Living Diatom Microalgae for Desiccation-Resistant Electrodes in Biophotovoltaic DevicesClick to copy article linkArticle link copied!
- Cesar Vicente-GarciaCesar Vicente-GarciaDipartimento di Chimica, Università Degli Studi di Bari “Aldo Moro”, Bari I-70126, ItalyMore by Cesar Vicente-Garcia
- Danilo VonaDanilo VonaDipartimento di Scienze Del Suolo, Della Pianta e Degli Alimenti, Università Degli Studi di Bari “Aldo Moro”, Bari I-70126, ItalyMore by Danilo Vona
- Francesco MilanoFrancesco MilanoIstituto di Scienze Delle Produzioni Alimentari, Consiglio Nazionale Delle Ricerche, Lecce I-73100, ItalyMore by Francesco Milano
- Gabriella BuscemiGabriella BuscemiDipartimento di Chimica, Università Degli Studi di Bari “Aldo Moro”, Bari I-70126, ItalyMore by Gabriella Buscemi
- Matteo GrattieriMatteo GrattieriDipartimento di Chimica, Università Degli Studi di Bari “Aldo Moro”, Bari I-70126, ItalyMore by Matteo Grattieri
- Roberta Ragni*Roberta Ragni*Email: [email protected]Dipartimento di Chimica, Università Degli Studi di Bari “Aldo Moro”, Bari I-70126, ItalyMore by Roberta Ragni
- Gianluca M. Farinola*Gianluca M. Farinola*Email: [email protected]Dipartimento di Chimica, Università Degli Studi di Bari “Aldo Moro”, Bari I-70126, ItalyMore by Gianluca M. Farinola
Abstract
Strategies of renewable energy production from photosynthetic microorganisms are gaining great scientific interest as ecosustainable alternatives to fossil fuel depletion. Green microalgae have been thoroughly investigated as living components to convert solar energy into photocurrent in biophotovoltaic (BPV) cells. Conversely, the suitability of diatoms in BPV cells has been almost completely unexplored so far, despite being the most abundant class of photosynthetic microorganisms in phytoplankton and of their good adaptability and resistance to harsh environmental conditions, including dehydration, high salinity, nutrient starvation, temperature, or pH changes. Here, we demonstrate the suitability of a series of diatom species (Phaeodactylum tricornutum, Thalassiosira weissflogii, Fistulifera pelliculosa, and Cylindrotheca closterium), to act as biophotoconverters, coating the surface of indium tin oxide photoanodes in a model BPV cell. Effects of light intensity, cell density, total chlorophyll content, and concentration of the electrochemical mediator on photocurrent generation efficiency were investigated. Noteworthily, biophotoanodes coated with T. weissflogii diatoms are still photoactive after 15 days of dehydration and four rewetting cycles, contrary to analogue electrodes coated with the model green microalga Dunaliella tertiolecta. These results provide the first evidence that diatoms are suitable photosynthetic microorganisms for building highly desiccation-resistant biophotoanodes for durable BPV devices.
This publication is licensed under
License Summary*
You are free to share(copy and redistribute) this article in any medium or format within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
Non-Commercial (NC): Only non-commercial uses of the work are permitted.
No Derivatives (ND): Derivative works may be created for non-commercial purposes, but sharing is prohibited.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
Non-Commercial (NC): Only non-commercial uses of the work are permitted.
No Derivatives (ND): Derivative works may be created for non-commercial purposes, but sharing is prohibited.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
Non-Commercial (NC): Only non-commercial uses of the work are permitted.
No Derivatives (ND): Derivative works may be created for non-commercial purposes, but sharing is prohibited.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
Non-Commercial (NC): Only non-commercial uses of the work are permitted.
No Derivatives (ND): Derivative works may be created for non-commercial purposes, but sharing is prohibited.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
Non-Commercial (NC): Only non-commercial uses of the work are permitted.
No Derivatives (ND): Derivative works may be created for non-commercial purposes, but sharing is prohibited.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
Synopsis
Biohybrid photoanodes based on living diatom microalgae onto indium thin oxide show high resistance to dryness and long durability over time.
Introduction
Experimental Section
Materials and Reagents
Microalgae Growth
Preparation of Biophotoanodes
Figure 1
Figure 1. (a) Preparation of the air-dried diatom bioanode from a fresh culture of diatoms. The white matrix around the diatom spot corresponds to residual salts from the culture medium. (b) Scheme of the photoelectrochemical cell representing the microalgae onto ITO WE, the frustule, the cell membrane, the chloroplast (CP) inside the microalgae, the membrane ferrireductase (FR), the K-ferro/ferricyanide couple in PB solution, and the platinum wire CE. The reference electrode has not been depicted for simplicity, and the different phases are not in scale. (c) Cyclic voltammetry performed at a 20 mV·s–1 scan rate with the ITO electrode coated with 106 cells and immersed in a solution containing 0.5 mM K-ferricyanide; the red arrow shows an overpotential of +0.23 V with respect to E1/2 of the ferro/ferricyanide couple applied in the CA experiments.
Electrochemical Setup
Cell Viability Studies
Total Chlorophyll Quantification
Statistical Analysis
Results and Discussion
Implementation of the Photoelectrochemical Setup and Bioanode Fabrication
Figure 2
Figure 2. (a) Photocurrent signals from 106 Pht cells in suspension (red) and 106 Pht cells coated ITO bioanode (black). (b) Images of a Pht-coated ITO bioanode, from left to right: macroscopic view, bright field microscopy image at 20×, fluorescence microscopy images (λex = 568 nm, λem >600 nm) at 20×, at 100× before CA, and at 100× after CA. (c) Mean fluorescein emission (λex = 488 nm, λem = 511 nm) in the FDA viability assay of Pht cells performed before and after CA.
Photocurrent Dependence on Living Cell Photosynthetic Activity and Setup Optimization
Figure 3
Figure 3. (a) Photocurrent measurements carried out: under the standard conditions reported in the Experimental Section (red line); using bare ITO as the WE (blue line); in the absence of K-ferricyanide mediator (green line); and using Pht cells after an autoclave cycle (121 °C, 15 psi, 20 min). Inset: detail of the photocurrent signal from Pht in the absence of K-ferricyanide. Photocurrent values on the third cycle of illumination at increasing (b) light intensity (10, 30, 54, 100, and 140 mW·cm–2), (c) cell density of Pht cells onto ITO surface, and (d) concentration of K-ferricyanide mediator.
