Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Construction of a Chassis for a Tripartite Protein-Based Molecular Motor
My Activity

Figure 1Loading Img
  • Open Access
Research Article

Construction of a Chassis for a Tripartite Protein-Based Molecular Motor
Click to copy article linkArticle link copied!

View Author Information
Department of Physics, Durham University, Durham, DH1 3LE, United Kingdom
School of Chemistry, University of Bristol, BS8 1TS, Bristol, United Kingdom
School of Biochemistry, University of Bristol, BS8 1TD, Bristol, United Kingdom
BrisSynBio, Life Sciences Building, University of Bristol, BS8 1TQ, Bristol, United Kingdom
§ School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
Faculty of Science, Leiden Institute of Chemistry, Leiden, 2333 CC, Netherlands
Structural Biology Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
# School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia
Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
NanoLund and Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden
Open PDFSupporting Information (1)

ACS Synthetic Biology

Cite this: ACS Synth. Biol. 2017, 6, 6, 1096–1102
Click to copy citationCitation copied!
https://doi.org/10.1021/acssynbio.7b00037
Published February 21, 2017

Copyright © 2017 American Chemical Society. This publication is licensed under CC-BY.

Abstract

Click to copy section linkSection link copied!

Improving our understanding of biological motors, both to fully comprehend their activities in vital processes, and to exploit their impressive abilities for use in bionanotechnology, is highly desirable. One means of understanding these systems is through the production of synthetic molecular motors. We demonstrate the use of orthogonal coiled-coil dimers (including both parallel and antiparallel coiled coils) as a hub for linking other components of a previously described synthetic molecular motor, the Tumbleweed. We use circular dichroism, analytical ultracentrifugation, dynamic light scattering, and disulfide rearrangement studies to demonstrate the ability of this six-peptide set to form the structure designed for the Tumbleweed motor. The successful formation of a suitable hub structure is both a test of the transferability of design rules for protein folding as well as an important step in the production of a synthetic protein-based molecular motor.

Copyright © 2017 American Chemical Society

Protein-based molecular machines are a vital component of living cells and carry out diverse functions including the transportation of numerous cargoes, muscle contraction, and cell division. (1, 2) Biological motors are highly complex, regulated machines, making them challenging to study but also a motivating target for use in bionanotechnology. (3, 4) Within the field of synthetic biology, the bottom-up approach (5, 6) aims to start with simplified, well-characterized, components and modify or extend their functionality, in this case to produce novel nanoscale motors. A key design challenge in this area is the level of reproducibility and transferability of components from one context to another, and determining the ability of components to be combined without unexpected interactions occurring is important.
Entirely synthetic, biologically inspired motors have been designed with varying levels of ability and mimicry, including small molecule machines such as switches, shuttles, and even a robotic arm. (7, 8) Using more biological starting materials, there has also been significant progress in the field of autonomous DNA motors (9, 10) and hybrid DNA–protein motors. (11) Neither of these areas, however, utilize the same set of initial building blocks as nature: amino acids. The field of synthetic protein motors is far less developed due to the higher complexity of amino acid interactions. There are, however, several examples of combining peptides with small molecules to create synthetic machines (12-14) and structures such as a cyclic peptide-based nanopore, (15) but there are, to our knowledge, no peptide or protein-based synthetic motors that avoid the use of existing protein motor domains.
This paper describes progress in the realization of a series of previously published motor designs, including the Tumbleweed and SKIP motors. (16, 17) These motors are designed to undergo directed motion through rectified diffusion using ligand-controlled binding of their “feet” to a DNA track. A peptide “hub” is proposed (16) to self-assemble, connect, and organize E. coli protein based “feet” with the ability to bind orthogonal DNA sequences (in the presence of orthogonal ligands) to form the motor molecule (see Figure 1). Construction of a suitable DNA track (18) and microfluidic device (19, 20) have since been demonstrated, along with further simulation studies. (21, 22)

Figure 1

Figure 1. “Y” configuration of the Tumbleweed Hub. The peptide hub termini are indicated, showing the parallel coiled coils p1,p2 and p3,p4, and the antiparallel coiled coil p5,p6. To form a hub, coiled-coil pairs (p1,p2), (p3,p4), and (p5,p6) need to preferentially interact, while p1 and p6, p2 and p3, and p4 and p5 are covalently linked, to ensure that all of the coiled coils are connected to form one structure. The nonhelical central ribbons represent the residues at one end of every peptide that are designed not to contribute to a coiled-coil region. Figure adapted with permission from ref 22. Copyright 2011 American Physical Society.

The proposed hub is composed of three peptide sequences, each of which contains two coiled-coil domains, (23) with each domain programmed to assemble with a specified partner to produce the final configuration (see Figure 1). Coiled-coil domains have been selected for this application, primarily due to their ability to undergo programmed assembly; however, the rigidity of the folded domain is also desirable in reducing the probability of backward stepping and hence improving the efficiency of the final motor. The use of coiled-coils in this way is not straightforward as individual coiled-coil sequences have often been found to interact with many other potential partners rather than interacting only with their biologically relevant partner. (24, 25) It has also been documented in other areas of synthetic biology that once the complexity of synthetic systems increases, unintended cross-talk between components can occur. (26, 27)
To design the high fidelity sequences required in this application we must therefore draw on the wealth of information now available on the folding and interactions of coiled coils. (23, 28, 29) The coiled-coil nanostructure field has advanced on many fronts in recent years including the use of biological coiled-coil domains in novel combinations, (30, 31) the design of self-assembling peptides from first-principles, (32-34) and the use of computational design tools. (35-37) From these works we anticipate the need to use a heptad repeat of hydrophobic residues with polar insertions used to specify the orientation of helix interactions. Given that our peptides will each contain two coiled-coil domains, we must consider the formation of intramolecular hairpins to be a primary route to misfolding and use the combination of charged amino acids and polar insertions to the hydrophobic core to specifically design against this eventuality in each peptide. In addition to the coiled-coil oligomerization information, knowledge on how to link domains successfully must be extracted from recent studies (38, 39) and applied in order to provide sufficient flexibility between domains to allow folding.
In this work we have designed, synthesized, and characterized a linked system of three coiled coils, suitable for the formation of a hub for the Tumbleweed motor. The design in this work is presented as a proof of principle that the combined knowledge within the field can be successfully applied to a range of new applications requiring the ordered colocalization of multiple functional components, including the design of hubs for protein-based synthetic molecular motors.

