ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVResearch ArticleNEXT

Ultralow Loss CaMgGeO4 Microwave Dielectric Ceramic and Its Chemical Compatibility with Silver Electrodes for Low-Temperature Cofired Ceramic Applications

  • Huaicheng Xiang
    Huaicheng Xiang
    State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing, Guangxi Universities Key Laboratory of Non-Ferrous Metal Oxide Electronic Functional Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
    Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu FI-90014, Finland
  • Chunchun Li*
    Chunchun Li
    State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing, Guangxi Universities Key Laboratory of Non-Ferrous Metal Oxide Electronic Functional Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
    College of Information Science and Engineering, Guilin University of Technology, Guilin 541004, China
    *E-mail: [email protected]
    More by Chunchun Li
  • Heli Jantunen
    Heli Jantunen
    Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu FI-90014, Finland
  • Liang Fang*
    Liang Fang
    State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing, Guangxi Universities Key Laboratory of Non-Ferrous Metal Oxide Electronic Functional Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
    *E-mail: [email protected]
    More by Liang Fang
  • , and 
  • Arthur E. Hill
    Arthur E. Hill
    Materials and Physics Research Centre, School of Computing, Science & Engineering, University of Salford, The Crescent, Salford M5 4WT, U.K.
Cite this: ACS Sustainable Chem. Eng. 2018, 6, 5, 6458–6466
Publication Date (Web):March 26, 2018
https://doi.org/10.1021/acssuschemeng.8b00220
Copyright © 2018 American Chemical Society

    Article Views

    1359

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    A new ultralow dielectric loss cofired CaMgGeO4 dielectric material with olivine structure was fabricated by the solid-state route. The X-ray patterns, Rietveld refinement, and microstructure revealed the characteristics of the synthesized material. CaMgGeO4 ceramic belongs to the orthorhombic system with a Pbmn space group. Sintered at 1300 °C for 6 h, the ceramic exhibited a densification of 96.5%, an ultrahigh quality factor (Q × f) of 124 900 GHz (tan δ = 1.24 × 10–4) at a frequency of 15.5 GHz, a permittivity (εr) of 6.71, and a temperature coefficient of resonant frequency (τf) of −73.7 ppm/°C, and the average coefficient of thermal expansion of CaMgGeO4 was 12.4 ppm/°C. The sintering temperature of the CaMgGeO4 ceramic was reduced from 1300 to 940 °C with the addition of 5 wt % B2O3. The CaMgGeO4 + 5 wt % B2O3 ceramics exhibited favorable microwave dielectric performances: Q × f = 102 000 GHz (at 16.4 GHz), εr = 5.80, and τf = −64.7 ppm/°C, respectively. In addition, the CaMgGeO4 ceramic did not react with Ag electrodes, which could be advantageous in low-temperature cofired ceramic multilayer microwave devices.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 110 publications.

    1. Xinyuan Lyu, Luchao Ren, Le Xin, Zhengxin Li, Xianxin Zhang, Zheng Luo, Pengchao Shao, Yuxiao Zhang, Panpan Lyu, Mingwei Zhang. Low Temperature Sintering, Structure and Microwave Dielectric Properties of Novel (1 – x)MgGa2O4–xCuMoO4 Ceramics for LTCC Applications. ACS Sustainable Chemistry & Engineering 2023, 11 (18) , 7002-7011. https://doi.org/10.1021/acssuschemeng.2c07494
    2. Xiaohui Wu, Yulan Jing, Yuanxun Li, Hua Su. Novel Tri-rutile Ni0.5Ti0.5TaO4 Microwave Dielectric Ceramics: Crystal Structure Chemistry, Raman Vibration Mode, and Chemical Bond Characteristic In-Depth Studies. The Journal of Physical Chemistry C 2022, 126 (34) , 14680-14692. https://doi.org/10.1021/acs.jpcc.2c03844
    3. Yang Yang, Ying Tang, Jie Li, Liang Fang, Huaicheng Xiang. Effects of Ionic Coordination Bonding on Microwave Dielectric Properties of Y2CaBGa4O12 (B = Zr, Sn) Garnets. ACS Applied Electronic Materials 2022, 4 (7) , 3512-3519. https://doi.org/10.1021/acsaelm.2c00486
    4. Chunchun Li, Changzhi Yin, Jibran Khaliq, Laijun Liu. Ultralow-Temperature Synthesis and Densification of Ag2CaV4O12 with Improved Microwave Dielectric Performances. ACS Sustainable Chemistry & Engineering 2021, 9 (43) , 14461-14469. https://doi.org/10.1021/acssuschemeng.1c04791