Photocurrent Generation Efficiency of Different Diatom Species
Figure 4
Figure 4. (a) Bright field images of the studied diatom species at 100× on top and chloroplast fluorescence images at the bottom. The number of chloroplasts per cell is visible for every single cell (except for Fp, which appears as a chain-like colony of single cells). Scale bar corresponds to 20 μm. (b) Average photocurrent density at the third light cycle from the different species studied, normalized to the number of cells on the bioanode. (c) Total chlorophyll content of each species. Tables report the pairwise tests showing the statistical differences in the chlorophyll content and photocurrent output for the investigated species. (d) Photocurrent values of different species of diatoms on the third cycle of illumination and under the set conditions plotted versus the average total chlorophyll content of each species, normalized to 106 cells.
Tw Displays a Higher Resistance to Repeated Photocurrent Extraction than a Model Green Microalga
Figure 5
Figure 5. Photocurrent values on the third cycle of illumination under the set conditions for (a) Tw and Dt biophotoanodes after a different number of storage days in dry state. (b) Tw diatoms and green Dt-based biophotoanodes reused for photocurrent extraction four times over a period of 15 days.
Internal Quantum Efficiency of BPVs
Conclusion
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acssuschemeng.4c00935.
Light emission spectra from different light sources used; average number of fallen cells from bioanodes after CA; morphological analysis of biophotoanodes; morphological information, photocurrent, and chlorophyll content from D. tertiolecta; and equations needed to calculate the IQE (PDF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
Acknowledgments
The authors thank Prof. Bruno Freire Boa de Jesus from the Nantes Université for generously supplying the C. closterium diatom strain; Dr. Giusy D’Attoma for her help in the viability assay; and Dr. Gabriella Leone for preliminary experiments on diatom cultures.
BPV | biophotovoltaic |
Pht | Phaeodactylum tricornutum |
Tw | Thalassiosira weissflogii |
Fp, | Fistulifera pelliculosa |
Cc | Cylindrotheca closterium |
Dt | Dunaliella tertiolecta |
MFC | microbial fuel cell |
BPEC | biophotoelectrochemical cell |
FR | ferrireductase |
ITO | indium tin oxide |
FDA | fluorescein diacetate |
PAR | photosynthetically active radiation |
RT | room temperature |
PB | phosphate buffer |
IQE | internal quantum efficiency |
CA | chronoamperometry |
DMF | dimethylformamide |
References
This article references 45 other publications.
- 1Hughes, S. R.; Jones, M. A. The Global Demand for Biofuels and Biotechnology-Derived Commodity Chemicals; Technologies, Markets, and Challenges, 2020.Google ScholarThere is no corresponding record for this reference.
- 2Moriarty, P.; Honnery, D. Review: Renewable Energy in an Increasingly Uncertain Future. Appl. Sci. 2023, 13 (1), 388, DOI: 10.3390/app13010388Google ScholarThere is no corresponding record for this reference.
- 3Gallagher, J.; Basu, B.; Browne, M.; Kenna, A.; McCormack, S.; Pilla, F.; Styles, D. Adapting Stand-Alone Renewable Energy Technologies for the Circular Economy through Eco-Design and Recycling. J. Ind. Ecol. 2019, 23 (1), 133– 140, DOI: 10.1111/jiec.12703Google ScholarThere is no corresponding record for this reference.
- 4Santoro, C.; Arbizzani, C.; Erable, B.; Ieropoulos, I. Microbial Fuel Cells: From Fundamentals to Applications. A Review. J. Power Sources 2017, 356, 225– 244, DOI: 10.1016/j.jpowsour.2017.03.109Google ScholarThere is no corresponding record for this reference.
- 5Beaver, K.; Gaffney, E. M.; Minteer, S. D. Understanding Metabolic Bioelectrocatalysis of the Purple Bacterium Rhodobacter Capsulatus through Substrate Modulation. Electrochim. Acta 2022, 416 (February), 140291, DOI: 10.1016/j.electacta.2022.140291Google ScholarThere is no corresponding record for this reference.
- 6Shlosberg, Y.; Schuster, G.; Adir, N. Harnessing Photosynthesis to Produce Electricity Using Cyanobacteria, Green Algae, Seaweeds and Plants. Front. Plant Sci. 2022, 13 (July), 1– 15, DOI: 10.3389/fpls.2022.955843Google ScholarThere is no corresponding record for this reference.
- 7Bombelli, P.; Savanth, A.; Scarampi, A.; Rowden, S. J. L.; Green, D. H.; Erbe, A.; Årstøl, E.; Jevremovic, I.; Hohmann-Marriott, M. F.; Trasatti, S. P. Powering a Microprocessor by Photosynthesis. Energy Environ. Sci. 2022, 15 (6), 2529– 2536, DOI: 10.1039/D2EE00233GGoogle ScholarThere is no corresponding record for this reference.
- 8Roxby, D. N.; Yuan, Z.; Krishnamoorthy, S.; Wu, P.; Tu, W. C.; Chang, G. E.; Lau, R.; Chen, Y. C. Enhanced Biophotocurrent Generation in Living Photosynthetic Optical Resonator. Adv. Sci. 2020, 7 (11), 1903707, DOI: 10.1002/advs.201903707Google ScholarThere is no corresponding record for this reference.
- 9Shlosberg, Y.; Krupnik, N.; Tóth, T. N.; Eichenbaum, B.; Meirovich, M. M.; Meiri, D.; Yehezkeli, O.; Schuster, G.; Israel, A. ́.; Adir, N. Bioelectricity Generation from Live Marine Photosynthetic Macroalgae: Bioelectricity from Macroalgae. Biosens. Bioelectron. 2022, 198 (November 2021), 113824, DOI: 10.1016/j.bios.2021.113824Google ScholarThere is no corresponding record for this reference.
- 10Laohavisit, A.; Anderson, A.; Bombelli, P.; Jacobs, M.; Howe, C. J.; Davies, J. M.; Smith, A. G. Enhancing Plasma Membrane NADPH Oxidase Activity Increases Current Output by Diatoms in Biophotovoltaic Devices. Algal Res. 2015, 12, 91– 98, DOI: 10.1016/j.algal.2015.08.009Google ScholarThere is no corresponding record for this reference.