Results and Discussion

Click to copy section linkSection link copied!

Using the design principles laid out previously (38, 40) six peptides were designed to form three dimeric coiled coils: (p1,p2), (p3,p4), and (p5,p6). Polar residues are included in various hydrophobic core positions to prevent staggered assembly and electrostatic interactions are optimized to produce the desired dimeric pairings using an algorithm reported previously. (40) All contain a tyrosine residue for UV absorption concentration measurements, a single cysteine residue for disulfide bond formation, and a linker of glycine and asparagine intended to form a flexible region outside the coiled-coil domains on one terminus.
The sequences of the six peptides labeled in Figure 1 are shown in Table 1. These were synthesized using solid phase peptide synthesis and purified with high performance liquid chromatography. Several facts must be established in order to confirm the success of the design principles and demonstrate that when all six peptides are mixed, the three required dimeric coiled-coil structures are produced. First we must demonstrate that the designed peptide pairs interact with each other. Second we must show that the structures formed by these pairs are dimeric in nature. Finally we must find that the three designed pairs are produced preferentially over other possible oligomers.
Table 1
The secondary structures of the peptides and two-peptide combinations were studied with circular dichroism (CD). The individual peptides displayed varying levels of helicity (see Figure S1a). All 15 two-peptide mixtures were made and measured. The CD spectra of the three specified dimers, alongside the spectra of the component peptides, are shown in Figure 2 panels a, b, and c. All three pairs indicate the presence of heterooligomeric interactions, as the measured spectra of the mixtures show greater helicity than those predicted from the sum of the individual component peptide spectra. The data from the other 12 possible combinations of two hub peptides also demonstrate various levels of heterooligomeric interactions to be present. These data show that the specified pairs can be formed. To determine whether the desired pairs are formed preferentially to other interactions, all six peptides were mixed together. The CD spectrum of this mixture is shown in Figure 2d. This has been compared to predicted spectra for six noninteracting species, and to a sample comprising only the three designed pairs. As expected, the combined spectrum is highly similar to that predicted under the assumption that no further interactions are produced when the designed pairs are mixed.

Figure 2

Figure 2. CD spectra of the three mixtures of the designed pairs of peptides: (a) p1 and p2, (b) p3 and p4, and (c) p5 and p6 (shown in green). Each panel also shows the individual peptide spectra (red and blue, in numerical order), and the theoretical signal for a mixture of the two without interaction (a combination of the two single peptide signals, shown in purple). (d) CD spectrum of all six hub peptides mixed together (green), compared with the theoretical spectrum predicted from the individual spectra (shown in magenta), and from the designed pair spectra (shown in purple). Each sample had a concentration of 20 μM per peptide, in PBS buffer (pH 7.4), measured at 20 °C. Dotted lines represent the wavelength cutoff below which data cannot be reliably obtained, as dictated by the CD instrument.

Analytical ultracentrifugation (AUC) measurements of the designed coiled-coil pairs (Table 2) gave molecular weights consistent with dimer formation, and inconsistent with monomers or oligomers of a higher order than dimers (see Supporting Information, Tables S1 and S2 for further details).
Table 2
sampleexpected molecular weight/Dameasured molecular weight/Da
p1,p270417000 ± 1000
p3,p473977100 ± 1000
p5,p658165900 ± 1000
Likewise, dynamic light scattering (DLS) measurements of the designed coiled-coil pairs each exhibited species with 3–5 nm hydrodynamic diameters, consistent with the hypothesis of the formation of discrete coiled-coil oligomers, and inconsistent with the formation of fibers (Figure S2).
To demonstrate the fidelity of the interactions and to confirm the utility of the peptides in organizing the motor hub, pairs of the peptides were covalently linked using a disulfide bond between terminal cysteine residues, and the disulfide-bonded peptides, p6–p1, p3–p2, and p4–p5 were produced and characterized.
The CD spectra of the disulfide-bonded peptides reveal little about the system as all of the collected spectra show high levels of helicity (see SI Figure S1b). This is expected for a system where the peptides have been designed to form coiled-coils and have been colocalized by the disulfide tethering causing conditions of high local concentration and hence nonspecific coiled-coil formation.
AUC results are more informative about the system’s interactions (see Table 3). The single disulfide-bonded peptides have the expected masses. (The higher than expected value found for p2–p3 nonetheless corresponds well to a single species fit, and the mass found is far closer to the mass of a single disulfide-bonded peptide than to a pair.) To study the specificity of coiled-coil interactions, the disulfide-bonded peptides were mixed pairwise and allowed to associate. The mixtures of pairs of disulfide-bonded peptides exhibit single species behavior, indicative of the desired specificity of interaction. Furthermore, this species in each case has a mass consistent with the interaction of two disulfide-bonded peptides. The mixture of all three disulfide-bonded peptides gives a mass consistent with the expected mass of 20 248 Da, again supportive of our design criteria.
Table 3
sampleexpected heterodimeric molecular weight/Dameasured molecular weight/Da
p6–p164707300 ± 1000
p2–p370969700 ± 1000
p4–p566827600 ± 1000
p6–p1, p2–p31356616000 ± 1000
p2–p3, p4–p51377814000 ± 1000
p4–p5, p6–p11315116000 ± 1000
p6–p1, p2–p3, p4–p52024819000 ± 1000
DLS data of the individual disulfide-bonded peptides gave hydrodynamic diameters of 3–4 nm, while DLS data of pairs of the disulfide-bonded peptides, and of all three disulfide-bonded peptides mixed, showed a shift to higher values, around 5 nm (see Figure S3). The change in size between the single and pairs of disulfide-bonded peptides indicates that there is interaction between the disulfide-bonded peptides. The fact that the size of the three-component mixture is similar to that of the pairs of disulfide-bonded peptides is supportive that a structure such as that shown in Figure 1 is formed, and not a lengthy fiber.
To further verify that the interactions occurring in the final structure are due to the three specified peptide pairs, we carried out disulfide exchange experiments on the linked peptides. We measured the system of three disulfide-bonded peptides, and then changed the system’s redox potential, using reduced glutathione, to allow the disulfide bonds to rearrange. If there are preferred interactions, the disulfide bonds formed when rearrangement is possible should reflect these preferences (see Figure 3). We measured the species in each of these samples using MALDI-ToF mass spectrometry, and the results are shown in Figure 4. Prior to rearrangement, the species present in the system are the disulfide-bonded peptides produced in the laboratory (see Figure 4a). Once the disulfide bonds are given the opportunity to rearrange (see Figure 4b), the species present change. Disulfide-bonded versions of all three of the designed pairs (p1–p2, p3–p4, p6–p5) produce the dominant peaks, along with a fourth peak attributed to the starting peptide 2–3 (that is likely due to a failure to produce a precise 1:1:1 ratio of the starting species). Regardless of the presence of this peak, it is clear that the three designed pairs interact when given the opportunity, while none of the other possible combinations not present in the initial system form during rearrangement (Supporting Information Table S3 for details of peak assignments).