    5. Huan-Huan Guo, Mao-Sen Fu, Di Zhou, Chao Du, Peng-Jian Wang, Li-Xia Pang, Wen-Feng Liu, Antonio Sergio Bezerra Sombra, Jin-Zhan Su. Design of a High-Efficiency and -Gain Antenna Using Novel Low-Loss, Temperature-Stable Li2Ti1–x(Cu1/3Nb2/3)xO3 Microwave Dielectric Ceramics. ACS Applied Materials & Interfaces 2021, 13 (1) , 912-923. https://doi.org/10.1021/acsami.0c18836
    6. Jiansheng Huo, Aiwen Yu, Quwei Ni, Dandan Guo, Min Zeng, Jinwei Gao, Yong Zhang, Qianming Wang. Efficient Energy Transfer from Trap Levels to Eu3+ Leads to Antithermal Quenching Effect in High-Power White Light-Emitting Diodes. Inorganic Chemistry 2020, 59 (20) , 15514-15525. https://doi.org/10.1021/acs.inorgchem.0c02541
    7. Lei Xu, Weishuang Fang, Ying Tang, Huaicheng Xiang, Huixing Lin, Liang Fang. Crystal structure evolution, bond characteristics and tunable microwave dielectric properties of (Ce1-Ca )(Nb1-W )O4 ceramics. Journal of the European Ceramic Society 2024, 44 (7) , 4657-4665. https://doi.org/10.1016/j.jeurceramsoc.2024.02.015
    8. Guoqiang He, Ziqi Zhao, Yanjun Liu, Wenjie Zhang, Yuan Nie, Yinghan He, Huanfu Zhou. Sintering characteristics, phase structure and microwave dielectric properties of novel BaCeO3 ceramics. Materials Research Bulletin 2024, 175 , 112790. https://doi.org/10.1016/j.materresbull.2024.112790
    9. Xiaohui Wu, Xixi Wang, Yulan Jing, Yuanxun Li, Hua Su. Novel medium‐permittivity Ba 2.92 Cu 0.08 (Zn 1/3 Nb 2/3 ) 2 Ti 2 Nb 4 O 21 microwave dielectric ceramics with high Q ×  f value and densification for low‐temperature co‐fired ceramics electronic devices. Journal of the American Ceramic Society 2024, 107 (6) , 4050-4063. https://doi.org/10.1111/jace.19696
    10. Yun Sun, Huaicheng Xiang, Ying Tang, Jie Li, Liang Fang. Constructing the cationic rattling effect to realize the adjustability of the temperature coefficient in Nd2-Sm O3 microwave dielectric ceramics. Journal of the European Ceramic Society 2024, 44 (5) , 2859-2865. https://doi.org/10.1016/j.jeurceramsoc.2023.12.007
    11. Yao-Dong Liu, Xiao-Qiang Song, Du Kang, Chang-Zhi Yin, Yi-Yang Cai, Jia-Qing Yang, Wen Lei, Wen-Zhong Lu. Crystal structure, lattice energy and microwave dielectric properties of melilite-type Ba1-Sr Cu2Ge2O7 ceramics. Journal of the European Ceramic Society 2024, 44 (5) , 2916-2922. https://doi.org/10.1016/j.jeurceramsoc.2023.12.033
    12. Xi Wang, Xiaofei Shi, Kehuan Lin, ZeLai Cheng, FangYi Huang, XiaoHui Wu, Hua Su, XiaoLi Tang. Modulation of the Microwave Dielectric Properties of Si-Based Olivine Structured Ceramics Through the Variation of A-Site Ions. Journal of Electronic Materials 2024, 53 (5) , 2229-2239. https://doi.org/10.1007/s11664-024-10986-1
    13. Nikola Bednarska-Adam, Marta Kuwik, Tomasz Goryczka, Wojciech A. Pisarski, Joanna Pisarska. Red-emitting olivine-type ceramic luminophores Li2MGeO4 (M = Zn, Mg) doped with Sm3+. Optical Materials: X 2024, 22 , 100311. https://doi.org/10.1016/j.omx.2024.100311
    14. Pengyi Yan, Xi Wang, Zelai Cheng, ZhenKun Chen, Hua Su. Low-temperature co-firing of Co1.1Zn0.9TiO4 microwave dielectric ceramics by doping with H3BO3. Ceramics International 2024, 50 (7) , 9931-9936. https://doi.org/10.1016/j.ceramint.2023.12.336
    15. Hongping Hou, Amei Zhang, Huan Yang, Na Liao, Shailendra Rajput, Hongliang Du, Chunchun Li. LiGaSiO4: An ultra-low permittivity dielectric material enabling application in patch antenna. Ceramics International 2024, 50 (5) , 7758-7766. https://doi.org/10.1016/j.ceramint.2023.12.102
    16. Huaicheng Xiang, Yuheng Zhang, Junqi Chen, Yang Zhou, Ying Tang, Jinwu Chen, Liang Fang. Structure evolution and τf influence mechanism of Bi1–Ho VO4 microwave dielectric ceramics for LTCC applications. Journal of Materials Science & Technology 2024, 21 https://doi.org/10.1016/j.jmst.2024.01.070
    17. Yang Yao, Lin Cao, Haoyue Yang, Raz Muhammad, Yingjie Ren, Xinjiang Luo, Fayaz Hussain, Bing Liu, Minmin Mao, Hadi Barzegar Bafrooei, Ehsan Taheri-Nassaj, Kaixin Song. High-entropy Mg1.8R0.2Al4Si5O18 (R = Ni, Co, Zn, Cu, Mn) cordierite ceramics: Influence of octahedral distortion and electronegativity mismatch on the microwave dielectric properties. Ceramics International 2024, 42 https://doi.org/10.1016/j.ceramint.2024.02.215
    18. Ben Heng, Lifeng Ding, Dawei Wang, Chun Tong, Haikui Zhu, Lixi Wang, Yi Hou, Qitu Zhang. Low-temperature sintering and microwave dielectric properties of H3BO3-added 0.8BaSi2O5–0.2Ba3(VO4)2 composite ceramics. Journal of Materials Science: Materials in Electronics 2024, 35 (6) https://doi.org/10.1007/s10854-024-12095-5
