8 nanoparticles composite films with sustained antibacterial activity for active food packaging. International Journal of Biological Macromolecules 2023, 230 , 123192. https://doi.org/10.1016/j.ijbiomac.2023.123192
    64. Majid Pakizeh, Ramezan Rouhani, Mahdi Pourafshari Chenar. A new route for ZIF-8 synthesis and its application in MMM preparation for toluene removal from water using PV process. Chemical Engineering Research and Design 2023, 190 , 730-744. https://doi.org/10.1016/j.cherd.2022.12.019
    65. Guodong Zhang, Zhe Liu, Daming Liu, Yan Lin, Fei Wang. Hydrate-based adsorption-hydration hybrid approach enhances methane storage density in ZIF-8@AC. Chemical Engineering Journal 2023, 455 , 140503. https://doi.org/10.1016/j.cej.2022.140503
    66. Saphir Venet, Hannelore Derluyn, Fabrice Guerton, Peter Moonen, Daniel Broseta, Ross Brown. Massive growth of a fibrous gas hydrate from surface macropores of an activated carbon. Chemical Engineering Science 2023, 265 , 118190. https://doi.org/10.1016/j.ces.2022.118190
    67. Wenlian Rong, Yu Zhang, Shengjun Luo, Rongbo Guo. A novel core–shell structure of CuNW@PSS accelerates the process of methane hydrate formation. Fuel 2023, 331 , 125388. https://doi.org/10.1016/j.fuel.2022.125388
    68. Novia Amalia Sholeha, Tekad Urip Pambudi Sujarnoko, Nyi Raden Alyaa Shofaa Eryaputri, Obie Farobie, Nanang Masruchin, Indri Susanti, Rika Wijiyanti, Nurul Sahida Binti Hassan, Rendy Muhamad Iqbal, Nurul Widiastuti, , , , , , , , , , , , , , , . In-situ growth of zeolite-A in the fiber surface for methane adsorption. E3S Web of Conferences 2023, 454 , 02018. https://doi.org/10.1051/e3sconf/202345402018
    69. Jyoti Pandey, Nicolas von Solms. Metal–Organic Frameworks and Gas Hydrate Synergy: A Pandora’s Box of Unanswered Questions and Revelations. Energies 2023, 16 (1) , 111. https://doi.org/10.3390/en16010111
    70. Taotao Qiang, Shaoting Wang, Longfang Ren, Xiaodong Gao. Novel 3D Cu2O/N-CQD/ZIF-8 composite photocatalyst with Z-scheme heterojunction for the efficient photocatalytic reduction of Cr(Ⅵ). Journal of Environmental Chemical Engineering 2022, 10 (6) , 108784. https://doi.org/10.1016/j.jece.2022.108784
    71. Zhixia Deng, Shuanshi Fan, Yanhong Wang, Xuemei Lang, Gang Li. Enhance hydrates formation with stainless steel fiber for high capacity methane storage. Chinese Journal of Chemical Engineering 2022, 50 , 435-443. https://doi.org/10.1016/j.cjche.2022.07.028
    72. Shurraya Denning, Ahmad A.A. Majid, James M. Crawford, Jonathan D. Wells, Moises A. Carreon, Carolyn A. Koh. Methane storage scale-up using hydrates & metal organic framework HKUST-1 in a packed column. Fuel 2022, 325 , 124920. https://doi.org/10.1016/j.fuel.2022.124920
    73. Pengfei Wang, Ying Teng, Jinlong Zhu, Wancheng Bao, Songbai Han, Yun Li, Yusheng Zhao, Heping Xie. Review on the synergistic effect between metal–organic frameworks and gas hydrates for CH4 storage and CO2 separation applications. Renewable and Sustainable Energy Reviews 2022, 167 , 112807. https://doi.org/10.1016/j.rser.2022.112807
    74. Jun Duan, Qianchuan Li, Yue Fu, Shujun Chen, Yaxue Zhang, Dandan Liu. Accelerated formation of hydrate in size-varied ZIF-8 for CH4 storage by adsorption-hydration hybrid technology. Fuel 2022, 322 , 124266. https://doi.org/10.1016/j.fuel.2022.124266
    75. Liang Yang, Chunxiao Li, Junhua Pei, Xin Wang, Ni Liu, Yingming Xie, Guomin Cui, Daoping Liu. Enhanced clathrate hydrate phase change with open-cell copper foam for efficient methane storage. Chemical Engineering Journal 2022, 440 , 135912. https://doi.org/10.1016/j.cej.2022.135912
    76. Jie Wu, Tairen Long, Haiyan Wang, Jin-Xia Liang, Chun Zhu. Oriented External Electric Fields Regurating the Reaction Mechanism of CH4 Oxidation Catalyzed by Fe(IV)-Oxo-Corrolazine: Insight from Density Functional Calculations. Frontiers in Chemistry 2022, 10 https://doi.org/10.3389/fchem.2022.896944
    77. Zeyuan Wang, Jun Duan, Shujun Chen, Yue Fu, Xiangfu Li, Di Wang, Ming Zhang, Zhiqiang Zhang, Dandan Liu, Fenghao Wang. A review on high-density methane storage in confined nanospace by adsorption-hydration hybrid technology. Journal of Energy Storage 2022, 50 , 104195. https://doi.org/10.1016/j.est.2022.104195
    78. Chong Chen, Yun Li, Jilin Cao. Methane Hydrate Formation in Hollow ZIF-8 Nanoparticles for Improved Methane Storage Capacity. Catalysts 2022, 12 (5) , 485. https://doi.org/10.3390/catal12050485
    79. Ye Zhang, Gaurav Bhattacharjee, Mohana Dharshini Vijayakumar, Praveen Linga. Rapid and energy-dense methane hydrate formation at near ambient temperature using 1,3-dioxolane as a dual-function promoter. Applied Energy 2022, 311 , 118678. https://doi.org/10.1016/j.apenergy.2022.118678
    80. Zeyuan Wang, Jun Duan, Shujun Chen, Yue Fu, Yaxue Zhang, Di Wang, Jianlin Pei, Dandan Liu. Molecular insights into hybrid CH4 physisorption-hydrate growth in hydrophobic metal–organic framework ZIF-8: Implications for CH4 storage. Chemical Engineering Journal 2022, 430 , 132901. https://doi.org/10.1016/j.cej.2021.132901
    81. Taotao Qiang, Shaoting Wang, Longfang Ren, Xiaodong Gao. Novel 3d Cu2o/N-Cqd/Zif-8 Composite Photocatalyst with Z-Scheme Heterojunction for Efficient Photocatalytic Reduction of Cr(Vi). SSRN Electronic Journal 2022, 7 https://doi.org/10.2139/ssrn.4005977
    82. Jun Duan, Xinyu Jiang, Yue Fu, Shujun Chen. Molecular Insights into Ch4/H2o Transport and Hydrate Formation in Hydrophobic Metal-Organic Frameworks Zif-8: Implication for Ch4 Storage by Adsorption-Hydration Hybrid Method. SSRN Electronic Journal 2022, 5 https://doi.org/10.2139/ssrn.4193483

    ACS Sustainable Chemistry & Engineering

    Cite this: ACS Sustainable Chem. Eng. 2021, 9, 27, 9001–9010
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acssuschemeng.1c01488
    Published June 28, 2021
    Copyright © 2021 American Chemical Society

    Article Views

    2632

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.