ACS Publications. Most Trusted. Most Cited. Most Read
CRISPR-Mediated Activation of Biosynthetic Gene Clusters for Bioactive Molecule Discovery in Filamentous Fungi
My Activity

Figure 1Loading Img
    Research Article

    CRISPR-Mediated Activation of Biosynthetic Gene Clusters for Bioactive Molecule Discovery in Filamentous Fungi
    Click to copy article linkArticle link copied!

    • Indra Roux
      Indra Roux
      School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
      More by Indra Roux
    • Clara Woodcraft
      Clara Woodcraft
      School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
    • Jinyu Hu
      Jinyu Hu
      School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
      More by Jinyu Hu
    • Rebecca Wolters
      Rebecca Wolters
      School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
    • Cameron L. M. Gilchrist
      Cameron L. M. Gilchrist
      School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
    • Yit-Heng Chooi*
      Yit-Heng Chooi
      School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
      *Email: [email protected]
    Other Access OptionsSupporting Information (2)

    ACS Synthetic Biology

    Cite this: ACS Synth. Biol. 2020, 9, 7, 1843–1854
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acssynbio.0c00197
    Published June 11, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Accessing the full biosynthetic potential encoded in the genomes of fungi is limited by the low expression of most biosynthetic gene clusters (BGCs) under common laboratory culture conditions. CRISPR-mediated transcriptional activation (CRISPRa) of fungal BGCs could accelerate genomics-driven bioactive secondary metabolite discovery. In this work, we established the first CRISPRa system for filamentous fungi. First, we constructed a CRISPR/dLbCas12a-VPR-based system and demonstrated the activation of a fluorescent reporter in Aspergillus nidulans. Then, we targeted the native nonribosomal peptide synthetase-like (NRPS-like) gene micA in both chromosomal and episomal contexts, achieving increased production of the compound microperfuranone. Finally, multigene CRISPRa led to the discovery of the mic cluster product as dehydromicroperfuranone. Additionally, we demonstrated the utility of the variant dLbCas12aD156R-VPR for CRISPRa at room temperature culture conditions. Different aspects that influence the efficiency of CRISPRa in fungi were investigated, providing a framework for the further development of fungal artificial transcription factors based on CRISPR/Cas.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acssynbio.0c00197.

    • Figures S1–S20. Fluorescence microscopy images with biological replicates, bioinformatic analysis of Aspergillus nidulans 5′ UTR features and PAM site frequency, quantification of additional micA CRISPRa assays, complete chromatograms of multiple gene activation of mic cluster with quantification, dehydromicroperfuranone isolation chromatograms, dehydromicroperfuranone NMR spectra, Cas12a protein alignment, microperfuranone standard curve and NMR spectra, overview of one-step cloning of Cas12a crRNA; Note S1 with sequence of crRNA/sgRNA expression cassettes cloning sites; Tables S1–S3 containing NMR and LC/MS-MS analysis summary (PDF)

    • Additional Tables S4–S9: Strains used in this study, vectors used in this study, protospacers targeted, oligonucleotides used to create crRNA/sgRNA, oligonucleotides, statistical analysis (XLSX)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 57 publications.