    19. Yuan-Bin Chen. Ilmenite-type structure and pervoskite structure mix-phase ceramics at microwave frequency. Journal of Asian Ceramic Societies 2024, 12 (1) , 79-85. https://doi.org/10.1080/21870764.2023.2301238
    20. Haotian Xie, Ying Tang, Yang Yang, Ning Zhang, Xiaolong Gu, Huaicheng Xiang. Effect of lattice-induced strain on microwave dielectric polarization and properties: A case study of Ga-based garnet. Journal of Alloys and Compounds 2023, 967 , 171742. https://doi.org/10.1016/j.jallcom.2023.171742
    21. Junqi Chen, Zhaohui Wang, Peili Qing, Jinwu Chen. Phase composition, crystal structure, and microwave dielectric properties of LiIn 1‐ x Al x O 2 ceramics. International Journal of Applied Ceramic Technology 2023, 20 (6) , 3786-3794. https://doi.org/10.1111/ijac.14489
    22. Xiaoli Wei, Yinghan He, Xiuli Chen, Huanfu Zhou. Phase Composition, Raman Spectrum and Microwave Dielectric Properties of glass-free low temperature co-fired ACaPr(MoO4)3 (A = Na, K) Ceramics. Ceramics International 2023, 49 (22) , 36962-36969. https://doi.org/10.1016/j.ceramint.2023.09.028
    23. Xiaohui Wu, Yulan Jing, Yuanxun Li, Hua Su. Developing high performance, low temperature sintering and temperature stable K40 material in Co2O3/Nb2O5-modified Ba3Ti4Nb4O21 microwave dielectric ceramics for 5G-LTCC communication devices. Journal of Alloys and Compounds 2023, 962 , 171163. https://doi.org/10.1016/j.jallcom.2023.171163
    24. Haiqing Deng, Yinghan He, Xiaoli Wei, Weilin Chen, Yang Liu, Xiuli Chen, Huanfu Zhou. Crystal structure, vibration spectra and microwave dielectric properties for scheelite structure NaSrLa(WO4)3 ceramics and adjustment of its τf value. Journal of Materials Science: Materials in Electronics 2023, 34 (29) https://doi.org/10.1007/s10854-023-11406-6
    25. Weishuang Fang, Yang Yang, Huaicheng Xiang, Ying Tang, jie Li, Liang Fang. Correlation between structure and microwave dielectric properties of ordered olivine CaLnGaO4 (Ln = Pr, Yb) ceramics. Ceramics International 2023, 49 (19) , 32008-32014. https://doi.org/10.1016/j.ceramint.2023.07.166
    26. Haotian Liu, Gang Wang, Huaiwu Zhang. Correlation between crystal structure, bond characteristics, Raman vibrations, and improved microwave dielectric properties of high-performance Zn0.5Zr0.5NbO4 ceramics: First principle calculation and experiment. Ceramics International 2023, 49 (18) , 30001-30007. https://doi.org/10.1016/j.ceramint.2023.06.257
    27. Jun Yang, Qiang Xie, Laiyuan Ao, Shengjie Wu, Xueting Zhu, Qinghua Zhong, Yueyang Xu, Zixuan Fang, Xianzhong Tang, Bin Tang. Structure and microwave dielectric properties of novel walstromite-type MCa2Si3O9 (M = Ba, Sr) ceramics. Ceramics International 2023, 49 (16) , 27147-27153. https://doi.org/10.1016/j.ceramint.2023.05.259
    28. Ning Zhang, Ying Tang, Huaicheng Xiang, Liang Fang. Chemical bond characteristics, Raman spectra, and microwave dielectric properties of garnet ceramics Ca3B2ZnGa2O12 (B = Nb, Sb). Ceramics International 2023, 49 (13) , 22273-22280. https://doi.org/10.1016/j.ceramint.2023.04.057
    29. Xiaohui Wu, Hua Su. Li 2 WO 4 Composite Ba 3 Ti 4 Nb 4 O 21 Microwave Dielectric Ceramics with Near-Zero Temperature Coefficient and Low-Temperature Sintering for 5G Communication Devices. Journal of Physics: Conference Series 2023, 2519 (1) , 012050. https://doi.org/10.1088/1742-6596/2519/1/012050
    30. Kang Du, Tailai Wen, Mengdie Zhou, Zheyu Liu, Changzhi Yin, Wei Zhu, Cai Zhou, Bohan Zhang, Shengxiang Wang, Wen Lei. Optimized phase compositions and microwave dielectric properties of low loss Ca 2 Sn 2 Al 2 O 9 ‐based ceramics by M 4+ substitution. Journal of the American Ceramic Society 2023, 106 (5) , 2941-2952. https://doi.org/10.1111/jace.18966
    31. Jian Bao, Hu Li, Xiaoyu Xu, Weijia Guo, Yueguang Chen, Yuping Zhang, Jialun Du, Haitao Wu, Guangbin Duan, Zhenxing Yue. Crystal structure, Raman spectrum, bond characteristics, and terahertz time-domain spectrum of novel Na5Tm(MoO4)4 microwave dielectric ceramic with ultra-low sintering temperature and high quality factor. Journal of Alloys and Compounds 2023, 939 , 168652. https://doi.org/10.1016/j.jallcom.2022.168652