- 11Khan, M. J.; Das, S.; Vinayak, V.; Pant, D.; Ghangrekar, M. M. Live Diatoms as Potential Biocatalyst in a Microbial Fuel Cell for Harvesting Continuous Diafuel, Carotenoids and Bioelectricity. Chemosphere 2022, 291 (P1), 132841, DOI: 10.1016/j.chemosphere.2021.132841Google ScholarThere is no corresponding record for this reference.
- 12Malviya, S.; Scalco, E.; Audic, S.; Vincent, F.; Veluchamy, A.; Poulain, J.; Wincker, P.; Iudicone, D.; De Vargas, C.; Bittner, L. Insights into Global Diatom Distribution and Diversity in the World’s Ocean. Proc. Natl. Acad. Sci. U.S.A. 2016, 113 (11), E1516– E1525, DOI: 10.1073/pnas.1509523113Google ScholarThere is no corresponding record for this reference.
- 13Leterme, S. C.; Prime, E.; Mitchell, J.; Brown, M. H.; Ellis, A. V. Diatom Adaptability to Environmental Change: A Case Study of Two Cocconeis Species from High-Salinity Areas. Diatom Res. 2013, 28 (1), 29– 35, DOI: 10.1080/0269249X.2012.734530Google ScholarThere is no corresponding record for this reference.
- 14Zhao, P.; Gu, W.; Wu, S.; Huang, A.; He, L.; Xie, X.; Gao, S.; Zhang, B.; Niu, J.; Peng Lin, A. Silicon Enhances the Growth of Phaeodactylum Tricornutum Bohlin under Green Light and Low Temperature. Sci. Rep. 2014, 4, 3958, DOI: 10.1038/srep03958Google ScholarThere is no corresponding record for this reference.
- 15Dhaouadi, F.; Awwad, F.; Diamond, A.; Desgagné-Penix, I. Diatoms’ Breakthroughs in Biotechnology: <i&gt;Phaeodactylum tricornutum&lt;/i&gt; as a Model for Producing High-Added Value Molecules. Am. J. Plant Sci. 2020, 11 (10), 1632– 1670, DOI: 10.4236/ajps.2020.1110118Google ScholarThere is no corresponding record for this reference.
- 16Vinayak, V.; Khan, M. J.; Varjani, S.; Saratale, G. D.; Saratale, R. G.; Bhatia, S. K. Microbial Fuel Cells for Remediation of Environmental Pollutants and Value Addition: Special Focus on Coupling Diatom Microbial Fuel Cells with Photocatalytic and Photoelectric Fuel Cells. J. Biotechnol. 2021, 338 (July), 5– 19, DOI: 10.1016/j.jbiotec.2021.07.003Google ScholarThere is no corresponding record for this reference.
- 17Cicco, S. R.; Vona, D.; Leone, G.; De Giglio, E.; Bonifacio, M. A.; Cometa, S.; Fiore, S.; Palumbo, F.; Ragni, R.; Farinola, G. M. In Vivo Functionalization of Diatom Biosilica with Sodium Alendronate as Osteoactive Material. Mater. Sci. Eng., C 2019, 104 (June), 109897, DOI: 10.1016/j.msec.2019.109897Google ScholarThere is no corresponding record for this reference.
- 18Ragni, R.; Cicco, S. R.; Vona, D.; Farinola, G. M. Multiple Routes to Smart Nanostructured Materials from Diatom Microalgae: A Chemical Perspective. Adv. Mater. 2018, 30 (19), e1704289 DOI: 10.1002/adma.201704289Google ScholarThere is no corresponding record for this reference.
- 19Jeffryes, C.; Campbell, J.; Li, H.; Jiao, J.; Rorrer, G. The Potential of Diatom Nanobiotechnology for Applications in Solar Cells, Batteries, and Electroluminescent Devices. Energy Environ. Sci. 2011, 4 (10), 3930– 3941, DOI: 10.1039/c0ee00306aGoogle ScholarThere is no corresponding record for this reference.
- 20Vona, D.; Cicco, S. R.; Labarile, R.; Flemma, A.; Garcia, C. V.; Giangregorio, M. M.; Cotugno, P.; Ragni, R. Boronic Acid Moieties Stabilize Adhesion of Microalgal Biofilms on Glassy Substrates: A Chemical Tool for Environmental Applications. ChemBioChem 2023, 24, e202300284 DOI: 10.1002/cbic.202300284Google ScholarThere is no corresponding record for this reference.
- 21Tong, C. Y.; Derek, C. J. C. Biofilm Formation of Benthic Diatoms on Commercial Polyvinylidene Fluoride Membrane. Algal Res. 2021, 55 (February), 102260, DOI: 10.1016/j.algal.2021.102260Google ScholarThere is no corresponding record for this reference.
- 22Gügi, B.; Le Costaouec, T.; Burel, C.; Lerouge, P.; Helbert, W.; Bardor, M. Diatom-Specific Oligosaccharide and Polysaccharide Structures Help to Unravel Biosynthetic Capabilities in Diatoms. Mar. Drugs 2015, 13 (9), 5993– 6018, DOI: 10.3390/md13095993Google ScholarThere is no corresponding record for this reference.
- 23Ciglenečki, I.; Dautović, J.; Cvitešić, A.; Pletikapić, G. Production of Surface Active Organic Material and Reduced Sulfur Species during the Growth of Marine Diatom Cylindrotheca Closterium. Croat. Chem. Acta 2018, 91 (4), 455– 461, DOI: 10.5562/cca3433Google ScholarThere is no corresponding record for this reference.
- 24Torquato, L. D. d. M.; Grattieri, M. Photobioelectrochemistry of Intact Photosynthetic Bacteria: Advances and Future Outlook. Curr. Opin. Electrochem. 2022, 34, 101018, DOI: 10.1016/j.coelec.2022.101018Google ScholarThere is no corresponding record for this reference.