Figure 3

Figure 3. If the designed dimer peptides preferentially interact, when allowed to rearrange, the disulfide bonds should switch to being between the desired pairs, with the species present in the system moving from p6–p1, p3–p2, and p4–p5 to p1–p2, p3–p4, and p5–p6.

Figure 4

Figure 4. MALDI spectra of glutathione experiments. The initial spectrum has prominent peaks due to the p4–p5 (MW 6682 Da) and p3–p2 (MW 7095 Da) species, and smaller peaks due to deletions and the p6–p1 peptide (MW 6470 Da). After rearrangement, the p4–p5 and p6–p1 species are no longer seen, while the p6–p5 (MW 5814 Da), p1–p2 (MW 7039 Da) and p3–p4 (MW 7395 Da) species have appeared. All of the trace peaks correlate with impurities in the initial samples and do not correlate with possible rearrangements.

This combined information from CD, DLS, AUC, and disulfide rearrangement experiments indicates that the hub construction should indeed be possible from mixing covalently linked species of peptides p1 and p6, p2 and p3, and p4 and p5, driven by coiled-coil interactions. As such, this has been a successful test of the hypothesis that the knowledge within the peptide design field is now sufficient for the design of self-assembling hubs for diverse applications, including the colocalization of other motor components.
Future extensions of this work could investigate whether it is possible to combine this synthetic biology approach to structure design with active means of actuating the structure. Using the observed ability of peptides (41-43) to switch conformation in different conditions could provide a feasible means of adapting this system to undergo conformational changes (and hence changes in movement) in the presence of different stimuli. This will take us one step closer to realizing designed protein motion.

Conclusions

Click to copy section linkSection link copied!

We have demonstrated that a set of six coiled-coil domains can be designed to self-assemble preferentially into three coiled-coil heterodimers. We have shown that by pairing the domains covalently, a hub structure can be formed. This hub can then be used to assemble multiple functional units into the desired 3D configuration. We propose using this technology to produce designed protein motor hubs; however, the methodology exploited here may have wider applications in the design and production of self-assembling junctions in other areas of bionanotechnology including the construction of synthetic cages or other nanoscale devices.

Materials and Methods

Click to copy section linkSection link copied!

Amino acids and PyBOP were purchased from AGTC Bioproducts Ltd. DMF was purchased from Rathburn Chemicals and AGTC Bioproducts Ltd. Rink amide MBHA resin was purchased from Novabiochem. Other synthesis materials, including Aldrithiol-2, were purchased from Sigma-Aldrich. HPLC grade acetonitrile was purchased from Fisher Scientific.
Peptides were synthesized using SPPS using a CEM Liberty 1 peptide synthesizer under standard conditions. HPLC purification was carried out using linear water to acetonitrile gradients, with a PerkinElmer 785A detector and Series 200 LC pump, and a C18 column. MALDI-ToF experiments were carried out using a Bruker Daltonics Autoflex II ToF/ToF machine, and α-cyano-4-hydroxycinnamic acid matrix.
To form each disulfide-bonded peptide, one of the contributing peptides (dissolved in water) was reacted with a 10-fold excess of Aldrithiol-2 (in acetonitrile), and the products were separated by HPLC. The peptide product was then reacted with the other contributing peptide, and through displacement formed a disulfide-bonded peptide. The waste products of this reaction were then removed using HPLC.
Concentrations were determined using UV–vis absorption spectroscopy, and the tyrosine absorption centered around 276 nm: εTyr = 1280 cm–1 mol–1. With the exception of UV–vis spectra for the disulfide exchange experiments, which used a Thermo Scientific Nanodrop 1000, spectra were taken using a Unicam UV2 spectrometer.
CD spectroscopy was carried out using a JASCO J-1500 spectropolarimeter with mini-circulation bath and Peltier stage, using a 1 mm quartz cuvette. Samples were made at a concentration of 20 μM per peptide, in PBS buffer.
AUC sedimentation equilibrium data was collected at 20 °C in PBS buffer using a Beckman Optima XL-I analytical ultracentrifuge with an An-60 Ti rotor. The partial specific volume for each of the peptides/peptide mixtures, and the solvent density, were calculated using Sednterp.
DLS measurements were taken on a Malvern Zetasizer μV using Sarstedt disposable transparent cuvettes. Samples were made at a concentration of 100 μM per peptide, in PBS buffer.
TFA in water solutions (pH 2) were found to quench the disulfide exchange reaction, and hence this was used to both prevent rearrangement of the initial species prior to MALDI analysis, and to quench the system after rearrangement was encouraged in a second sample. Each of the disulfide-bonded peptides, in water solution, was added to both a solution of TFA in water (4 μL TFA in 15 mL water, pH 2) and to a PBS buffer solution containing reduced glutathione. After 10 min, TFA in water was added to the glutathione-containing solution to quench the reaction. These two solutions were then studied using MALDI-ToF mass spectrometry.

Supporting Information

Click to copy section linkSection link copied!

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acssynbio.7b00037.

  • Additional circular dichroism data; dynamic light scattering data; AUC fitting information; MALDI data (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
  • Authors
    • Lara S. R. Small - Department of Physics, Durham University, Durham, DH1 3LE, United Kingdom
    • Marc Bruning - School of Chemistry, University of Bristol, BS8 1TS, Bristol, United Kingdom
    • Andrew R. Thomson - School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
    • Aimee L. Boyle - Faculty of Science, Leiden Institute of Chemistry, Leiden, 2333 CC, Netherlands
    • Roberta B. Davies - Structural Biology Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
    • Paul M. G. Curmi - School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia
    • Nancy R. Forde - Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
    • Heiner Linke - NanoLund and Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden
    • Derek N. Woolfson - School of Chemistry, University of Bristol, BS8 1TS, Bristol, United KingdomSchool of Biochemistry, University of Bristol, BS8 1TD, Bristol, United KingdomBrisSynBio, Life Sciences Building, University of Bristol, BS8 1TQ, Bristol, United KingdomOrcidhttp://orcid.org/0000-0002-0394-3202
  • Notes
    The authors declare no competing financial interest.