    1. Kaushik Seshadri, Abner N. D. Abad, Kyle K. Nagasawa, Karl M. Yost, Colin W. Johnson, Moriel J. Dror, Yi Tang. Synthetic Biology in Natural Product Biosynthesis. Chemical Reviews 2025, Article ASAP.
    2. Jennifer Shyong, Quoc-Dung Tran Huynh, Stella Dziedzic, Emily Aguirre, Chris Rabot, Bo Yuan, Hugo Edward Herrero-MacKenzie, Jason E. Stajich, Ching-Kuo Lee, Carly D. Kenkel, Clay C. C. Wang. Activation of the Trichodimerol Pathway through Deletion of mcrA in Marine Penicillium rubens YAP001. ACS Chemical Biology 2025, Article ASAP.
    3. Qiuyue Nie, Chunxiao Sun, Shuai Liu, Xue Gao. Exploring Bioactive Fungal RiPPs: Advances, Challenges, and Future Prospects. Biochemistry 2024, 63 (22) , 2948-2957. https://doi.org/10.1021/acs.biochem.4c00532
    4. Jia-Yu Shen, Qunfei Zhao, Qing-Li He. Application of CRISPR in Filamentous Fungi and Macrofungi: From Component Function to Development Potentiality. ACS Synthetic Biology 2023, 12 (7) , 1908-1923. https://doi.org/10.1021/acssynbio.3c00099
    5. Indra Roux, Yit-Heng Chooi. Cre/lox-Mediated Chromosomal Integration of Biosynthetic Gene Clusters for Heterologous Expression in Aspergillus nidulans. ACS Synthetic Biology 2022, 11 (3) , 1186-1195. https://doi.org/10.1021/acssynbio.1c00458
    6. László Mózsik, Carsten Pohl, Vera Meyer, Roel A. L. Bovenberg, Yvonne Nygård, Arnold J. M. Driessen. Modular Synthetic Biology Toolkit for Filamentous Fungi. ACS Synthetic Biology 2021, 10 (11) , 2850-2861. https://doi.org/10.1021/acssynbio.1c00260
    7. Xu-Hong Li, Hui-Zhi Lu, Ji-Bao Yao, Chi Zhang, Tian-Qiong Shi, He Huang. Recent advances in the application of CRISPR/Cas-based gene editing technology in Filamentous Fungi. Biotechnology Advances 2025, 81 , 108561. https://doi.org/10.1016/j.biotechadv.2025.108561
    8. Md Dilshad Karim, Md Abuhena, Lutfur Rahman, Jubair Al rashid. Harnessing the CRISPR/Cas9 in filamentous fungi for the production of secondary metabolites. Systems Microbiology and Biomanufacturing 2025, 121 https://doi.org/10.1007/s43393-025-00346-3
    9. Jie Fan, Peng-Lin Wei, Yuanyuan Li, Shengquan Zhang, Zedong Ren, Wei Li, Wen-Bing Yin. Developing filamentous fungal chassis for natural product production. Bioresource Technology 2025, 415 , 131703. https://doi.org/10.1016/j.biortech.2024.131703
    10. Yimin Zhang, Cheng Liu, H. J. van der Fels‐Klerx. Occurrence, toxicity, dietary exposure, and management of Alternaria mycotoxins in food and feed: A systematic literature review. Comprehensive Reviews in Food Science and Food Safety 2025, 24 (1) https://doi.org/10.1111/1541-4337.70085
    11. Ludwig Niessen, Josué José Silva, Jens C. Frisvad, Marta H. Taniwaki. The application of omics tools in food mycology. 2025, 423-474. https://doi.org/10.1016/bs.afnr.2024.09.007
    12. Karla Leal, Edwind Rojas, David Madariaga, María José Contreras, Kattia Nuñez-Montero, Leticia Barrientos, Olman Goméz-Espinoza, Isabel Iturrieta-González. Unlocking Fungal Potential: The CRISPR-Cas System as a Strategy for Secondary Metabolite Discovery. Journal of Fungi 2024, 10 (11) , 748. https://doi.org/10.3390/jof10110748
    13. Cia-Hin Lau, Qing-Le Liang, Haibao Zhu. Next-generation CRISPR technology for genome, epigenome and mitochondrial editing. Transgenic Research 2024, 33 (5) , 323-357. https://doi.org/10.1007/s11248-024-00404-x