- 25Gupta, S.; Agrawal, S. C. Survival and Motility of Diatoms Navicula Grimmei and Nitzschia Palea Affected by Some Physical and Chemical Factors. Folia Microbiol. 2007, 52 (2), 127– 134, DOI: 10.1007/BF02932151Google ScholarThere is no corresponding record for this reference.
- 26Souffreau, C.; Vanormelingen, P.; Verleyen, E.; Sabbe, K.; Vyverman, W. Tolerance of Benthic Diatoms from Temperate Aquatic and Terrestrial Habitats to Experimental Desiccation and Temperature Stress. Phycologia 2010, 49 (4), 309– 324, DOI: 10.2216/09-30.1Google ScholarThere is no corresponding record for this reference.
- 27Sawa, M.; Fantuzzi, A.; Bombelli, P.; Howe, C. J.; Hellgardt, K.; Nixon, P. J. Electricity Generation from Digitally Printed Cyanobacteria. Nat. Commun. 2017, 8 (1), 1327, DOI: 10.1038/s41467-017-01084-4Google ScholarThere is no corresponding record for this reference.
- 28Gacitua, M.; Urrejola, C.; Carrasco, J.; Vicuña, R.; Srain, B. M.; Pantoja-Gutiérrez, S.; Leech, D.; Antiochia, R.; Tasca, F. Use of a Thermophile Desiccation-Tolerant Cyanobacterial Culture and Os Redox Polymer for the Preparation of Photocurrent Producing Anodes. Front. Bioeng. Biotechnol. 2020, 8 (August), 900, DOI: 10.3389/fbioe.2020.00900Google ScholarThere is no corresponding record for this reference.
- 29Kustka, A. B.; Shaked, Y.; Milligan, A. J.; King, D. W.; Morel, F. M. M. Extracellular Production of Superoxide by Marine Diatoms: Contrasting Effects on Iron Redox Chemistry and Bioavailability. Limnol. Oceanogr. 2005, 50 (4), 1172– 1180, DOI: 10.4319/lo.2005.50.4.1172Google ScholarThere is no corresponding record for this reference.
- 30Carmel, N.; Tel-Or, E.; Chen, Y.; Pick, U. Iron Uptake Mechanism in the Chrysophyte Microalga Dinobryon. J. Plant Physiol. 2014, 171 (12), 993– 997, DOI: 10.1016/j.jplph.2014.03.014Google ScholarThere is no corresponding record for this reference.
- 31Anderson, A.; Laohavisit, A.; Blaby, I. K.; Bombelli, P.; Howe, C. J.; Merchant, S. S.; Davies, J. M.; Smith, A. G. Exploiting Algal NADPH Oxidase for Biophotovoltaic Energy. Plant Biotechnol. J. 2016, 14 (1), 22– 28, DOI: 10.1111/pbi.12332Google ScholarThere is no corresponding record for this reference.
- 32Buscemi, G.; Vona, D.; Stufano, P.; Labarile, R.; Cosma, P.; Agostiano, A.; Trotta, M.; Farinola, G. M.; Grattieri, M. Bio-Inspired Redox-Adhesive Polydopamine Matrix for Intact Bacteria Biohybrid Photoanodes. ACS Appl. Mater. Interfaces 2022, 14 (23), 26631– 26641, DOI: 10.1021/acsami.2c02410Google ScholarThere is no corresponding record for this reference.
- 33Garvey, M.; Moriceau, B.; Passow, U. Applicability of the FDA Assay to Determine the Viability of Marine Phytoplankton under Different Environmental Conditions. Mar. Ecol.: Prog. Ser. 2007, 352, 17– 26, DOI: 10.3354/meps07134Google ScholarThere is no corresponding record for this reference.
- 34Wey, L. T.; Bombelli, P.; Chen, X.; Lawrence, J. M.; Rabideau, C. M.; Rowden, S. J. L.; Zhang, J. Z.; Howe, C. J. The Development of Biophotovoltaic Systems for Power Generation and Biological Analysis. ChemElectroChem 2019, 6 (21), 5375– 5386, DOI: 10.1002/celc.201900997Google ScholarThere is no corresponding record for this reference.
- 35Vona, D.; Ragni, R.; Altamura, E.; Albanese, P.; Giangregorio, M. M.; Cicco, S. R.; Farinola, G. M. Light-emitting Biosilica by in Vivo Functionalization of Phaeodactylum Tricornutum Diatom Microalgae with Organometallic Complexes. Appl. Sci. 2021, 11 (8), 3327, DOI: 10.3390/app11083327Google ScholarThere is no corresponding record for this reference.
- 36Ng, F. L.; Phang, S. M.; Periasamy, V.; Yunus, K.; Fisher, A. C. Evaluation of Algal Biofilms on Indium Tin Oxide (ITO) for Use in Biophotovoltaic Platforms Based on Photosynthetic Performance. PLoS One 2014, 9 (5), e97643 DOI: 10.1371/journal.pone.0097643Google ScholarThere is no corresponding record for this reference.
- 37Tucci, M.; Bombelli, P.; Howe, C. J.; Vignolini, S.; Bocchi, S.; Schievano, A. A Storable Mediatorless Electrochemical Biosensor for Herbicide Detection. Microorganisms 2019, 7 (12), 630, DOI: 10.3390/microorganisms7120630Google ScholarThere is no corresponding record for this reference.
- 38Elisabeth, B.; Rayen, F.; Behnam, T. Microalgae Culture Quality Indicators: A Review. Crit. Rev. Biotechnol. 2021, 41 (4), 457– 473, DOI: 10.1080/07388551.2020.1854672Google ScholarThere is no corresponding record for this reference.
- 39Rico, M.; López, A.; Santana-Casiano, J. M.; Gonzàlez, A. G.; Gonzàlez-Dàvila, M. Variability of the Phenolic Profile in the Diatom Phaeodactylum Tricornutum Growing under Copper and Iron Stress. Limnol. Oceanogr. 2013, 58 (1), 144– 152, DOI: 10.4319/lo.2013.58.1.0144Google ScholarThere is no corresponding record for this reference.
- 40Grattieri, M.; Rhodes, Z.; Hickey, D. P.; Beaver, K.; Minteer, S. D. Understanding Biophotocurrent Generation in Photosynthetic Purple Bacteria. ACS Catal. 2019, 9 (2), 867– 873, DOI: 10.1021/acscatal.8b04464Google ScholarThere is no corresponding record for this reference.