Acknowledgment

Click to copy section linkSection link copied!

The authors thank EPSRC for funding L.S.R.S. through a Doctoral Studentship (EP/P505488/1) and Doctoral Prize (EP/M507854/1). A.R.T. and D.N.W. are supported by the ERC (340764), and D.N.W. is a Royal Society Wolfson Research Merit Award holder (WM140008). H.L. is supported by a Swedish Research Council Grant 2015-0612. Data supporting this article is available at http://dx.doi.org/10.15128/r2qr46r080t.

References

Click to copy section linkSection link copied!

This article references 43 other publications.

  1. 1
    Vale, R. D. (2003) The Molecular Motor Toolbox for Intracellular Transport Cell 112, 467 480 DOI: 10.1016/S0092-8674(03)00111-9
  2. 2
    Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. (2002) Molecular Biology of the Cell, 4 ed., Garland Science, New York.
  3. 3
    Nature (2014) Hitching a ride with motor proteins Nat. Nanotechnol. 9, 1 1 DOI: 10.1038/nnano.2013.308
  4. 4
    van den Heuvel, M. G. L. and Dekker, C. (2007) Motor proteins at work for nanotechnology Science 317, 333 336 DOI: 10.1126/science.1139570
  5. 5
    Bromley, E. H. C., Channon, K., Moutevelis, E., and Woolfson, D. N. (2008) Peptide and protein building blocks for synthetic biology: From programming biomolecules to self-organized biomolecular systems ACS Chem. Biol. 3, 38 50 DOI: 10.1021/cb700249v
  6. 6
    Channon, K., Bromley, E. H. C., and Woolfson, D. N. (2008) Synthetic biology through biomolecular design and engineering Curr. Opin. Struct. Biol. 18, 491 498 DOI: 10.1016/j.sbi.2008.06.006
  7. 7
    Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T., and Nussbaumer, A. L. (2015) Artificial Molecular Machines Chem. Rev. 115, 10081 10206 DOI: 10.1021/acs.chemrev.5b00146
  8. 8
    Kassem, S., Lee, A. T. L., Leigh, D. A., Markevicius, A., and Sola, J. (2016) Pick-up, transport and release of a molecular cargo using a small-molecule robotic arm Nat. Chem. 8, 138 143 DOI: 10.1038/nchem.2410
  9. 9
    Chen, Y. J., Groves, B., Muscat, R. A., and Seelig, G. (2015) DNA nanotechnology from the test tube to the cell Nat. Nanotechnol. 10, 748 760 DOI: 10.1038/nnano.2015.195
  10. 10
    Pan, J., Li, F. R., Cha, T. G., Chen, H. R., and Choi, J. H. (2015) Recent progress on DNA based walkers Curr. Opin. Biotechnol. 34, 56 64 DOI: 10.1016/j.copbio.2014.11.017
  11. 11
    Lund, K., Manzo, A. J., Dabby, N., Michelotti, N., Johnson-Buck, A., Nangreave, J., Taylor, S., Pei, R. J., Stojanovic, M. N., and Walter, N. G. 2010, Molecular robots guided by prescriptive landscapes Nature 465, 206 210 DOI: 10.1038/nature09012
  12. 12
    Ikezoe, Y., Fang, J., Wasik, T. L., Shi, M. L., Uemura, T., Kitagawa, S., and Matsui, H. (2015) Peptide-Metal Organic Framework Swimmers that Direct the Motion toward Chemical Targets Nano Lett. 15, 4019 4023 DOI: 10.1021/acs.nanolett.5b00969
  13. 13
    Ikezoe, Y., Washino, G., Uemura, T., Kitagawa, S., and Matsui, H. (2012) Autonomous motors of a metal-organic framework powered by reorganization of self-assembled peptides at interfaces Nat. Mater. 11, 1081 1085 DOI: 10.1038/nmat3461
  14. 14
    Nagatsugi, F., Takahashi, Y., Kobayashi, M., Kuwahara, S., Kusano, S., Chikuni, T., Hagihara, S., and Harada, N. (2013) Synthesis of peptide-conjugated light-driven molecular motors and evaluation of their DNA-binding properties Mol. BioSyst. 9, 969 973 DOI: 10.1039/c2mb25520k
  15. 15
    Watson, M. A. and Cockroft, S. L. (2016) Man-made molecular machines: membrane bound Chem. Soc. Rev. 45, 6118 DOI: 10.1039/C5CS00874C
  16. 16
    Bromley, E. H. C., Kuwada, N. J., Zuckermann, M. J., Donadini, R., Samii, L., Blab, G. A., Gemmen, G. J., Lopez, B. J., Curmi, P. M. G., and Forde, N. R. 2009, The Tumbleweed: towards a synthetic protein motor HFSP J. 3, 204 212 DOI: 10.2976/1.3111282
  17. 17
    Zuckermann, M. J., Angstmann, C. N., Schmitt, R., Blab, G. A., Bromley, E. H. C., Forde, N. R., Linke, H., and Curmi, P. M. G. (2015) Motor properties from persistence: a linear molecular walker lacking spatial and temporal asymmetry New J. Phys. 17, 13 DOI: 10.1088/1367-2630/17/5/055017
  18. 18
    Kovacic, S., Samii, L., Woolfson, D. N., Curmi, P. M. G., Linke, H., Forde, N. R., and Blab, G. A. (2012) Design and Construction of a One- Dimensional DNA Track for an Artificial Molecular Motor J. Nanomater. 2012, 10 DOI: 10.1155/2012/109238
  19. 19
    Niman, C. S., Beech, J. P., Tegenfeldt, J. O., Curmi, P. M. G., Woolfson, D. N., Forde, N. R., and Linke, H. (2013) Controlled microfluidic switching in arbitrary time-sequences with low drag Lab Chip 13, 2389 2396 DOI: 10.1039/c3lc50194a
  20. 20
    Niman, C. S., Zuckermann, M. J., Balaz, M., Tegenfeldt, J. O., Curmi, P. M. G., Forde, N. R., and Linke, H. (2014) Fluidic switching in nanochannels for the control of Inchworm: a synthetic biomolecular motor with a power stroke Nanoscale 6, 15008 15019 DOI: 10.1039/C4NR04701J
  21. 21
    Kuwada, N. J., Blab, G. A., and Linke, H. (2010) A classical Master equation approach to modeling an artificial protein motor Chem. Phys. 375, 479 485 DOI: 10.1016/j.chemphys.2010.05.009