    32. Mu Li, Ying Tang, Huaicheng Xiang, Jie Li, Di Zhou, Liang Fang. Combined effect of rattling and compression on the microwave dielectric properties of B-site 1:3 ordered Li6A7Ti11O32 (A = Zn, Mg) spinels. Ceramics International 2023, 49 (6) , 8754-8761. https://doi.org/10.1016/j.ceramint.2022.11.021
    33. Gang Wang, Zhipeng Chen, Hui Yan, Tao Xuan, Mengyan Wu, Xue Zhu, Tong Ding, Li Ding, Xingang Ren, Xianliang Wu, Huaiwu Zhang. Crystal structure, Raman spectra, and modified dielectric properties of pure‐phase ZnZrNb 2 O 8 ceramics at low temperature. Journal of the American Ceramic Society 2023, 106 (3) , 1912-1920. https://doi.org/10.1111/jace.18892
    34. Kui Liu, Huaiwu Zhang, Cheng Liu, Jie Li, Liang Shi, Xueying Wang, Yulong Liao, Lichuan Jin, Dainan Zhang. Relationship between microwave dielectric properties and structure of Ca2+-substituted ZnZrTa2O8 ceramics. Journal of Alloys and Compounds 2023, 934 , 167981. https://doi.org/10.1016/j.jallcom.2022.167981
    35. Binfeng Zhao, Xianqiang Chen, Naichao Chen, Xinwei Xu, Yani Lu, Jin Cheng, Hong Wang. Low‐temperature‐sintered MgO‐based microwave dielectric ceramics with ultralow loss and high thermal conductivity. Journal of the American Ceramic Society 2023, 106 (2) , 1159-1169. https://doi.org/10.1111/jace.18835
    36. Kang Du, Changzhi Yin, Wei Zhu, Cai Zhou, Bohan Zhang, Tingting Wang, Shengxiang Wang, Wen Lei. Phase compositions and crystal structure of Sn-deficient Ca2Sn2Al2O9 microwave dielectric ceramics with high Q×f values. Ceramics International 2023, 49 (1) , 202-209. https://doi.org/10.1016/j.ceramint.2022.08.329
    37. Jian BAO, Yuping ZHANG, Hideo KIMURA, Haitao WU, Zhenxing YUE. Crystal structure, chemical bond characteristics, infrared reflection spectrum, and microwave dielectric properties of Nd 2 (Zr 1− x Ti x ) 3 (MoO 4 ) 9 ceramics. Journal of Advanced Ceramics 2023, 12 (1) , 82-92. https://doi.org/10.26599/JAC.2023.9220668
    38. Xiaohui Wu, Qin Zhang, Fangyi Huang, Xingyu Huo, Fuyu Li, Yulan Jing, Yuanxun Li, Hua Su. Low loss Ba3Ti4Nb4O21 microwave dielectric ceramics through (Mn1/3Nb2/3)4+ ion control engineering for LTCC applications. Journal of Alloys and Compounds 2022, 926 , 166885. https://doi.org/10.1016/j.jallcom.2022.166885
    39. Xiaohui Wu, Jingkang Xu, Yulan Jing, Yuanxun Li, Hua Su. Medium K and temperature-stable Co2+-substituted LiNb0.6Ti0.5O3 microwave dielectric ceramics for LTCC miniaturized applications. Journal of Alloys and Compounds 2022, 929 , 167352. https://doi.org/10.1016/j.jallcom.2022.167352
    40. Lian Duan, Mingxin Liu, Ying Tang, Jie Li, Huaicheng Xiang, Liang Fang, Xianrong Luo. Effect of crystal structure of Ca2AMg2Ge2VO12 (A = Y, Eu) garnets on microwave dielectric properties. Materials Today Communications 2022, 33 , 104706. https://doi.org/10.1016/j.mtcomm.2022.104706
    41. Junqi Chen, Peilin Qing, Zhaohui Wang, Jinwu Chen. Effect of V5+ substitution for Ta5+ on the bond valence, structure and microwave dielectric properties of Ba3Ta4Ti4O21 ceramics. Materials Today Communications 2022, 33 , 104925. https://doi.org/10.1016/j.mtcomm.2022.104925
    42. Fei Xie, Shun Zhou, Fei Gao, Gang Wang, Jijie Zhao. Raman vibration, bond chemistry and enhanced microwave dielectric properties of Li3Mg2NbO6 ceramics under an oxygen atmosphere. Ceramics International 2022, 48 (21) , 32049-32055. https://doi.org/10.1016/j.ceramint.2022.07.142
    43. Zhongfen An, Jiqing Lv, Xiangyu Wang, Yue Xu, Lingcui Zhang, Feng Shi, Hai Guo, Di Zhou, Bing Liu, Kaixin Song. Effects of LiF additive on crystal structures, lattice vibrational characteristics and dielectric properties of CaWO4 microwave dielectric ceramics for LTCC applications. Ceramics International 2022, 48 (20) , 29929-29937. https://doi.org/10.1016/j.ceramint.2022.06.259
    44. Yang Yang, Yifan Zhai, Huaicheng Xiang, Jie Li, Ying Tang, Liang Fang. Rattling effects on microwave dielectric properties of Ca3TiBGe3O12 (B = Mg, Zn) garnets. Journal of the European Ceramic Society 2022, 42 (11) , 4566-4572. https://doi.org/10.1016/j.jeurceramsoc.2022.04.054
    45. Kui Liu, Huaiwu Zhang, Cheng Liu, Jie Li, Liang Shi, Xueying Wang, Dainan Zhang. Crystal structure and microwave dielectric properties of (Mg0.2Ni0.2Zn0.2Co0.2Mn0.2)2SiO4 - A novel high-entropy ceramic. Ceramics International 2022, 48 (16) , 23307-23313. https://doi.org/10.1016/j.ceramint.2022.04.317