- 41Sayegh, A.; Perego, L. A.; Arderiu Romero, M.; Escudero, L.; Delacotte, J.; Guille-Collignon, M.; Grimaud, L.; Bailleul, B.; Lemaître, F. Finding Adapted Quinones for Harvesting Electrons from Photosynthetic Algae Suspensions. ChemElectroChem 2021, 8 (15), 2968– 2978, DOI: 10.1002/celc.202100757Google ScholarThere is no corresponding record for this reference.
- 42McCormick, A. J.; Bombelli, P.; Scott, A. M.; Philips, A. J.; Smith, A. G.; Fisher, A. C.; Howe, C. J. Photosynthetic Biofilms in Pure Culture Harness Solar Energy in a Mediatorless Bio-Photovoltaic Cell (BPV) System. Energy Environ. Sci. 2011, 4 (11), 4699– 4709, DOI: 10.1039/c1ee01965aGoogle ScholarThere is no corresponding record for this reference.
- 43Shlosberg, Y.; Tóth, T. N.; Eichenbaum, B.; Keysar, L.; Schuster, G.; Adir, N. Electron Mediation and Photocurrent Enhancement in Dunalliela Salina Driven Bio-Photo Electrochemical Cells. Catalysts 2021, 11 (10), 1220, DOI: 10.3390/catal11101220Google ScholarThere is no corresponding record for this reference.
- 44Liang, M. H.; Qv, X. Y.; Chen, H.; Wang, Q.; Jiang, J. G. Effects of Salt Concentrations and Nitrogen and Phosphorus Starvations on Neutral Lipid Contents in the Green Microalga Dunaliella Tertiolecta. J. Agric. Food Chem. 2017, 65 (15), 3190– 3197, DOI: 10.1021/acs.jafc.7b00552Google ScholarThere is no corresponding record for this reference.
- 45Lo Presti, M.; Giangregorio, M. M.; Ragni, R.; Giotta, L.; Guascito, M. R.; Comparelli, R.; Fanizza, E.; Tangorra, R. R.; Agostiano, A.; Losurdo, M. Photoelectrodes with Polydopamine Thin Films Incorporating a Bacterial Photoenzyme. Adv. Electron. Mater. 2020, 6 (7), 2000140, DOI: 10.1002/aelm.202000140Google ScholarThere is no corresponding record for this reference.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 5 publications.
- Arti Sharma, Lital Alfonta. Engineering strategies in bio-photoelectrochemical cells for sustainable energy and environmental applications. Chemical Communications 2025, 61
(49)
, 8790-8802. https://doi.org/10.1039/D5CC01300C
- Tulus Tulus, Vincent Morris Friebe, Andreas Peukert, Loreta A. Muscarella, Michael R. Jones, Raoul N. Frese, Elizabeth von Hauff. Purple Bacteria Reaction Center Based Solid State Bio‐Solar Cell With a Large Open Circuit Voltage. ChemPhotoChem 2025, 9
(3)
https://doi.org/10.1002/cptc.202400303
- Cesar Vicente‐Garcia, Danilo Vona, Annarita Flemma, Stefania Roberta Cicco, Gianluca Maria Farinola. Diatoms in Focus: Chemically Doped Biosilica for Customized Nanomaterials. ChemPlusChem 2024, 89
(12)
https://doi.org/10.1002/cplu.202400462
- Biswajeet Acharya, Amulyaratna Behera, Bimalendu Chowdhury, Srikanta Moharana, Suresh Sagadevan, Suchismeeta Behera. Exploring bamboo based bio-photovoltaic devices: Pioneering sustainable solar innovations- A comprehensive review. Solar Energy 2024, 284 , 113039. https://doi.org/10.1016/j.solener.2024.113039
- Leonid Digel, Robin Bonné, Kartik Aiyer. Are all microbes electroactive?. Cell Reports Physical Science 2024, 5
(9)
, 102200. https://doi.org/10.1016/j.xcrp.2024.102200
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.
Recommended Articles
Abstract
Figure 1
Figure 1. (a) Preparation of the air-dried diatom bioanode from a fresh culture of diatoms. The white matrix around the diatom spot corresponds to residual salts from the culture medium. (b) Scheme of the photoelectrochemical cell representing the microalgae onto ITO WE, the frustule, the cell membrane, the chloroplast (CP) inside the microalgae, the membrane ferrireductase (FR), the K-ferro/ferricyanide couple in PB solution, and the platinum wire CE. The reference electrode has not been depicted for simplicity, and the different phases are not in scale. (c) Cyclic voltammetry performed at a 20 mV·s–1 scan rate with the ITO electrode coated with 106 cells and immersed in a solution containing 0.5 mM K-ferricyanide; the red arrow shows an overpotential of +0.23 V with respect to E1/2 of the ferro/ferricyanide couple applied in the CA experiments.
Figure 2
Figure 2. (a) Photocurrent signals from 106 Pht cells in suspension (red) and 106 Pht cells coated ITO bioanode (black). (b) Images of a Pht-coated ITO bioanode, from left to right: macroscopic view, bright field microscopy image at 20×, fluorescence microscopy images (λex = 568 nm, λem >600 nm) at 20×, at 100× before CA, and at 100× after CA. (c) Mean fluorescein emission (λex = 488 nm, λem = 511 nm) in the FDA viability assay of Pht cells performed before and after CA.
Figure 3
Figure 3. (a) Photocurrent measurements carried out: under the standard conditions reported in the Experimental Section (red line); using bare ITO as the WE (blue line); in the absence of K-ferricyanide mediator (green line); and using Pht cells after an autoclave cycle (121 °C, 15 psi, 20 min). Inset: detail of the photocurrent signal from Pht in the absence of K-ferricyanide. Photocurrent values on the third cycle of illumination at increasing (b) light intensity (10, 30, 54, 100, and 140 mW·cm–2), (c) cell density of Pht cells onto ITO surface, and (d) concentration of K-ferricyanide mediator.