  22. 22
    Kuwada, N. J., Zuckermann, M. J., Bromley, E. H. C., Sessions, R. B., Curmi, P. M. G., Forde, N. R., Woolfson, D. N., and Linke, H. (2011) Tuning the performance of an artificial protein motor Phys. Rev. E 84, 9 DOI: 10.1103/PhysRevE.84.031922
  23. 23
    Apostolovic, B., Danial, M., and Klok, H. A. (2010) Coiled coils: attractive protein folding motifs for the fabrication of self-assembled, responsive and bioactive materials Chem. Soc. Rev. 39, 3541 3575 DOI: 10.1039/b914339b
  24. 24
    Newman, J. R. S. and Keating, A. E. (2003) Comprehensive identification of human bZIP interactions with coiled-coil arrays Science 300, 2097 2101 DOI: 10.1126/science.1084648
  25. 25
    Kaplan, J. B., Reinke, A. W., and Keating, A. E. (2014) Increasing the affinity of selective bZIP-binding peptides through surface residue redesign Protein Sci. 23, 940 953 DOI: 10.1002/pro.2477
  26. 26
    Vilanova, C., Tanner, K., Dorado-Morales, P., Villaescusa, P., Chugani, D., Frias, A., Segredo, E., Molero, X., Fritschi, M., Morales, L., Ramon, D., Pena, C., Pereto, J., and Porcar, M. (2015) Standards not that standard J. Biol. Eng. 9, 4 DOI: 10.1186/s13036-015-0017-9
  27. 27
    Kwok, R. (2010) FIVE HARD TRUTHS FOR SYNTHETIC BIOLOGY Nature 463, 288 290 DOI: 10.1038/463288a
  28. 28
    Mason, J. M. and Arndt, K. M. (2004) Coiled coil domains: Stability, specificity, and biological implications ChemBioChem 5, 170 176 DOI: 10.1002/cbic.200300781
  29. 29
    Woolfson, D. N. (2005) The design of coiled-coil structures and assemblies Adv. Protein Chem. 70, 79 DOI: 10.1016/S0065-3233(05)70004-8
  30. 30
    Gradisar, H., Bozic, S., Doles, T., Vengust, D., Hafner-Bratkovic, I., Mertelj, A., Webb, B., Sali, A., Klavzar, S., and Jerala, R. (2013) Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments Nat. Chem. Biol. 9, 362 DOI: 10.1038/nchembio.1248
  31. 31
    Raman, S., Machaidze, G., Lustig, A., Aebi, U., and Burkhard, P. (2006) Structure-based design of peptides that self-assemble into regular polyhedral nanoparticles Nanomedicine 2, 95 102 DOI: 10.1016/j.nano.2006.04.007
  32. 32
    Burgess, N. C., Sharp, T. H., Thomas, F., Wood, C. W., Thomson, A. R., Zaccai, N. R., Brady, R. L., Serpell, L. C., and Woolfson, D. N. (2015) Modular Design of Self-Assembling Peptide-Based Nanotubes J. Am. Chem. Soc. 137, 10554 10562 DOI: 10.1021/jacs.5b03973
  33. 33
    Fletcher, J. M., Boyle, A. L., Bruning, M., Bartlett, G. J., Vincent, T. L., Zaccai, N. R., Armstrong, C. T., Bromley, E. H. C., Booth, P. J., and Brady, R. L. 2012, A Basis Set of de Novo Coiled-Coil Peptide Oligomers for Rational Protein Design and Synthetic Biology ACS Synth. Biol. 1, 240 250 DOI: 10.1021/sb300028q
  34. 34
    Fletcher, J. M., Harniman, R. L., Barnes, F. R. H., Boyle, A. L., Collins, A., Mantell, J., Sharp, T. H., Antognozzi, M., Booth, P. J., and Linden, N. 2013, Self-Assembling Cages from Coiled-Coil Peptide Modules Science 340, 595 599 DOI: 10.1126/science.1233936
  35. 35
    Grigoryan, G. and Keating, A. E. (2006) Structure-based prediction of bZIP partnering specificity J. Mol. Biol. 355, 1125 1142 DOI: 10.1016/j.jmb.2005.11.036
  36. 36
    Ramisch, S., Lizatovic, R., and Andre, I. (2015) Exploring alternate states and oligomerization preferences of coiled-coils by de novo structure modeling Proteins: Struct., Funct., Genet. 83, 235 247 DOI: 10.1002/prot.24729
  37. 37
    Thomson, A. R., Wood, C. W., Burton, A. J., Bartlett, G. J., Sessions, R. B., Brady, R. L., and Woolfson, D. N. (2014) Computational design of water-soluble alpha-helical barrels Science 346, 485 488 DOI: 10.1126/science.1257452
  38. 38
    Boyle, A. L., Bromley, E. H. C., Bartlett, G. J., Sessions, R. B., Sharp, T. H., Williams, C. L., Curmi, P. M. G., Forde, N. R., Linke, H., and Woolfson, D. N. (2012) Squaring the Circle in Peptide Assembly: From Fibers to Discrete Nanostructures by de Novo Design J. Am. Chem. Soc. 134, 15457 15467 DOI: 10.1021/ja3053943
  39. 39
    Chen, X. Y., Zaro, J. L., and Shen, W. C. (2013) Fusion protein linkers: Property, design and functionality Adv. Drug Delivery Rev. 65, 1357 1369 DOI: 10.1016/j.addr.2012.09.039
  40. 40
    Bromley, E. H. C., Sessions, R. B., Thomson, A. R., and Woolfson, D. N. (2009) Designed alpha-Helical Tectons for Constructing Multicomponent Synthetic Biological Systems J. Am. Chem. Soc. 131, 928 930 DOI: 10.1021/ja804231a
  41. 41
    Cerpa, R., Cohen, F. E., and Kuntz, I. D. (1996) Conformational switching in designed peptides: The helix/sheet transition Folding Des. 1, 91 101 DOI: 10.1016/S1359-0278(96)00018-1
  42. 42
    Webber, M. J., Newcomb, C. J., Bitton, R., and Stupp, S. I. (2011) Switching of self-assembly in a peptide nanostructure with a specific enzyme Soft Matter 7, 9665 9672 DOI: 10.1039/c1sm05610g
  43. 43
    Zimenkov, Y., Dublin, S. N., Ni, R., Tu, R. S., Breedveld, V., Apkarian, R. P., and Conticello, V. P. (2006) Rational design of a reversible pH-responsive switch for peptide self-assembly J. Am. Chem. Soc. 128, 6770 6771 DOI: 10.1021/ja0605974

Cited By

Click to copy section linkSection link copied!