    46. Jinyang Li, Jianfeng Zhu, Gang Wang. Correlation between crystal structure and enhanced microwave dielectric characteristics of wolframite-structure Mg0.5Zr0.5NbO4 ceramics. Ceramics International 2022, 48 (11) , 15261-15267. https://doi.org/10.1016/j.ceramint.2022.02.058
    47. Shicheng Zhou, Xi Wang, Sen He, Xiuli Chen, You Wu, Huanfu Zhou. Microstructural evolution, dielectric performance, and densification behavior of novel NaAGeO4 (A = Sm, Y) ceramics. Ceramics International 2022, 48 (11) , 16386-16390. https://doi.org/10.1016/j.ceramint.2022.02.189
    48. Liangbin Zhang, Hongrong Mei, Zhenggang Rao, Longlong Shu, Chunchun Li. Lowered sintering temperature and modulated microwave dielectric properties in Mg2SiO4 forsterite via Ge substitution. Journal of Materials Science: Materials in Electronics 2022, 33 (13) , 10183-10193. https://doi.org/10.1007/s10854-022-08008-z
    49. Zhuo Xing, Juhai Weng, Chi Ma. Improvement on microwave dielectric properties of Zn2GeO4 via gallium doping. Journal of Materials Science: Materials in Electronics 2022, 33 (15) , 11625-11631. https://doi.org/10.1007/s10854-022-08063-6
    50. Ying Tang, Huan Li, Jie Li, Huaicheng Xiang, Liang Fang. Microwave dielectric properties of Li3A3Te2O12 (A = Y, Yb) garnets for low temperature cofired ceramic technologies. Journal of the European Ceramic Society 2022, 42 (5) , 2248-2253. https://doi.org/10.1016/j.jeurceramsoc.2021.12.079
    51. Xiangyu Wang, En-Cai Xiao, Lingcui Zhang, Yue Xu, Tong Liu, Junzhi Yi, Kaixin Song, Ze-ming Qi, Feng Shi. Lattice vibrational characteristics, crystal structures, and dielectric properties of LiMnPO4 microwave dielectric ceramics as a function of sintering temperature. Journal of Materials Science: Materials in Electronics 2022, 33 (10) , 7708-7717. https://doi.org/10.1007/s10854-022-07922-6
    52. Weishuang Fang, Junqi Chen, Yang Yang, Laiyuan Ao, Ying Tang, Jie Li, Liang Fang. Anomalous microwave dielectric behaviour induced by the orthorhombic-tetragonal phase transition in CaLaGaO4 ceramics. Journal of the European Ceramic Society 2022, 42 (4) , 1474-1479. https://doi.org/10.1016/j.jeurceramsoc.2021.12.010
    53. Jinyan Ma, Junqi Chen, Huaicheng Xiang, Jie Li, Ying Tang, Liang Fang. Modulation of microwave dielectric properties in melilite-structured SrREGa3O7 (RE = La, Pr) ceramics. Ceramics International 2022, 48 (5) , 6218-6224. https://doi.org/10.1016/j.ceramint.2021.11.162
    54. Yucheng Cao, Liangbin Zhang, Hongrong Mei, Zhenggang Rao, Tingfang Tian, Chunchun Li. Crystal structure, phonon characteristics, and dielectric properties of CaMgGe2O6: A novel diopside microwave dielectric ceramic. Ceramics International 2022, 48 (6) , 8783-8788. https://doi.org/10.1016/j.ceramint.2022.01.270
    55. Chen Li, Jiale Hou, Zijun Ye, Raz Muhammad, Aihua Li, Mingtao Ma, Guofa Wu, Kaixin Song, Tao Zhou, Minmin Mao, Bing Liu, Hadi Barzegar Bafrooei, Ehsan Taheri-nassaj, Shaojin Luo, Feng Shi, Shikuan Sun, Dawei Wang. Lattice occupying sites and microwave dielectric properties of Mg2+–Si4+ co-doped MgxY3-xAl5-xSixO12 garnet typed ceramics. Journal of Materials Science: Materials in Electronics 2022, 33 (4) , 2116-2124. https://doi.org/10.1007/s10854-021-07417-w
    56. Jian Bao, Jialun Du, Lintao Liu, Haitao Wu, Yuanyuan Zhou, Zhenxing Yue. A new type of microwave dielectric ceramic based on K2O–SrO–P2O5 composition with high quality factor and low sintering temperature. Ceramics International 2022, 48 (1) , 784-794. https://doi.org/10.1016/j.ceramint.2021.09.159
    57. Kang Du, Chang-zhi Yin, Wei Zhu, Cai Zhou, Bo-Han Zhang, Tingting Wang, Sheng-Xiang Wang, Wen Lei. Phase Compositions and Crystal Structure of Sn-Deficient Ca2sn2al2o9 Microwave Dielectric Ceramics with High Q×F Values. SSRN Electronic Journal 2022, 13 https://doi.org/10.2139/ssrn.4160328
    58. Weishuang Fang, Laiyuan Ao, Ying Tang, Jie Li, Yihua Sun, Liang Fang. Improving the microwave dielectric properties of Ga2[LiGa3]O8 inverse spinel by enhancing B-site ordering degree. Ceramics International 2022, 48 (1) , 896-902. https://doi.org/10.1016/j.ceramint.2021.09.173
    59. Mingxin Liu, Jie Li, Ying Tang, Junqi Chen, Laiyuan Ao, Alin Cao, Liang Fang. Tunability of τ in garnet-structured Y3Ga5O12 microwave dielectric ceramics. Journal of the European Ceramic Society 2021, 41 (15) , 7711-7716. https://doi.org/10.1016/j.jeurceramsoc.2021.08.033