    14. Yuzheng Wang, Juan Guo, Jian-Jiang Zhong, Han Xiao. Use of epigenetic regulation for the discovery of fungi derived cryptic natural product. Process Biochemistry 2024, 145 , 32-40. https://doi.org/10.1016/j.procbio.2024.06.015
    15. Indra Roux, Clara Woodcraft, Nicolau Sbaraini, Amy Pepper, Emily Wong, Joe Bracegirdle, Yit‐Heng Chooi. Next‐generation AMA1 ‐based plasmids for enhanced heterologous expression in filamentous fungi. Microbial Biotechnology 2024, 17 (9) https://doi.org/10.1111/1751-7915.70010
    16. Indra Roux, Clara Woodcraft, Nicolau Sbaraini, Amy Pepper, Emily Wong, Joe Bracegirdle, Yit-Heng Chooi. Next generation AMA1-based plasmids for enhanced heterologous expression in filamentous fungi. 2024https://doi.org/10.1101/2024.06.01.596972
    17. Adhishree Nagda, Mukesh Meena. Alternaria mycotoxins in food and feed: Occurrence, biosynthesis, toxicity, analytical methods, control and detoxification strategies. Food Control 2024, 158 , 110211. https://doi.org/10.1016/j.foodcont.2023.110211
    18. Qiqing Shen, Haihua Ruan, Hongyang Zhang, Tao Wu, Kexin Zhu, Wenying Han, Rui Dong, Tianwei Ming, Haikun Qi, Yan Zhang. Utilization of CRISPR-Cas genome editing technology in filamentous fungi: function and advancement potentiality. Frontiers in Microbiology 2024, 15 https://doi.org/10.3389/fmicb.2024.1375120
    19. Laetitia Maroc, Hajer Shaker, Rebecca S. Shapiro, . Functional genetic characterization of stress tolerance and biofilm formation in Nakaseomyces ( Candida ) glabrata via a novel CRISPR activation system. mSphere 2024, 9 (2) https://doi.org/10.1128/msphere.00761-23
    20. Joshua W. Lyon, R. Blake Billmyre. Recent Advances in High-Throughput Genetics in Fungi. 2024, 51-65. https://doi.org/10.1007/978-3-031-75666-5_4
    21. Matheus de Castro Leitão, Hugo Lins de Albuquerque Vieira, Fernando Araripe Gonçalves Torres, Ana Laura Alfonso Perez, Luíza Cesca Piva, Viviane Castelo Branco Reis, Cintia Marques Coelho. Biotechnological applications of CRISPR-Cas systems in fungi. 2024, 237-263. https://doi.org/10.1016/B978-0-323-91808-4.00011-0
    22. Avinash Singh, Monisa Anwer, Juveriya Israr, Ajay Kumar. Advances in CRISPR-Cas systems for fungal infections. 2024, 83-107. https://doi.org/10.1016/bs.pmbts.2024.07.006
    23. Laetitia Maroc, Hajer Shaker, Rebecca S. Shapiro. Functional genetic characterization of stress tolerance and biofilm formation in Nakaseomyces glabrata via a novel CRISPR activation system. 2023https://doi.org/10.1101/2023.12.07.569977
    24. Sonia Salazar-Cerezo, Ronald P. de Vries, Sandra Garrigues. Strategies for the Development of Industrial Fungal Producing Strains. Journal of Fungi 2023, 9 (8) , 834. https://doi.org/10.3390/jof9080834
    25. Ji Yun Hur, Eunju Jeong, Young Chan Kim, Seoung Rak Lee. Strategies for Natural Product Discovery by Unlocking Cryptic Biosynthetic Gene Clusters in Fungi. Separations 2023, 10 (6) , 333. https://doi.org/10.3390/separations10060333
    26. Miaoping Lin, Zhenzhou Tang, Jiaxi Wang, Humu Lu, Chenwei Wang, Yanting Zhang, Xinming Liu, Chenghai Gao, Yonghong Liu, Xiaowei Luo. An epipolythiodioxopiperazine alkaloid and diversified aromatic polyketides with cytotoxicity from the Beibu Gulf coral-derived fungus Emericella nidulans GXIMD 02509. Journal of Zhejiang University-SCIENCE B 2023, 24 (3) , 275-280. https://doi.org/10.1631/jzus.B2200622