This article is cited by 12 publications.

  1. Ivan N. Unksov, Chapin S. Korosec, Pradheebha Surendiran, Damiano Verardo, Roman Lyttleton, Nancy R. Forde, Heiner Linke. Through the Eyes of Creators: Observing Artificial Molecular Motors. ACS Nanoscience Au 2022, 2 (3) , 140-159. https://doi.org/10.1021/acsnanoscienceau.1c00041
  2. Gadiel Saper, Henry Hess. Synthetic Systems Powered by Biological Molecular Motors. Chemical Reviews 2020, 120 (1) , 288-309. https://doi.org/10.1021/acs.chemrev.9b00249
  3. Dominic J. Glover, Samuel Lim, Dawei Xu, Nancy B. Sloan, Ye Zhang, Douglas S. Clark. Assembly of Multicomponent Protein Filaments Using Engineered Subunit Interfaces. ACS Synthetic Biology 2018, 7 (10) , 2447-2456. https://doi.org/10.1021/acssynbio.8b00241
  4. Patrik F Nilsson, Anna Zink, Olivier M C Laprévote, Chapin S Korosec, Nils Gustafsson, Neil O Robertson, Nancy R Forde, Ralf Eichhorn, Birte Höcker, Paul M G Curmi, Heiner Linke. Walking by design: how to build artificial molecular motors made of proteins. Nano Futures 2024, 8 (4) , 042501. https://doi.org/10.1088/2399-1984/ad7d7e
  5. Derek N. Woolfson. Understanding a protein fold: The physics, chemistry, and biology of α-helical coiled coils. Journal of Biological Chemistry 2023, 299 (4) , 104579. https://doi.org/10.1016/j.jbc.2023.104579
  6. Fabio Lapenta, Jana Aupič, Marco Vezzoli, Žiga Strmšek, Stefano Da Vela, Dmitri I. Svergun, José María Carazo, Roberto Melero, Roman Jerala. Self-assembly and regulation of protein cages from pre-organised coiled-coil modules. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-21184-6
  7. Fabio Lapenta, Roman Jerala. Design of novel protein building modules and modular architectures. Current Opinion in Structural Biology 2020, 63 , 90-96. https://doi.org/10.1016/j.sbi.2020.04.006
  8. Andrea E. Rawlings, Lori A. Somner, Michaela Fitzpatrick-Milton, Thomas P. Roebuck, Christopher Gwyn, Panah Liravi, Victoria Seville, Thomas J. Neal, Oleksandr O. Mykhaylyk, Stephen A. Baldwin, Sarah S. Staniland. Artificial coiled coil biomineralisation protein for the synthesis of magnetic nanoparticles. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-10578-2
  9. BA Wallace. The role of circular dichroism spectroscopy in the era of integrative structural biology. Current Opinion in Structural Biology 2019, 58 , 191-196. https://doi.org/10.1016/j.sbi.2019.04.001
  10. Lara S R Small, Martin J Zuckermann, Richard B Sessions, Paul M G Curmi, Heiner Linke, Nancy R Forde, Elizabeth H C Bromley. The bar-hinge motor: a synthetic protein design exploiting conformational switching to achieve directional motility. New Journal of Physics 2019, 21 (1) , 013002. https://doi.org/10.1088/1367-2630/aaf3ca
  11. Jana Aupič, Fabio Lapenta, Roman Jerala. SwitCCh: Metal‐Site Design for Controlling the Assembly of a Coiled‐Coil Homodimer. ChemBioChem 2018, 19 (23) , 2453-2457. https://doi.org/10.1002/cbic.201800578
  12. Fabio Lapenta, Jana Aupič, Žiga Strmšek, Roman Jerala. Coiled coil protein origami: from modular design principles towards biotechnological applications. Chemical Society Reviews 2018, 47 (10) , 3530-3542. https://doi.org/10.1039/C7CS00822H
Open PDF

ACS Synthetic Biology

Cite this: ACS Synth. Biol. 2017, 6, 6, 1096–1102
Click to copy citationCitation copied!
https://doi.org/10.1021/acssynbio.7b00037
Published February 21, 2017

Copyright © 2017 American Chemical Society. This publication is licensed under CC-BY.

Article Views

1723

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. “Y” configuration of the Tumbleweed Hub. The peptide hub termini are indicated, showing the parallel coiled coils p1,p2 and p3,p4, and the antiparallel coiled coil p5,p6. To form a hub, coiled-coil pairs (p1,p2), (p3,p4), and (p5,p6) need to preferentially interact, while p1 and p6, p2 and p3, and p4 and p5 are covalently linked, to ensure that all of the coiled coils are connected to form one structure. The nonhelical central ribbons represent the residues at one end of every peptide that are designed not to contribute to a coiled-coil region. Figure adapted with permission from ref 22. Copyright 2011 American Physical Society.

    Figure 2

    Figure 2. CD spectra of the three mixtures of the designed pairs of peptides: (a) p1 and p2, (b) p3 and p4, and (c) p5 and p6 (shown in green). Each panel also shows the individual peptide spectra (red and blue, in numerical order), and the theoretical signal for a mixture of the two without interaction (a combination of the two single peptide signals, shown in purple). (d) CD spectrum of all six hub peptides mixed together (green), compared with the theoretical spectrum predicted from the individual spectra (shown in magenta), and from the designed pair spectra (shown in purple). Each sample had a concentration of 20 μM per peptide, in PBS buffer (pH 7.4), measured at 20 °C. Dotted lines represent the wavelength cutoff below which data cannot be reliably obtained, as dictated by the CD instrument.

    Figure 3

    Figure 3. If the designed dimer peptides preferentially interact, when allowed to rearrange, the disulfide bonds should switch to being between the desired pairs, with the species present in the system moving from p6–p1, p3–p2, and p4–p5 to p1–p2, p3–p4, and p5–p6.

    Figure 4

    Figure 4. MALDI spectra of glutathione experiments. The initial spectrum has prominent peaks due to the p4–p5 (MW 6682 Da) and p3–p2 (MW 7095 Da) species, and smaller peaks due to deletions and the p6–p1 peptide (MW 6470 Da). After rearrangement, the p4–p5 and p6–p1 species are no longer seen, while the p6–p5 (MW 5814 Da), p1–p2 (MW 7039 Da) and p3–p4 (MW 7395 Da) species have appeared. All of the trace peaks correlate with impurities in the initial samples and do not correlate with possible rearrangements.