    60. Lianting Nong, Xuefeng Cao, Chunchun Li, Laijun Liu, Liang Fang, Jibran Khaliq. Influence of cation order on crystal structure and microwave dielectric properties in xLi4/3Ti5/3O4-(1-x)Mg2TiO4 (0.6 ≤ x ≤ 0.9) spinel solid solutions. Journal of the European Ceramic Society 2021, 41 (15) , 7683-7688. https://doi.org/10.1016/j.jeurceramsoc.2021.08.040
    61. Huaicheng Xiang, Lei Yao, Junqi Chen, Aihong Yang, Haitao Yang, Liang Fang. Microwave dielectric high-entropy ceramic Li(Gd0.2Ho0.2Er0.2Yb0.2Lu0.2)GeO4 with stable temperature coefficient for low-temperature cofired ceramic technologies. Journal of Materials Science & Technology 2021, 93 , 28-32. https://doi.org/10.1016/j.jmst.2021.03.057
    62. Zhaoyang Liu, Jingkun Yu, Xiangnan Wang, Ling Zhang, Jiakang Wang, Endong Jin, Danbin Jia, Tianpeng Wen, Zhengguo Yan, Lei Yuan, Beiyue Ma. Activated treatment of magnesite for preparing size-controlled Mg2B2O5 whiskers and their microwave dielectric properties. Ceramics International 2021, 47 (21) , 30471-30482. https://doi.org/10.1016/j.ceramint.2021.07.226
    63. Guo-An Ding, Fei Liu, Jing-Jing Qu, Chang-Lai Yuan, Xiao Liu, Liu-Fang Meng, Guo-Hua Chen. Microwave dielectric polymer-ceramics sintered at near room-temperature with moisture-proof ability. Ceramics International 2021, 47 (18) , 26400-26409. https://doi.org/10.1016/j.ceramint.2021.06.051
    64. Tao Sun, Bin Xiao, Fei Jin, Xinwei Xu, Feng Wang, Naichao Chen, Xianqiang Chen, Hong Wang. Ultralow-loss (1-x)CaWO4-xNa2WO4 (x = 0.1, 0.2) microwave dielectric ceramic for LTCC applications. Journal of Materiomics 2021, 7 (5) , 1022-1028. https://doi.org/10.1016/j.jmat.2021.02.006
    65. Sabitha Ann Jose, Krishnakumar K.A., Surendran Kuzhichalil Peethambharan. Aqueous tape casting of Al2O3-BBSZ based LTCC multilayer substrates. Materials Research Bulletin 2021, 140 , 111289. https://doi.org/10.1016/j.materresbull.2021.111289
    66. Feihu Li, Ying Tang, Jie Li, Weishuang Fang, Laiyuan Ao, Yu Wang, Xiangguang Zhao, Liang Fang. Effect of A-site cation on crystal structure and microwave dielectric properties of AGe4O9 (A = Ba, Sr) ceramics. Journal of the European Ceramic Society 2021, 41 (7) , 4153-4159. https://doi.org/10.1016/j.jeurceramsoc.2021.01.055
    67. Junqi Chen, Weishuang Fang, Yifan Zhai, Feihu Li, Ying Tang, Jie Li, Huanhuan Guo, Liang Fang. Chemical bond characteristics and infrared reflectivity spectrum of a novel microwave dielectric ceramic CaIn2O4 with near-zero τ. Journal of the European Ceramic Society 2021, 41 (8) , 4473-4477. https://doi.org/10.1016/j.jeurceramsoc.2021.03.010
    68. Zijian Yang, Ying Tang, Jie Li, Weishuang Fang, Jinyan Ma, Aihong Yang, Laijun Liu, Liang Fang. Crystal structure, Raman spectra and microwave dielectric properties of novel low-temperature cofired ceramic Li4GeO4. Journal of Alloys and Compounds 2021, 867 , 159059. https://doi.org/10.1016/j.jallcom.2021.159059
    69. Junqi Chen, Weishuang Fang, Laiyuan Ao, Ying Tang, Jie Li, Laijun Liu, Liang Fang. Structure and chemical bond characteristics of two low-ε microwave dielectric ceramics LiBO2 (B = Ga, In) with opposite τ. Journal of the European Ceramic Society 2021, 41 (6) , 3452-3458. https://doi.org/10.1016/j.jeurceramsoc.2021.01.024
    70. Gang Wang, Dainan Zhang, Jie Li, Liang Shi, Yan Yang, Gongwen Gan, Xiaolei Shi, Cheng Liu, Yulong Liao, Lichuan Jin, Huaiwu Zhang. Structural dependence of microwave dielectric performance of wolframite structured Mg1-xCaxZrNb2O8 ceramics: Crystal structure, microstructure evolution, Raman analysis and chemical bond theory. Journal of the European Ceramic Society 2021, 41 (6) , 3445-3451. https://doi.org/10.1016/j.jeurceramsoc.2021.01.033
    71. V.L. Vilesh, G. Subodh. Crystal structure and phonon modes of disorder induced Ba2Li1-xTe1+xO5.5+δ (x =0, 0.1, 0.2) double perovskite based microwave dielectrics. Materials Research Bulletin 2021, 137 , 111190. https://doi.org/10.1016/j.materresbull.2020.111190
    72. Zijian Yang, Ying Tang, Jie Li, Weishuang Fang, Jinyan Ma, Xiangguang Zhao, Liang Fang. Two low-εr phenakite-structure LiAGeO4 (A = Al, Ga) microwave dielectric ceramics with different structure ordering. Ceramics International 2021, 47 (8) , 11022-11028. https://doi.org/10.1016/j.ceramint.2020.12.224
    73. Lintao Liu, Yueguang Chen, Zhanbai Feng, Haitao Wu, Xiaoyu Zhang. Crystal structure, infrared spectra, and microwave dielectric properties of the EuNbO4 ceramic. Ceramics International 2021, 47 (3) , 4321-4326. https://doi.org/10.1016/j.ceramint.2020.09.176