    27. Duoduo Wang, Shunda Jin, Qianhui Lu, Yupeng Chen. Advances and Challenges in CRISPR/Cas-Based Fungal Genome Engineering for Secondary Metabolite Production: A Review. Journal of Fungi 2023, 9 (3) , 362. https://doi.org/10.3390/jof9030362
    28. Nicholas C Gervais, Alyssa A La Bella, Lauren F Wensing, Jehoshua Sharma, Victoria Acquaviva, Madison Best, Ricardo Omar Cadena López, Meea Fogal, Deeva Uthayakumar, Alejandro Chavez, Felipe Santiago-Tirado, Ana L Flores-Mireles, Rebecca S Shapiro, . Development and applications of a CRISPR activation system for facile genetic overexpression in Candida albicans. G3 2023, 13 (2) https://doi.org/10.1093/g3journal/jkac301
    29. Chen-Yu Chiang, Masao Ohashi, Yi Tang. Deciphering chemical logic of fungal natural product biosynthesis through heterologous expression and genome mining. Natural Product Reports 2023, 40 (1) , 89-127. https://doi.org/10.1039/D2NP00050D
    30. Clara Woodcraft, Yit-Heng Chooi, Indra Roux. The expanding CRISPR toolbox for natural product discovery and engineering in filamentous fungi. Natural Product Reports 2023, 40 (1) , 158-173. https://doi.org/10.1039/D2NP00055E
    31. Huaxiang Deng, Xinxin Liang, Jinbin Liu, Xiaohui Zheng, Tai-Ping Fan, Yujie Cai. Advances and perspectives on perylenequinone biosynthesis. Frontiers in Microbiology 2022, 13 https://doi.org/10.3389/fmicb.2022.1070110
    32. Domingo Cesar Carrascal-Hernández, Edwin Flórez-López, Yeimmy Peralta-Ruiz, Clemencia Chaves-López, Carlos David Grande-Tovar. Eco-Friendly Biocontrol Strategies of Alternaria Phytopathogen Fungus: A Focus on Gene-Editing Techniques. Agriculture 2022, 12 (10) , 1722. https://doi.org/10.3390/agriculture12101722
    33. Ausana Mapook, Kevin D. Hyde, Khadija Hassan, Blondelle Matio Kemkuignou, Adéla Čmoková, Frank Surup, Eric Kuhnert, Pathompong Paomephan, Tian Cheng, Sybren de Hoog, Yinggai Song, Ruvishika S. Jayawardena, Abdullah M. S. Al-Hatmi, Tokameh Mahmoudi, Nadia Ponts, Lena Studt-Reinhold, Florence Richard-Forget, K. W. Thilini Chethana, Dulanjalee L. Harishchandra, Peter E. Mortimer, Huili Li, Saisamorm Lumyong, Worawoot Aiduang, Jaturong Kumla, Nakarin Suwannarach, Chitrabhanu S. Bhunjun, Feng-Ming Yu, Qi Zhao, Doug Schaefer, Marc Stadler. Ten decadal advances in fungal biology leading towards human well-being. Fungal Diversity 2022, 116 (1) , 547-614. https://doi.org/10.1007/s13225-022-00510-3
    34. Andreas Schüller, Lena Studt-Reinhold, Joseph Strauss. How to Completely Squeeze a Fungus—Advanced Genome Mining Tools for Novel Bioactive Substances. Pharmaceutics 2022, 14 (9) , 1837. https://doi.org/10.3390/pharmaceutics14091837
    35. Nicholas C. Gervais, Alyssa A. La Bella, Lauren F. Wensing, Jehoshua Sharma, Victoria Acquaviva, Madison Best, Ricardo Omar Cadena López, Meea Fogal, Deeva Uthayakumar, Alejandro Chavez, Felipe Santiago-Tirado, Ana L. Flores-Mireles, Rebecca S. Shapiro. Development and applications of a CRISPR activation system for facile genetic overexpression in Candida albicans. 2022https://doi.org/10.1101/2022.08.15.501889
    36. László Mózsik, Riccardo Iacovelli, Roel A. L. Bovenberg, Arnold J. M. Driessen. Transcriptional Activation of Biosynthetic Gene Clusters in Filamentous Fungi. Frontiers in Bioengineering and Biotechnology 2022, 10 https://doi.org/10.3389/fbioe.2022.901037