Figure 4
Figure 4. (a) Bright field images of the studied diatom species at 100× on top and chloroplast fluorescence images at the bottom. The number of chloroplasts per cell is visible for every single cell (except for Fp, which appears as a chain-like colony of single cells). Scale bar corresponds to 20 μm. (b) Average photocurrent density at the third light cycle from the different species studied, normalized to the number of cells on the bioanode. (c) Total chlorophyll content of each species. Tables report the pairwise tests showing the statistical differences in the chlorophyll content and photocurrent output for the investigated species. (d) Photocurrent values of different species of diatoms on the third cycle of illumination and under the set conditions plotted versus the average total chlorophyll content of each species, normalized to 106 cells.
Figure 5
Figure 5. Photocurrent values on the third cycle of illumination under the set conditions for (a) Tw and Dt biophotoanodes after a different number of storage days in dry state. (b) Tw diatoms and green Dt-based biophotoanodes reused for photocurrent extraction four times over a period of 15 days.
References
This article references 45 other publications.
- 1Hughes, S. R.; Jones, M. A. The Global Demand for Biofuels and Biotechnology-Derived Commodity Chemicals; Technologies, Markets, and Challenges, 2020.There is no corresponding record for this reference.
- 2Moriarty, P.; Honnery, D. Review: Renewable Energy in an Increasingly Uncertain Future. Appl. Sci. 2023, 13 (1), 388, DOI: 10.3390/app13010388There is no corresponding record for this reference.
- 3Gallagher, J.; Basu, B.; Browne, M.; Kenna, A.; McCormack, S.; Pilla, F.; Styles, D. Adapting Stand-Alone Renewable Energy Technologies for the Circular Economy through Eco-Design and Recycling. J. Ind. Ecol. 2019, 23 (1), 133– 140, DOI: 10.1111/jiec.12703There is no corresponding record for this reference.
- 4Santoro, C.; Arbizzani, C.; Erable, B.; Ieropoulos, I. Microbial Fuel Cells: From Fundamentals to Applications. A Review. J. Power Sources 2017, 356, 225– 244, DOI: 10.1016/j.jpowsour.2017.03.109There is no corresponding record for this reference.
- 5Beaver, K.; Gaffney, E. M.; Minteer, S. D. Understanding Metabolic Bioelectrocatalysis of the Purple Bacterium Rhodobacter Capsulatus through Substrate Modulation. Electrochim. Acta 2022, 416 (February), 140291, DOI: 10.1016/j.electacta.2022.140291There is no corresponding record for this reference.
- 6Shlosberg, Y.; Schuster, G.; Adir, N. Harnessing Photosynthesis to Produce Electricity Using Cyanobacteria, Green Algae, Seaweeds and Plants. Front. Plant Sci. 2022, 13 (July), 1– 15, DOI: 10.3389/fpls.2022.955843There is no corresponding record for this reference.
- 7Bombelli, P.; Savanth, A.; Scarampi, A.; Rowden, S. J. L.; Green, D. H.; Erbe, A.; Årstøl, E.; Jevremovic, I.; Hohmann-Marriott, M. F.; Trasatti, S. P. Powering a Microprocessor by Photosynthesis. Energy Environ. Sci. 2022, 15 (6), 2529– 2536, DOI: 10.1039/D2EE00233GThere is no corresponding record for this reference.
- 8Roxby, D. N.; Yuan, Z.; Krishnamoorthy, S.; Wu, P.; Tu, W. C.; Chang, G. E.; Lau, R.; Chen, Y. C. Enhanced Biophotocurrent Generation in Living Photosynthetic Optical Resonator. Adv. Sci. 2020, 7 (11), 1903707, DOI: 10.1002/advs.201903707There is no corresponding record for this reference.
- 9Shlosberg, Y.; Krupnik, N.; Tóth, T. N.; Eichenbaum, B.; Meirovich, M. M.; Meiri, D.; Yehezkeli, O.; Schuster, G.; Israel, A. ́.; Adir, N. Bioelectricity Generation from Live Marine Photosynthetic Macroalgae: Bioelectricity from Macroalgae. Biosens. Bioelectron. 2022, 198 (November 2021), 113824, DOI: 10.1016/j.bios.2021.113824There is no corresponding record for this reference.
- 10Laohavisit, A.; Anderson, A.; Bombelli, P.; Jacobs, M.; Howe, C. J.; Davies, J. M.; Smith, A. G. Enhancing Plasma Membrane NADPH Oxidase Activity Increases Current Output by Diatoms in Biophotovoltaic Devices. Algal Res. 2015, 12, 91– 98, DOI: 10.1016/j.algal.2015.08.009There is no corresponding record for this reference.
- 11Khan, M. J.; Das, S.; Vinayak, V.; Pant, D.; Ghangrekar, M. M. Live Diatoms as Potential Biocatalyst in a Microbial Fuel Cell for Harvesting Continuous Diafuel, Carotenoids and Bioelectricity. Chemosphere 2022, 291 (P1), 132841, DOI: 10.1016/j.chemosphere.2021.132841There is no corresponding record for this reference.
- 12Malviya, S.; Scalco, E.; Audic, S.; Vincent, F.; Veluchamy, A.; Poulain, J.; Wincker, P.; Iudicone, D.; De Vargas, C.; Bittner, L. Insights into Global Diatom Distribution and Diversity in the World’s Ocean. Proc. Natl. Acad. Sci. U.S.A. 2016, 113 (11), E1516– E1525, DOI: 10.1073/pnas.1509523113There is no corresponding record for this reference.
- 13Leterme, S. C.; Prime, E.; Mitchell, J.; Brown, M. H.; Ellis, A. V. Diatom Adaptability to Environmental Change: A Case Study of Two Cocconeis Species from High-Salinity Areas. Diatom Res. 2013, 28 (1), 29– 35, DOI: 10.1080/0269249X.2012.734530There is no corresponding record for this reference.
- 14Zhao, P.; Gu, W.; Wu, S.; Huang, A.; He, L.; Xie, X.; Gao, S.; Zhang, B.; Niu, J.; Peng Lin, A. Silicon Enhances the Growth of Phaeodactylum Tricornutum Bohlin under Green Light and Low Temperature. Sci. Rep. 2014, 4, 3958, DOI: 10.1038/srep03958There is no corresponding record for this reference.
- 15Dhaouadi, F.; Awwad, F.; Diamond, A.; Desgagné-Penix, I. Diatoms’ Breakthroughs in Biotechnology: <i&gt;Phaeodactylum tricornutum&lt;/i&gt; as a Model for Producing High-Added Value Molecules. Am. J. Plant Sci. 2020, 11 (10), 1632– 1670, DOI: 10.4236/ajps.2020.1110118There is no corresponding record for this reference.
- 16Vinayak, V.; Khan, M. J.; Varjani, S.; Saratale, G. D.; Saratale, R. G.; Bhatia, S. K. Microbial Fuel Cells for Remediation of Environmental Pollutants and Value Addition: Special Focus on Coupling Diatom Microbial Fuel Cells with Photocatalytic and Photoelectric Fuel Cells. J. Biotechnol. 2021, 338 (July), 5– 19, DOI: 10.1016/j.jbiotec.2021.07.003There is no corresponding record for this reference.
- 17Cicco, S. R.; Vona, D.; Leone, G.; De Giglio, E.; Bonifacio, M. A.; Cometa, S.; Fiore, S.; Palumbo, F.; Ragni, R.; Farinola, G. M. In Vivo Functionalization of Diatom Biosilica with Sodium Alendronate as Osteoactive Material. Mater. Sci. Eng., C 2019, 104 (June), 109897, DOI: 10.1016/j.msec.2019.109897There is no corresponding record for this reference.
- 18Ragni, R.; Cicco, S. R.; Vona, D.; Farinola, G. M. Multiple Routes to Smart Nanostructured Materials from Diatom Microalgae: A Chemical Perspective. Adv. Mater. 2018, 30 (19), e1704289 DOI: 10.1002/adma.201704289There is no corresponding record for this reference.
- 19Jeffryes, C.; Campbell, J.; Li, H.; Jiao, J.; Rorrer, G. The Potential of Diatom Nanobiotechnology for Applications in Solar Cells, Batteries, and Electroluminescent Devices. Energy Environ. Sci. 2011, 4 (10), 3930– 3941, DOI: 10.1039/c0ee00306aThere is no corresponding record for this reference.
- 20Vona, D.; Cicco, S. R.; Labarile, R.; Flemma, A.; Garcia, C. V.; Giangregorio, M. M.; Cotugno, P.; Ragni, R. Boronic Acid Moieties Stabilize Adhesion of Microalgal Biofilms on Glassy Substrates: A Chemical Tool for Environmental Applications. ChemBioChem 2023, 24, e202300284 DOI: 10.1002/cbic.202300284There is no corresponding record for this reference.
- 21Tong, C. Y.; Derek, C. J. C. Biofilm Formation of Benthic Diatoms on Commercial Polyvinylidene Fluoride Membrane. Algal Res. 2021, 55 (February), 102260, DOI: 10.1016/j.algal.2021.102260There is no corresponding record for this reference.
- 22Gügi, B.; Le Costaouec, T.; Burel, C.; Lerouge, P.; Helbert, W.; Bardor, M. Diatom-Specific Oligosaccharide and Polysaccharide Structures Help to Unravel Biosynthetic Capabilities in Diatoms. Mar. Drugs 2015, 13 (9), 5993– 6018, DOI: 10.3390/md13095993There is no corresponding record for this reference.
- 23Ciglenečki, I.; Dautović, J.; Cvitešić, A.; Pletikapić, G. Production of Surface Active Organic Material and Reduced Sulfur Species during the Growth of Marine Diatom Cylindrotheca Closterium. Croat. Chem. Acta 2018, 91 (4), 455– 461, DOI: 10.5562/cca3433There is no corresponding record for this reference.
- 24Torquato, L. D. d. M.; Grattieri, M. Photobioelectrochemistry of Intact Photosynthetic Bacteria: Advances and Future Outlook. Curr. Opin. Electrochem. 2022, 34, 101018, DOI: 10.1016/j.coelec.2022.101018There is no corresponding record for this reference.
- 25Gupta, S.; Agrawal, S. C. Survival and Motility of Diatoms Navicula Grimmei and Nitzschia Palea Affected by Some Physical and Chemical Factors. Folia Microbiol. 2007, 52 (2), 127– 134, DOI: 10.1007/BF02932151There is no corresponding record for this reference.
- 26Souffreau, C.; Vanormelingen, P.; Verleyen, E.; Sabbe, K.; Vyverman, W. Tolerance of Benthic Diatoms from Temperate Aquatic and Terrestrial Habitats to Experimental Desiccation and Temperature Stress. Phycologia 2010, 49 (4), 309– 324, DOI: 10.2216/09-30.1There is no corresponding record for this reference.
- 27Sawa, M.; Fantuzzi, A.; Bombelli, P.; Howe, C. J.; Hellgardt, K.; Nixon, P. J. Electricity Generation from Digitally Printed Cyanobacteria. Nat. Commun. 2017, 8 (1), 1327, DOI: 10.1038/s41467-017-01084-4There is no corresponding record for this reference.
- 28Gacitua, M.; Urrejola, C.; Carrasco, J.; Vicuña, R.; Srain, B. M.; Pantoja-Gutiérrez, S.; Leech, D.; Antiochia, R.; Tasca, F. Use of a Thermophile Desiccation-Tolerant Cyanobacterial Culture and Os Redox Polymer for the Preparation of Photocurrent Producing Anodes. Front. Bioeng. Biotechnol. 2020, 8 (August), 900, DOI: 10.3389/fbioe.2020.00900There is no corresponding record for this reference.
- 29Kustka, A. B.; Shaked, Y.; Milligan, A. J.; King, D. W.; Morel, F. M. M. Extracellular Production of Superoxide by Marine Diatoms: Contrasting Effects on Iron Redox Chemistry and Bioavailability. Limnol. Oceanogr. 2005, 50 (4), 1172– 1180, DOI: 10.4319/lo.2005.50.4.1172There is no corresponding record for this reference.
- 30Carmel, N.; Tel-Or, E.; Chen, Y.; Pick, U. Iron Uptake Mechanism in the Chrysophyte Microalga Dinobryon. J. Plant Physiol. 2014, 171 (12), 993– 997, DOI: 10.1016/j.jplph.2014.03.014There is no corresponding record for this reference.
- 31Anderson, A.; Laohavisit, A.; Blaby, I. K.; Bombelli, P.; Howe, C. J.; Merchant, S. S.; Davies, J. M.; Smith, A. G. Exploiting Algal NADPH Oxidase for Biophotovoltaic Energy. Plant Biotechnol. J. 2016, 14 (1), 22– 28, DOI: 10.1111/pbi.12332There is no corresponding record for this reference.
- 32Buscemi, G.; Vona, D.; Stufano, P.; Labarile, R.; Cosma, P.; Agostiano, A.; Trotta, M.; Farinola, G. M.; Grattieri, M. Bio-Inspired Redox-Adhesive Polydopamine Matrix for Intact Bacteria Biohybrid Photoanodes. ACS Appl. Mater. Interfaces 2022, 14 (23), 26631– 26641, DOI: 10.1021/acsami.2c02410There is no corresponding record for this reference.
- 33Garvey, M.; Moriceau, B.; Passow, U. Applicability of the FDA Assay to Determine the Viability of Marine Phytoplankton under Different Environmental Conditions. Mar. Ecol.: Prog. Ser. 2007, 352, 17– 26, DOI: 10.3354/meps07134There is no corresponding record for this reference.
- 34Wey, L. T.; Bombelli, P.; Chen, X.; Lawrence, J. M.; Rabideau, C. M.; Rowden, S. J. L.; Zhang, J. Z.; Howe, C. J. The Development of Biophotovoltaic Systems for Power Generation and Biological Analysis. ChemElectroChem 2019, 6 (21), 5375– 5386, DOI: 10.1002/celc.201900997There is no corresponding record for this reference.
- 35Vona, D.; Ragni, R.; Altamura, E.; Albanese, P.; Giangregorio, M. M.; Cicco, S. R.; Farinola, G. M. Light-emitting Biosilica by in Vivo Functionalization of Phaeodactylum Tricornutum Diatom Microalgae with Organometallic Complexes. Appl. Sci. 2021, 11 (8), 3327, DOI: 10.3390/app11083327There is no corresponding record for this reference.
- 36Ng, F. L.; Phang, S. M.; Periasamy, V.; Yunus, K.; Fisher, A. C. Evaluation of Algal Biofilms on Indium Tin Oxide (ITO) for Use in Biophotovoltaic Platforms Based on Photosynthetic Performance. PLoS One 2014, 9 (5), e97643 DOI: 10.1371/journal.pone.0097643There is no corresponding record for this reference.
- 37Tucci, M.; Bombelli, P.; Howe, C. J.; Vignolini, S.; Bocchi, S.; Schievano, A. A Storable Mediatorless Electrochemical Biosensor for Herbicide Detection. Microorganisms 2019, 7 (12), 630, DOI: 10.3390/microorganisms7120630There is no corresponding record for this reference.
- 38Elisabeth, B.; Rayen, F.; Behnam, T. Microalgae Culture Quality Indicators: A Review. Crit. Rev. Biotechnol. 2021, 41 (4), 457– 473, DOI: 10.1080/07388551.2020.1854672There is no corresponding record for this reference.
- 39Rico, M.; López, A.; Santana-Casiano, J. M.; Gonzàlez, A. G.; Gonzàlez-Dàvila, M. Variability of the Phenolic Profile in the Diatom Phaeodactylum Tricornutum Growing under Copper and Iron Stress. Limnol. Oceanogr. 2013, 58 (1), 144– 152, DOI: 10.4319/lo.2013.58.1.0144There is no corresponding record for this reference.
- 40Grattieri, M.; Rhodes, Z.; Hickey, D. P.; Beaver, K.; Minteer, S. D. Understanding Biophotocurrent Generation in Photosynthetic Purple Bacteria. ACS Catal. 2019, 9 (2), 867– 873, DOI: 10.1021/acscatal.8b04464There is no corresponding record for this reference.
- 41Sayegh, A.; Perego, L. A.; Arderiu Romero, M.; Escudero, L.; Delacotte, J.; Guille-Collignon, M.; Grimaud, L.; Bailleul, B.; Lemaître, F. Finding Adapted Quinones for Harvesting Electrons from Photosynthetic Algae Suspensions. ChemElectroChem 2021, 8 (15), 2968– 2978, DOI: 10.1002/celc.202100757There is no corresponding record for this reference.
- 42McCormick, A. J.; Bombelli, P.; Scott, A. M.; Philips, A. J.; Smith, A. G.; Fisher, A. C.; Howe, C. J. Photosynthetic Biofilms in Pure Culture Harness Solar Energy in a Mediatorless Bio-Photovoltaic Cell (BPV) System. Energy Environ. Sci. 2011, 4 (11), 4699– 4709, DOI: 10.1039/c1ee01965aThere is no corresponding record for this reference.
- 43Shlosberg, Y.; Tóth, T. N.; Eichenbaum, B.; Keysar, L.; Schuster, G.; Adir, N. Electron Mediation and Photocurrent Enhancement in Dunalliela Salina Driven Bio-Photo Electrochemical Cells. Catalysts 2021, 11 (10), 1220, DOI: 10.3390/catal11101220There is no corresponding record for this reference.
- 44Liang, M. H.; Qv, X. Y.; Chen, H.; Wang, Q.; Jiang, J. G. Effects of Salt Concentrations and Nitrogen and Phosphorus Starvations on Neutral Lipid Contents in the Green Microalga Dunaliella Tertiolecta. J. Agric. Food Chem. 2017, 65 (15), 3190– 3197, DOI: 10.1021/acs.jafc.7b00552There is no corresponding record for this reference.
- 45Lo Presti, M.; Giangregorio, M. M.; Ragni, R.; Giotta, L.; Guascito, M. R.; Comparelli, R.; Fanizza, E.; Tangorra, R. R.; Agostiano, A.; Losurdo, M. Photoelectrodes with Polydopamine Thin Films Incorporating a Bacterial Photoenzyme. Adv. Electron. Mater. 2020, 6 (7), 2000140, DOI: 10.1002/aelm.202000140There is no corresponding record for this reference.
Supporting Information
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acssuschemeng.4c00935.
Light emission spectra from different light sources used; average number of fallen cells from bioanodes after CA; morphological analysis of biophotoanodes; morphological information, photocurrent, and chlorophyll content from D. tertiolecta; and equations needed to calculate the IQE (PDF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.