    74. Yu Wang, Ying Tang, Jie Li, Weishuang Fang, Shiyao Shen, Feihu Li, Lian Duan, Ming Qin, Liang Fang. Microwave dielectric properties of silico-carnotite Ca3M2Si3O12 (M= Yb, Y) ceramics synthesized via high energy ball milling. Ceramics International 2021, 47 (4) , 4831-4837. https://doi.org/10.1016/j.ceramint.2020.10.054
    75. Jinjie Zheng, Yinghao Liu, Bingjing Tao, Qiang Zhang, Haitao Wu, Xiaoyu Zhang. Crystal structure and optimised microwave dielectric properties of Ce2(Zr1-xTix)3(MoO4)9 solid solutions. Ceramics International 2021, 47 (4) , 5624-5630. https://doi.org/10.1016/j.ceramint.2020.10.147
    76. Feng Shi, En-Cai Xiao. Sintering behavior, crystal structures, phonon characteristics and dielectric properties of LiZnPO4 microwave dielectric ceramics. Materials Chemistry and Physics 2021, 259 , 124139. https://doi.org/10.1016/j.matchemphys.2020.124139
    77. Kang Du, Yan‐Bo Guo, Fei Wang, Jun Fan, Xiao‐Chuan Wang, Wen‐Zhong Lu, Wen Lei. Optimized sintering behavior and microwave dielectric properties of Ca 1+2 x SnSi 2 x + y O 3+6 x +2 y by composition modulation. Journal of the American Ceramic Society 2021, 104 (2) , 974-984. https://doi.org/10.1111/jace.17508
    78. Congxue Su, Liang Fang, Laiyuan Ao, Junqi Chen, Chaozhong Sun, Aihong Yang, Ying Tang, Laijun Liu. Structure, Raman spectra and microwave dielectric properties of novel garnet-type Ca 3 MZrGe 3 O 12 (M = Co, Zn) ceramics. Journal of Asian Ceramic Societies 2021, 9 (1) , 424-432. https://doi.org/10.1080/21870764.2021.1879364
    79. Aihong Yang, Ying Tang, Jie Li, Weishuang Fang, Qianbiao Du, Zhiwei Zhang, Junqi Chen, Zijian Yang, Laiyuan Ao, Liang Fang. Structure and infrared reflectivity spectra of novel Mg3Ga2GeO8 microwave dielectric ceramic with high Q. Ceramics International 2021, 47 (2) , 2450-2455. https://doi.org/10.1016/j.ceramint.2020.09.087
    80. Bingjing Tao, Weifeng Wang, Huanyu Liu, Tianxiu Du, Haitao Wu, Chunfang Xing, Dongzhi Wang, Yuping Zhang. Low-temperature sintering LiF-doped Li4Mg3[Ti0·6(Mg1/3Nb2/3)0.4]2O9 microwave dielectric ceramics for LTCC applications. Ceramics International 2021, 47 (2) , 2584-2590. https://doi.org/10.1016/j.ceramint.2020.09.104
    81. Kangguo Wang, Huanfu Zhou, Xiaowen Luan, Sang Hu, Xianjie Zhou, Sen He, Xi Wang, Shicheng Zhou, Xiuli Chen. NaTaO3 microwave dielectric ceramic a with high relative permittivity and as an excellent compensator for the temperature coefficient of resonant frequency. Ceramics International 2021, 47 (1) , 121-129. https://doi.org/10.1016/j.ceramint.2020.08.114
    82. Huaicheng Xiang, Joni Kilpijärvi, Sami Myllymäki, Haitao Yang, Liang Fang, Heli Jantunen. Spinel-olivine microwave dielectric ceramics with low sintering temperature and high quality factor for 5 GHz wi-fi antennas. Applied Materials Today 2020, 21 , 100826. https://doi.org/10.1016/j.apmt.2020.100826
    83. Jinwu Chen, Liang Fang, Jie Li, Ying Tang, Kai Cheng, Yijie Cao. Packing fraction, bond valence and crystal structure of AVO4 (A = Eu, Y) microwave dielectric ceramics with low permittivity. Journal of Materials Science: Materials in Electronics 2020, 31 (21) , 19180-19187. https://doi.org/10.1007/s10854-020-04454-9
    84. Zhuo Xing, Chengjun Shen, Chunchun Li. Synthesis and microwave dielectric properties of an electronic ceramic Y2WO6 for wireless communications. Physics Letters A 2020, 384 (31) , 126811. https://doi.org/10.1016/j.physleta.2020.126811
    85. Mingyang Yu, Ying Tang, Jie Li, Weishuang Fang, Lian Duan, Liang Fang. Microwave dielectric properties and chemical compatibility with alumina electrode of two novel ultra-low temperature firing ATeMoO6 (A = Mg, Zn) ceramics. Ceramics International 2020, 46 (16) , 25619-25625. https://doi.org/10.1016/j.ceramint.2020.07.036
    86. Zhuo Xing, Chengjun Shen, Changzhi Yin, Hongjun Ye, Chunchun Li. Low temperature synthesis and dielectric characterisation of La 2 Mo 2 O 9 ceramic at RF and microwave frequencies. Advances in Applied Ceramics 2020, 119 (7) , 387-392. https://doi.org/10.1080/17436753.2020.1774220
    87. Xiao-Qiang Song, Zheng-Yu Zou, Wen-Zhong Lu, Tao Chen, Shi-Wo Ta, Zhen-Xiao Fu, Wen Lei. Crystal structure, lattice energy and microwave dielectric properties of melilite-type Ba1-Sr Cu2Si2O7 solid solutions. Journal of Alloys and Compounds 2020, 835 , 155340. https://doi.org/10.1016/j.jallcom.2020.155340