    37. Kunlong Yang, Jun Tian, Nancy P. Keller. Post‐translational modifications drive secondary metabolite biosynthesis in Aspergillus : a review. Environmental Microbiology 2022, 24 (7) , 2857-2881. https://doi.org/10.1111/1462-2920.16034
    38. Feng-Jie Jin, Bao-Teng Wang, Zhen-Dong Wang, Long Jin, Pei Han. CRISPR/Cas9-Based Genome Editing and Its Application in Aspergillus Species. Journal of Fungi 2022, 8 (5) , 467. https://doi.org/10.3390/jof8050467
    39. Yujie Yuan, Shu Cheng, Guangkai Bian, Pan Yan, Zhengning Ma, Wen Dai, Rong Chen, Shuai Fu, Huiwen Huang, Haoming Chi, Yousheng Cai, Zixin Deng, Tiangang Liu. Efficient exploration of terpenoid biosynthetic gene clusters in filamentous fungi. Nature Catalysis 2022, 5 (4) , 277-287. https://doi.org/10.1038/s41929-022-00762-x
    40. Qinghua Li, Jinchang Lu, Guoqiang Zhang, Song Liu, Jingwen Zhou, Guocheng Du, Jian Chen. Recent advances in the development of Aspergillus for protein production. Bioresource Technology 2022, 348 , 126768. https://doi.org/10.1016/j.biortech.2022.126768
    41. Indra Roux, Yit Heng Chooi. Heterologous Expression of Fungal Biosynthetic Pathways in Aspergillus nidulans Using Episomal Vectors. 2022, 75-92. https://doi.org/10.1007/978-1-0716-2273-5_5
    42. Binyou Liao, Xi Chen, Xuedong Zhou, Yujie Zhou, Yangyang Shi, Xingchen Ye, Min Liao, Ziyi Zhou, Lei Cheng, Biao Ren. Applications of CRISPR/Cas gene-editing technology in yeast and fungi. Archives of Microbiology 2022, 204 (1) https://doi.org/10.1007/s00203-021-02723-7
    43. Dibya Jyoti Hazarika, Merilin Kakoti, Ashok Bhattacharyya, Robin Chandra Boro. Biocontrol applications of microbial metabolites. 2022, 181-216. https://doi.org/10.1016/B978-0-323-88478-5.00010-9
    44. Grant Nickles, Isabelle Ludwikoski, Jin Woo Bok, Nancy P. Keller. Comprehensive Guide to Extracting and Expressing Fungal Secondary Metabolites with Aspergillus fumigatus as a Case Study. Current Protocols 2021, 1 (12) https://doi.org/10.1002/cpz1.321
    45. Sa Xiao, Zixin Deng, Jiangtao Gao. CRISPR/Cas-based strategy for unearthing hidden chemical space from microbial genomes. Trends in Chemistry 2021, 3 (12) , 997-1001. https://doi.org/10.1016/j.trechm.2021.09.012
    46. László Mózsik, Mirthe Hoekzema, Niels A. W. de Kok, Roel A. L. Bovenberg, Yvonne Nygård, Arnold J. M. Driessen. CRISPR-based transcriptional activation tool for silent genes in filamentous fungi. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-020-80864-3
    47. Michael Dare Asemoloye, Mario Andrea Marchisio, Vijai Kumar Gupta, Lorenzo Pecoraro. Genome-based engineering of ligninolytic enzymes in fungi. Microbial Cell Factories 2021, 20 (1) https://doi.org/10.1186/s12934-021-01510-9
    48. Zhengxi Hu, Ying Ye, Yonghui Zhang. Large-scale culture as a complementary and practical method for discovering natural products with novel skeletons. Natural Product Reports 2021, 38 (10) , 1775-1793. https://doi.org/10.1039/D0NP00069H
    49. Jun Huang, David Rowe, Wei Zhang, Tyler Suelter, Barbara Valent, David E. Cook. CRISPR-Cas12a induced DNA double-strand breaks are repaired by locus-dependent and error-prone pathways in a fungal pathogen. 2021https://doi.org/10.1101/2021.09.08.459484
    50. Hui Peng, Yi Zheng, Zhixun Zhao, Jinyan Li. Multigene editing: current approaches and beyond. Briefings in Bioinformatics 2021, 22 (5) https://doi.org/10.1093/bib/bbaa396
    51. Indra Roux, Yit-Heng Chooi. Cre/ lox -mediated chromosomal integration of biosynthetic gene clusters for heterologous expression in Aspergillus nidulans. 2021https://doi.org/10.1101/2021.08.20.457072
    52. Teng-Kuei Huang, Holger Puchta. Novel CRISPR/Cas applications in plants: from prime editing to chromosome engineering. Transgenic Research 2021, 30 (4) , 529-549. https://doi.org/10.1007/s11248-021-00238-x
    53. Wenjie Wang, Yuchao Yu, Nancy P. Keller, Pinmei Wang. Presence, Mode of Action, and Application of Pathway Specific Transcription Factors in Aspergillus Biosynthetic Gene Clusters. International Journal of Molecular Sciences 2021, 22 (16) , 8709. https://doi.org/10.3390/ijms22168709
    54. Nicolau Sbaraini, Jinyu Hu, Indra Roux, Chin-Soon Phan, Heryk Motta, Hamideh Rezaee, Augusto Schrank, Yit-Heng Chooi, Charley Christian Staats. Polyketides produced by the entomopathogenic fungus Metarhizium anisopliae induce Candida albicans growth. Fungal Genetics and Biology 2021, 152 , 103568. https://doi.org/10.1016/j.fgb.2021.103568
    55. Lukas Kahlert, Carsten Schotte, Russell J. Cox. Total Mycosynthesis: Rational Bioconstruction and Bioengineering of Fungal Natural Products. Synthesis 2021, 53 (14) , 2381-2394. https://doi.org/10.1055/a-1401-2716
    56. Xuejie Li, Lianggang Huang, Lijie Pan, Bin Wang, Li Pan. CRISPR/dCas9-mediated epigenetic modification reveals differential regulation of histone acetylation on Aspergillus niger secondary metabolite. Microbiological Research 2021, 245 , 126694. https://doi.org/10.1016/j.micres.2020.126694
    57. Chunmiao Jiang, Gongbo Lv, Yayi Tu, Xiaojie Cheng, Yitian Duan, Bin Zeng, Bin He. Applications of CRISPR/Cas9 in the Synthesis of Secondary Metabolites in Filamentous Fungi. Frontiers in Microbiology 2021, 12 https://doi.org/10.3389/fmicb.2021.638096
    58. Ashok Kumar, Sonia Chadha, Devashish Rath. CRISPR-Cas9 system for functional genomics of filamentous fungi: applications and challenges. 2021, 541-576. https://doi.org/10.1016/B978-0-12-821734-4.00016-2
    59. Takayuki Arazoe. CRISPR-based pathogenic fungal genome editing for control of infection and disease. 2021, 161-196. https://doi.org/10.1016/bs.pmbts.2020.12.016
    60. Ya-Nan Wang, Ling-Hong Meng, Bin-Gui Wang. Progress in Research on Bioactive Secondary Metabolites from Deep-Sea Derived Microorganisms. Marine Drugs 2020, 18 (12) , 614. https://doi.org/10.3390/md18120614
    61. Michael Dare Asemoloye, Solveig Tosi, Chiara Daccò, Xiao Wang, Shihan Xu, Mario Andrea Marchisio, Wenyuan Gao, Segun Gbolagade Jonathan, Lorenzo Pecoraro. Hydrocarbon Degradation and Enzyme Activities of Aspergillus oryzae and Mucor irregularis Isolated from Nigerian Crude Oil-Polluted Sites. Microorganisms 2020, 8 (12) , 1912. https://doi.org/10.3390/microorganisms8121912
    62. Lindsay K. Caesar, Neil L. Kelleher, Nancy P. Keller. In the fungus where it happens: History and future propelling Aspergillus nidulans as the archetype of natural products research. Fungal Genetics and Biology 2020, 144 , 103477. https://doi.org/10.1016/j.fgb.2020.103477

    ACS Synthetic Biology

    Cite this: ACS Synth. Biol. 2020, 9, 7, 1843–1854
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acssynbio.0c00197
    Published June 11, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    4172

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.