  • References


    This article references 43 other publications.

    1. 1
      Vale, R. D. (2003) The Molecular Motor Toolbox for Intracellular Transport Cell 112, 467 480 DOI: 10.1016/S0092-8674(03)00111-9
    2. 2
      Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. (2002) Molecular Biology of the Cell, 4 ed., Garland Science, New York.
    3. 3
      Nature (2014) Hitching a ride with motor proteins Nat. Nanotechnol. 9, 1 1 DOI: 10.1038/nnano.2013.308
    4. 4
      van den Heuvel, M. G. L. and Dekker, C. (2007) Motor proteins at work for nanotechnology Science 317, 333 336 DOI: 10.1126/science.1139570
    5. 5
      Bromley, E. H. C., Channon, K., Moutevelis, E., and Woolfson, D. N. (2008) Peptide and protein building blocks for synthetic biology: From programming biomolecules to self-organized biomolecular systems ACS Chem. Biol. 3, 38 50 DOI: 10.1021/cb700249v
    6. 6
      Channon, K., Bromley, E. H. C., and Woolfson, D. N. (2008) Synthetic biology through biomolecular design and engineering Curr. Opin. Struct. Biol. 18, 491 498 DOI: 10.1016/j.sbi.2008.06.006
    7. 7
      Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T., and Nussbaumer, A. L. (2015) Artificial Molecular Machines Chem. Rev. 115, 10081 10206 DOI: 10.1021/acs.chemrev.5b00146
    8. 8
      Kassem, S., Lee, A. T. L., Leigh, D. A., Markevicius, A., and Sola, J. (2016) Pick-up, transport and release of a molecular cargo using a small-molecule robotic arm Nat. Chem. 8, 138 143 DOI: 10.1038/nchem.2410
    9. 9
      Chen, Y. J., Groves, B., Muscat, R. A., and Seelig, G. (2015) DNA nanotechnology from the test tube to the cell Nat. Nanotechnol. 10, 748 760 DOI: 10.1038/nnano.2015.195
    10. 10
      Pan, J., Li, F. R., Cha, T. G., Chen, H. R., and Choi, J. H. (2015) Recent progress on DNA based walkers Curr. Opin. Biotechnol. 34, 56 64 DOI: 10.1016/j.copbio.2014.11.017
    11. 11
      Lund, K., Manzo, A. J., Dabby, N., Michelotti, N., Johnson-Buck, A., Nangreave, J., Taylor, S., Pei, R. J., Stojanovic, M. N., and Walter, N. G. 2010, Molecular robots guided by prescriptive landscapes Nature 465, 206 210 DOI: 10.1038/nature09012
    12. 12
      Ikezoe, Y., Fang, J., Wasik, T. L., Shi, M. L., Uemura, T., Kitagawa, S., and Matsui, H. (2015) Peptide-Metal Organic Framework Swimmers that Direct the Motion toward Chemical Targets Nano Lett. 15, 4019 4023 DOI: 10.1021/acs.nanolett.5b00969
    13. 13
      Ikezoe, Y., Washino, G., Uemura, T., Kitagawa, S., and Matsui, H. (2012) Autonomous motors of a metal-organic framework powered by reorganization of self-assembled peptides at interfaces Nat. Mater. 11, 1081 1085 DOI: 10.1038/nmat3461
    14. 14
      Nagatsugi, F., Takahashi, Y., Kobayashi, M., Kuwahara, S., Kusano, S., Chikuni, T., Hagihara, S., and Harada, N. (2013) Synthesis of peptide-conjugated light-driven molecular motors and evaluation of their DNA-binding properties Mol. BioSyst. 9, 969 973 DOI: 10.1039/c2mb25520k
    15. 15
      Watson, M. A. and Cockroft, S. L. (2016) Man-made molecular machines: membrane bound Chem. Soc. Rev. 45, 6118 DOI: 10.1039/C5CS00874C
    16. 16
      Bromley, E. H. C., Kuwada, N. J., Zuckermann, M. J., Donadini, R., Samii, L., Blab, G. A., Gemmen, G. J., Lopez, B. J., Curmi, P. M. G., and Forde, N. R. 2009, The Tumbleweed: towards a synthetic protein motor HFSP J. 3, 204 212 DOI: 10.2976/1.3111282
    17. 17
      Zuckermann, M. J., Angstmann, C. N., Schmitt, R., Blab, G. A., Bromley, E. H. C., Forde, N. R., Linke, H., and Curmi, P. M. G. (2015) Motor properties from persistence: a linear molecular walker lacking spatial and temporal asymmetry New J. Phys. 17, 13 DOI: 10.1088/1367-2630/17/5/055017
    18. 18
      Kovacic, S., Samii, L., Woolfson, D. N., Curmi, P. M. G., Linke, H., Forde, N. R., and Blab, G. A. (2012) Design and Construction of a One- Dimensional DNA Track for an Artificial Molecular Motor J. Nanomater. 2012, 10 DOI: 10.1155/2012/109238
    19. 19
      Niman, C. S., Beech, J. P., Tegenfeldt, J. O., Curmi, P. M. G., Woolfson, D. N., Forde, N. R., and Linke, H. (2013) Controlled microfluidic switching in arbitrary time-sequences with low drag Lab Chip 13, 2389 2396 DOI: 10.1039/c3lc50194a
    20. 20
      Niman, C. S., Zuckermann, M. J., Balaz, M., Tegenfeldt, J. O., Curmi, P. M. G., Forde, N. R., and Linke, H. (2014) Fluidic switching in nanochannels for the control of Inchworm: a synthetic biomolecular motor with a power stroke Nanoscale 6, 15008 15019 DOI: 10.1039/C4NR04701J
    21. 21
      Kuwada, N. J., Blab, G. A., and Linke, H. (2010) A classical Master equation approach to modeling an artificial protein motor Chem. Phys. 375, 479 485 DOI: 10.1016/j.chemphys.2010.05.009
    22. 22
      Kuwada, N. J., Zuckermann, M. J., Bromley, E. H. C., Sessions, R. B., Curmi, P. M. G., Forde, N. R., Woolfson, D. N., and Linke, H. (2011) Tuning the performance of an artificial protein motor Phys. Rev. E 84, 9 DOI: 10.1103/PhysRevE.84.031922
    23. 23
      Apostolovic, B., Danial, M., and Klok, H. A. (2010) Coiled coils: attractive protein folding motifs for the fabrication of self-assembled, responsive and bioactive materials Chem. Soc. Rev. 39, 3541 3575 DOI: 10.1039/b914339b
    24. 24
      Newman, J. R. S. and Keating, A. E. (2003) Comprehensive identification of human bZIP interactions with coiled-coil arrays Science 300, 2097 2101 DOI: 10.1126/science.1084648
    25. 25
      Kaplan, J. B., Reinke, A. W., and Keating, A. E. (2014) Increasing the affinity of selective bZIP-binding peptides through surface residue redesign Protein Sci. 23, 940 953 DOI: 10.1002/pro.2477
    26. 26
      Vilanova, C., Tanner, K., Dorado-Morales, P., Villaescusa, P., Chugani, D., Frias, A., Segredo, E., Molero, X., Fritschi, M., Morales, L., Ramon, D., Pena, C., Pereto, J., and Porcar, M. (2015) Standards not that standard J. Biol. Eng. 9, 4 DOI: 10.1186/s13036-015-0017-9
    27. 27
      Kwok, R. (2010) FIVE HARD TRUTHS FOR SYNTHETIC BIOLOGY Nature 463, 288 290 DOI: 10.1038/463288a
    28. 28
      Mason, J. M. and Arndt, K. M. (2004) Coiled coil domains: Stability, specificity, and biological implications ChemBioChem 5, 170 176 DOI: 10.1002/cbic.200300781
    29. 29
      Woolfson, D. N. (2005) The design of coiled-coil structures and assemblies Adv. Protein Chem. 70, 79 DOI: 10.1016/S0065-3233(05)70004-8
    30. 30
      Gradisar, H., Bozic, S., Doles, T., Vengust, D., Hafner-Bratkovic, I., Mertelj, A., Webb, B., Sali, A., Klavzar, S., and Jerala, R. (2013) Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments Nat. Chem. Biol. 9, 362 DOI: 10.1038/nchembio.1248
    31. 31
      Raman, S., Machaidze, G., Lustig, A., Aebi, U., and Burkhard, P. (2006) Structure-based design of peptides that self-assemble into regular polyhedral nanoparticles Nanomedicine 2, 95 102 DOI: 10.1016/j.nano.2006.04.007
    32. 32
      Burgess, N. C., Sharp, T. H., Thomas, F., Wood, C. W., Thomson, A. R., Zaccai, N. R., Brady, R. L., Serpell, L. C., and Woolfson, D. N. (2015) Modular Design of Self-Assembling Peptide-Based Nanotubes J. Am. Chem. Soc. 137, 10554 10562 DOI: 10.1021/jacs.5b03973
    33. 33
      Fletcher, J. M., Boyle, A. L., Bruning, M., Bartlett, G. J., Vincent, T. L., Zaccai, N. R., Armstrong, C. T., Bromley, E. H. C., Booth, P. J., and Brady, R. L. 2012, A Basis Set of de Novo Coiled-Coil Peptide Oligomers for Rational Protein Design and Synthetic Biology ACS Synth. Biol. 1, 240 250 DOI: 10.1021/sb300028q
    34. 34
      Fletcher, J. M., Harniman, R. L., Barnes, F. R. H., Boyle, A. L., Collins, A., Mantell, J., Sharp, T. H., Antognozzi, M., Booth, P. J., and Linden, N. 2013, Self-Assembling Cages from Coiled-Coil Peptide Modules Science 340, 595 599 DOI: 10.1126/science.1233936
    35. 35
      Grigoryan, G. and Keating, A. E. (2006) Structure-based prediction of bZIP partnering specificity J. Mol. Biol. 355, 1125 1142 DOI: 10.1016/j.jmb.2005.11.036
    36. 36
      Ramisch, S., Lizatovic, R., and Andre, I. (2015) Exploring alternate states and oligomerization preferences of coiled-coils by de novo structure modeling Proteins: Struct., Funct., Genet. 83, 235 247 DOI: 10.1002/prot.24729
    37. 37
      Thomson, A. R., Wood, C. W., Burton, A. J., Bartlett, G. J., Sessions, R. B., Brady, R. L., and Woolfson, D. N. (2014) Computational design of water-soluble alpha-helical barrels Science 346, 485 488 DOI: 10.1126/science.1257452
    38. 38
      Boyle, A. L., Bromley, E. H. C., Bartlett, G. J., Sessions, R. B., Sharp, T. H., Williams, C. L., Curmi, P. M. G., Forde, N. R., Linke, H., and Woolfson, D. N. (2012) Squaring the Circle in Peptide Assembly: From Fibers to Discrete Nanostructures by de Novo Design J. Am. Chem. Soc. 134, 15457 15467 DOI: 10.1021/ja3053943
    39. 39
      Chen, X. Y., Zaro, J. L., and Shen, W. C. (2013) Fusion protein linkers: Property, design and functionality Adv. Drug Delivery Rev. 65, 1357 1369 DOI: 10.1016/j.addr.2012.09.039
    40. 40
      Bromley, E. H. C., Sessions, R. B., Thomson, A. R., and Woolfson, D. N. (2009) Designed alpha-Helical Tectons for Constructing Multicomponent Synthetic Biological Systems J. Am. Chem. Soc. 131, 928 930 DOI: 10.1021/ja804231a
    41. 41
      Cerpa, R., Cohen, F. E., and Kuntz, I. D. (1996) Conformational switching in designed peptides: The helix/sheet transition Folding Des. 1, 91 101 DOI: 10.1016/S1359-0278(96)00018-1
    42. 42
      Webber, M. J., Newcomb, C. J., Bitton, R., and Stupp, S. I. (2011) Switching of self-assembly in a peptide nanostructure with a specific enzyme Soft Matter 7, 9665 9672 DOI: 10.1039/c1sm05610g
    43. 43
      Zimenkov, Y., Dublin, S. N., Ni, R., Tu, R. S., Breedveld, V., Apkarian, R. P., and Conticello, V. P. (2006) Rational design of a reversible pH-responsive switch for peptide self-assembly J. Am. Chem. Soc. 128, 6770 6771 DOI: 10.1021/ja0605974
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acssynbio.7b00037.

    • Additional circular dichroism data; dynamic light scattering data; AUC fitting information; MALDI data (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.