    88. Takuya Hasegawa, Ryo Tanaka, Tadaharu Ueda, Kenji Toda. Preparation of MGF phosphor by O 2 postannealing and impact on luminescence properties and crystal lattice. Journal of the American Ceramic Society 2020, 103 (9) , 5145-5156. https://doi.org/10.1111/jace.17222
    89. En-Cai Xiao, Feng Shi, Guangen Fu, Qi Ren, Gang Dou, Wen Lei, Ze-Ming Qi. Effects of BaCu(B 2 O 5 ) additives on the crystal structures and dielectric properties of CaMgGeO 4 ceramics for LTCC applications. CrystEngComm 2020, 22 (28) , 4768-4777. https://doi.org/10.1039/D0CE00620C
    90. Guangjie Yang, Changzhi Yin, Yuncui Li, Yanping Kang, Shaohua Zhang, Chunchun Li. Improvement in thermal stability of resonance frequency of LiCa3MgV3O12 ceramics through compositional modulation. Journal of Materials Science: Materials in Electronics 2020, 31 (13) , 10605-10611. https://doi.org/10.1007/s10854-020-03610-5
    91. Xiao-Qiang Song, Wen-Zhong Lu, Yi-Hui Lou, Tao Chen, Shi-Wo Ta, Zhen-Xiao Fu, Wen Lei. Synthesis, lattice energy and microwave dielectric properties of BaCu2-Co Si2O7 ceramics. Journal of the European Ceramic Society 2020, 40 (8) , 3035-3041. https://doi.org/10.1016/j.jeurceramsoc.2020.02.048
    92. Jinjie Zheng, Chunfang Xing, Yaokang Yang, Shuaixia Li, Haitao Wu, Zhihao Wang. Structure, infrared reflectivity spectra and microwave dielectric properties of a low-firing microwave dielectric ceramic Pr2Zr3(MoO4)9. Journal of Alloys and Compounds 2020, 826 , 153893. https://doi.org/10.1016/j.jallcom.2020.153893
    93. Z.B. Feng, B.J. Tao, W.F. Wang, H.Y. Liu, H.T. Wu, Z.L. Zhang. Sintering behavior and microwave dielectric properties of Li4Mg3[Ti0.8(Mg1/3Ta2/3)0.2]2O9 ceramics with LiF additive for LTCC applications. Journal of Alloys and Compounds 2020, 822 , 153634. https://doi.org/10.1016/j.jallcom.2019.153634
    94. Huan-Huan Guo, Di Zhou, Chao Du, Peng-Jian Wang, Wen-Feng Liu, Li-Xia Pang, Qiu-Ping Wang, Jin-Zhan Su, Charanjeet Singh, Sergei Trukhanov. Temperature stable Li 2 Ti 0.75 (Mg 1/3 Nb 2/3 ) 0.25 O 3 -based microwave dielectric ceramics with low sintering temperature and ultra-low dielectric loss for dielectric resonator antenna applications. Journal of Materials Chemistry C 2020, 8 (14) , 4690-4700. https://doi.org/10.1039/D0TC00326C
    95. Junqi Chen, Ying Tang, Jie Li, Huaicheng Xiang, Chunchun Li, Xianran Xing, Liang Fang. Structure and microwave dielectric properties of Ba3Nb4-4Ti4+5O21 ceramics with medium-high permittivity. Journal of Alloys and Compounds 2020, 820 , 153159. https://doi.org/10.1016/j.jallcom.2019.153159
    96. En‐cai Xiao, Zhikai Cao, Jianzhu Li, Xue‐Hui Li, Mengting Liu, Zhenxing Yue, Ying Chen, Guohua Chen, Kaixin Song, Huanfu Zhou, Feng Shi. Crystal structure, dielectric properties, and lattice vibrational characteristics of LiNiPO 4 ceramics sintered at different temperatures. Journal of the American Ceramic Society 2020, 103 (4) , 2528-2539. https://doi.org/10.1111/jace.16933
    97. Junqi Chen, Ying Tang, Mingyang Yu, Changzhi Yin, Zhiwei Zhang, Huaicheng Xiang, Chunchun Li, Xianran Xing, Liang Fang. Influence of Ti4+ substitution for Ta5+ on the crystal structure, Raman spectra, and microwave dielectric properties of Ba3Ta4-4xTi4+5xO21 ceramics. Ceramics International 2020, 46 (4) , 4197-4203. https://doi.org/10.1016/j.ceramint.2019.10.138
    98. Junqi Chen, Ying Tang, Changzhi Yin, Mingyang Yu, Huaicheng Xiang, Chunchun Li, Xianran Xing, Liang Fang. Structure, microwave dielectric performance, and infrared reflectivity spectrum of olivine‐type Mg 2 Ge 0.98 O 4 ceramic. Journal of the American Ceramic Society 2020, 103 (3) , 1789-1797. https://doi.org/10.1111/jace.16855
    99. Kangguo Wang, Tingting Yin, Huanfu Zhou, Xiaobin Liu, Jiji Deng, Shixuan Li, Chengming Lu, Xiuli Chen. Bismuth borate composite microwave ceramics synthesised by different ratios of H3BO3 for ULTCC technology. Journal of the European Ceramic Society 2020, 40 (2) , 381-385. https://doi.org/10.1016/j.jeurceramsoc.2019.09.035
    100. Xiao‐Qiang Song, Wen Lei, Yan‐Yan Zhou, Tao Chen, Shi‐Wo Ta, Zhen‐Xiao Fu, Wen‐Zhong Lu. Ultra‐low fired fluoride composite microwave dielectric ceramics and their application for BaCuSi 2 O 6 ‐based LTCC. Journal of the American Ceramic Society 2020, 103 (2) , 1140-1148. https://doi.org/10.1111/jace.16795
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect