ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Multiplexed CRISPR/Cas9 Genome Editing and Gene Regulation Using Csy4 in Saccharomyces cerevisiae

View Author Information
Department of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
§ Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Kgs. Lyngby, Denmark
Cite this: ACS Synth. Biol. 2018, 7, 1, 10–15
Publication Date (Web):November 21, 2017
https://doi.org/10.1021/acssynbio.7b00259
Copyright © 2017 American Chemical Society

    Article Views

    6182

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Clustered regularly interspaced short palindromic repeats (CRISPR) technology has greatly accelerated the field of strain engineering. However, insufficient efforts have been made toward developing robust multiplexing tools in Saccharomyces cerevisiae. Here, we exploit the RNA processing capacity of the bacterial endoribonuclease Csy4 from Pseudomonas aeruginosa, to generate multiple gRNAs from a single transcript for genome editing and gene interference applications in S. cerevisiae. In regards to genome editing, we performed a quadruple deletion of FAA1, FAA4, POX1 and TES1 reaching 96% efficiency out of 24 colonies tested. Then, we used this system to efficiently transcriptionally regulate the three genes, OLE1, HMG1 and ACS1. Thus, we demonstrate that multiplexed genome editing and gene regulation can be performed in a fast and effective manner using Csy4.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acssynbio.7b00259.

    • Figures S1–S5; Tables S1–S6 (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 73 publications.

    1. Yaokun Liang, Song Gao, Xianghui Qi, Leonid N. Valentovich, Yingfeng An. Progress in Gene Editing and Metabolic Regulation of Saccharomyces cerevisiae with CRISPR/Cas9 Tools. ACS Synthetic Biology 2024, 13 (2) , 428-448. https://doi.org/10.1021/acssynbio.3c00685
    2. Michael Gossing, Angelo Limeta, Christos Skrekas, Mark Wigglesworth, Andrew Davis, Verena Siewers, Florian David. Multiplexed Guide RNA Expression Leads to Increased Mutation Frequency in Targeted Window Using a CRISPR-Guided Error-Prone DNA Polymerase in Saccharomyces cerevisiae. ACS Synthetic Biology 2023, 12 (8) , 2271-2277. https://doi.org/10.1021/acssynbio.2c00689
    3. Christos Skrekas, Angelo Limeta, Verena Siewers, Florian David. Targeted In Vivo Mutagenesis in Yeast Using CRISPR/Cas9 and Hyperactive Cytidine and Adenine Deaminases. ACS Synthetic Biology 2023, 12 (8) , 2278-2289. https://doi.org/10.1021/acssynbio.2c00690
    4. Christopher M. Whitford, Tetiana Gren, Emilia Palazzotto, Sang Yup Lee, Yaojun Tong, Tilmann Weber. Systems Analysis of Highly Multiplexed CRISPR-Base Editing in Streptomycetes. ACS Synthetic Biology 2023, 12 (8) , 2353-2366. https://doi.org/10.1021/acssynbio.3c00188
    5. Koray Malcı, Nestor Jonguitud-Borrego, Hugo van der Straten Waillet, Urtė Puodžiu̅naitė, Emily J. Johnston, Susan J. Rosser, Leonardo Rios-Solis. ACtivE: Assembly and CRISPR-Targeted in Vivo Editing for Yeast Genome Engineering Using Minimum Reagents and Time. ACS Synthetic Biology 2022, 11 (11) , 3629-3643. https://doi.org/10.1021/acssynbio.2c00175
    6. Baiyang Liu, Christian Cuba Samaniego, Matthew Bennett, James Chappell, Elisa Franco. RNA Compensation: A Positive Feedback Insulation Strategy for RNA-Based Transcription Networks. ACS Synthetic Biology 2022, 11 (3) , 1240-1250. https://doi.org/10.1021/acssynbio.1c00540
    7. Meliawati Meliawati, Christa Teckentrup, Jochen Schmid. CRISPR-Cas9-mediated Large Cluster Deletion and Multiplex Genome Editing in Paenibacillus polymyxa. ACS Synthetic Biology 2022, 11 (1) , 77-84. https://doi.org/10.1021/acssynbio.1c00565
    8. Maximilian Otto, Christos Skrekas, Michael Gossing, Johan Gustafsson, Verena Siewers, Florian David. Expansion of the Yeast Modular Cloning Toolkit for CRISPR-Based Applications, Genomic Integrations and Combinatorial Libraries. ACS Synthetic Biology 2021, 10 (12) , 3461-3474. https://doi.org/10.1021/acssynbio.1c00408
    9. Guiping Gong, Yueping Zhang, Zibai Wang, Luo Liu, Shuobo Shi, Verena Siewers, Qipeng Yuan, Jens Nielsen, Xu Zhang, Zihe Liu. GTR 2.0: gRNA-tRNA Array and Cas9-NG Based Genome Disruption and Single-Nucleotide Conversion in Saccharomyces cerevisiae. ACS Synthetic Biology 2021, 10 (6) , 1328-1337. https://doi.org/10.1021/acssynbio.0c00560
    10. Yaokang Wu, Yanfeng Liu, Xueqin Lv, Jianghua Li, Guocheng Du, Long Liu. Applications of CRISPR in a Microbial Cell Factory: From Genome Reconstruction to Metabolic Network Reprogramming. ACS Synthetic Biology 2020, 9 (9) , 2228-2238. https://doi.org/10.1021/acssynbio.0c00349
    11. Nicholas S. McCarty, William M. Shaw, Tom Ellis, Rodrigo Ledesma-Amaro. Rapid Assembly of gRNA Arrays via Modular Cloning in Yeast. ACS Synthetic Biology 2019, 8 (4) , 906-910. https://doi.org/10.1021/acssynbio.9b00041
    12. Zihe Liu, Yueping Zhang, Jens Nielsen. Synthetic Biology of Yeast. Biochemistry 2019, 58 (11) , 1511-1520. https://doi.org/10.1021/acs.biochem.8b01236
    13. Jiaxin Zhang, Kehang Li, Yu Sun, Cheng Yao, Weifeng Liu, Hong Liu, Yaohua Zhong. An efficient CRISPR/Cas9 genome editing system based on a multiple sgRNA processing platform in Trichoderma reesei for strain improvement and enzyme production. Biotechnology for Biofuels and Bioproducts 2024, 17 (1) https://doi.org/10.1186/s13068-024-02468-7
    14. Diksha Gour, Asha Arora. Redesigning Saccharomyces cerevisiae Meyen ex E.C. Hansen Using CRISPR to Combat Industrial Needs. 2024, 113-137. https://doi.org/10.1007/978-981-99-8529-6_5
    15. Sandra Gawlitt, Chunyu Liao, Tatjana Achmedov, Chase L. Beisel. Shortened CRISPR-Cas9 arrays enable multiplexed gene targeting in bacteria from a smaller DNA footprint. RNA Biology 2023, 20 (1) , 666-680. https://doi.org/10.1080/15476286.2023.2247247
    16. Qiushuang Ji, Ke Zhang, Na Cao, Xiaoyu You, Shuaihua Cao, Mengya Wang, Jiatian Guo, Hongwei Wang, Kunrong Mei. Highly efficient overexpression and purification of multisubunit tethering complexes in Saccharomyces cerevisiae. Protein Expression and Purification 2023, 212 , 106351. https://doi.org/10.1016/j.pep.2023.106351
    17. Xueqin Lv, Yang Li, Xiang Xiu, Chao Liao, Yameng Xu, Yanfeng Liu, Jianghua Li, Guocheng Du, Long Liu. CRISPR genetic toolkits of classical food microorganisms: Current state and future prospects. Biotechnology Advances 2023, 69 , 108261. https://doi.org/10.1016/j.biotechadv.2023.108261
    18. Jianjie He, Can Zeng, Maoteng Li. Plant Functional Genomics Based on High‐Throughput CRISPR Library Knockout Screening: A Perspective. Advanced Genetics 2023, 16 https://doi.org/10.1002/ggn2.202300203
    19. Yatika Dixit, Preeti Yadav, Arun Kumar Sharma, Poornima Pandey, Arindam Kuila. Multiplex genome editing to construct cellulase engineered Saccharomyces cerevisiae for ethanol production from cellulosic biomass. Renewable and Sustainable Energy Reviews 2023, 187 , 113772. https://doi.org/10.1016/j.rser.2023.113772
    20. Yuanyuan Xia, Yujie Li, Wei Shen, Haiquan Yang, Xianzhong Chen. CRISPR-Cas Technology for Bioengineering Conventional and Non-Conventional Yeasts: Progress and New Challenges. International Journal of Molecular Sciences 2023, 24 (20) , 15310. https://doi.org/10.3390/ijms242015310
    21. Xien Chen, Subba Reddy Palli. Development of multiple transgenic CRISPR/Cas9 methods for genome editing in the fall armyworm, Spodoptera frugiperda. Journal of Pest Science 2023, 96 (4) , 1637-1650. https://doi.org/10.1007/s10340-022-01546-9
    22. Shujing Qiao, Fan Bai, Peng Cai, Yongjin J. Zhou, Lun Yao. An improved CRISPRi system in Pichia pastoris. Synthetic and Systems Biotechnology 2023, 8 (3) , 479-485. https://doi.org/10.1016/j.synbio.2023.06.008
    23. Yu Zhao, Camila Coelho, Stephanie Lauer, Miłosz Majewski, Jon M Laurent, Ran Brosh, Jef D Boeke. CREEPY: CRISPR-mediated editing of synthetic episomes in yeast. Nucleic Acids Research 2023, 51 (13) , e72-e72. https://doi.org/10.1093/nar/gkad491
    24. Xing Wang, Renxia Zhang, Dong Yang, Guoling Li, Zhanqing Fan, Hongting Du, Zikang Wang, Yuanhua Liu, Jiajia Lin, Xiaoqing Wu, Linyu Shi, Hui Yang, Yingsi Zhou. Develop a Compact RNA Base Editor by Fusing ADAR with Engineered EcCas6e. Advanced Science 2023, 10 (17) https://doi.org/10.1002/advs.202206813
    25. Lucy Fang-I Chao, Dany Liu, Verena Siewers. A highly selective cell-based fluorescent biosensor for genistein detection. Engineering Microbiology 2023, 3 (2) , 100078. https://doi.org/10.1016/j.engmic.2023.100078
    26. Chaoqian Jiang, Lishuang Geng, Jinpeng Wang, Yingjuan Liang, Xiaochen Guo, Chang Liu, Yunjing Zhao, Junxue Jin, Zhonghua Liu, Yanshuang Mu. Multiplexed Gene Engineering Based on dCas9 and gRNA-tRNA Array Encoded on Single Transcript. International Journal of Molecular Sciences 2023, 24 (10) , 8535. https://doi.org/10.3390/ijms24108535
    27. Tiew-Yik Ting, YaDong Li, Hamidun Bunawan, Ahmad Bazli Ramzi, Hoe-Han Goh. Current advancements in systems and synthetic biology studies of Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering 2023, 135 (4) , 259-265. https://doi.org/10.1016/j.jbiosc.2023.01.010
    28. Yong Hee Han, Giho Kim, Sang Woo Seo. Programmable synthetic biology tools for developing microbial cell factories. Current Opinion in Biotechnology 2023, 79 , 102874. https://doi.org/10.1016/j.copbio.2022.102874
    29. Gašper Žun, Katja Doberšek, Uroš Petrovič. Construction and evaluation of gRNA arrays for multiplex CRISPR‐Cas9. Yeast 2023, 40 (1) , 32-41. https://doi.org/10.1002/yea.3833
    30. Jagmohan Singh, Dimple Sharma, Gagandeep Singh Brar, Karansher Singh Sandhu, Shabir Hussain Wani, Ruchika Kashyap, Amardeep Kour, Satnam Singh. CRISPR/Cas tool designs for multiplex genome editing and its applications in developing biotic and abiotic stress-resistant crop plants. Molecular Biology Reports 2022, 49 (12) , 11443-11467. https://doi.org/10.1007/s11033-022-07741-2
    31. Daniel C. Volke, Román A. Martino, Ekaterina Kozaeva, Andrea M. Smania, Pablo I. Nikel. Modular (de)construction of complex bacterial phenotypes by CRISPR/nCas9-assisted, multiplex cytidine base-editing. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-30780-z
    32. Yu-Lei Jia, Ling-Ru Wang, Zi-Xu Zhang, Yang Gu, Xiao-Man Sun. Recent advances in biotechnological production of polyunsaturated fatty acids by Yarrowia lipolytica. Critical Reviews in Food Science and Nutrition 2022, 62 (32) , 8920-8934. https://doi.org/10.1080/10408398.2021.1937041
    33. Shiyong Huang, Yanfen Xue, Cheng Zhou, Yanhe Ma. An efficient CRISPR /Cas9‐based genome editing system for alkaliphilic Bacillus sp. N16 ‐5 and application in engineering xylose utilization for D ‐lactic acid production. Microbial Biotechnology 2022, 15 (11) , 2730-2743. https://doi.org/10.1111/1751-7915.14131
    34. Guang Cai, Zhenquan Lin, Shuobo Shi. Development and expansion of the CRISPR/Cas9 toolboxes for powerful genome engineering in yeast. Enzyme and Microbial Technology 2022, 159 , 110056. https://doi.org/10.1016/j.enzmictec.2022.110056
    35. Guoliang Yuan, Stanton Martin, Md Mahmudul Hassan, Gerald A. Tuskan, Xiaohan Yang. PARA: A New Platform for the Rapid Assembly of gRNA Arrays for Multiplexed CRISPR Technologies. Cells 2022, 11 (16) , 2467. https://doi.org/10.3390/cells11162467
    36. László Mózsik, Riccardo Iacovelli, Roel A. L. Bovenberg, Arnold J. M. Driessen. Transcriptional Activation of Biosynthetic Gene Clusters in Filamentous Fungi. Frontiers in Bioengineering and Biotechnology 2022, 10 https://doi.org/10.3389/fbioe.2022.901037
    37. Peizhou Yang, Shuying Jiang, Suwei Jiang, Shuhua Lu, Zhi Zheng, Jianchao Chen, Wenjing Wu, Shaotong Jiang. CRISPR-Cas9 Approach Constructed Engineered Saccharomyces cerevisiae with the Deletion of GPD2, FPS1, and ADH2 to Enhance the Production of Ethanol. Journal of Fungi 2022, 8 (7) , 703. https://doi.org/10.3390/jof8070703
    38. Priya Shah, Nakul D. Magar, Kalyani M. Barbadikar. Current technological interventions and applications of CRISPR/Cas for crop improvement. Molecular Biology Reports 2022, 49 (6) , 5751-5770. https://doi.org/10.1007/s11033-021-06926-5
    39. Chang Dong, Yuanwei Gou, Jiazhang Lian. SgRNA engineering for improved genome editing and expanded functional assays. Current Opinion in Biotechnology 2022, 75 , 102697. https://doi.org/10.1016/j.copbio.2022.102697
    40. Jacob S. Antony, John M. Hinz, John J. Wyrick. Tips, Tricks, and Potential Pitfalls of CRISPR Genome Editing in Saccharomyces cerevisiae. Frontiers in Bioengineering and Biotechnology 2022, 10 https://doi.org/10.3389/fbioe.2022.924914
    41. Huafeng Lin, Haizhen Wang, Aimin Deng, Minjing Rong, Lei Ye, Lei Shi, Tuanmei Wang, Xiangwen Peng. Applications of CRISPR/Cas Technology to Research the Synthetic Genomics of Yeast. 2022https://doi.org/10.5772/intechopen.100561
    42. Maximilian Otto, Dany Liu, Verena Siewers. Saccharomyces cerevisiae as a Heterologous Host for Natural Products. 2022, 333-367. https://doi.org/10.1007/978-1-0716-2273-5_18
    43. Qihua Pan, Junzhi Luo, Yuewen Jiang, Zhi Wang, Ke Lu, Tiansheng Chen. Efficient gene editing in a medaka (Oryzias latipes) cell line and embryos by SpCas9/tRNA-gRNA. Journal of Zhejiang University-SCIENCE B 2022, 23 (1) , 74-83. https://doi.org/10.1631/jzus.B2100343
    44. Hui Peng, Yi Zheng, Zhixun Zhao, Jinyan Li. Multigene editing: current approaches and beyond. Briefings in Bioinformatics 2021, 22 (5) https://doi.org/10.1093/bib/bbaa396
    45. Joseph Christian Utomo, Connor Lorne Hodgins, Dae-Kyun Ro. Multiplex Genome Editing in Yeast by CRISPR/Cas9 – A Potent and Agile Tool to Reconstruct Complex Metabolic Pathways. Frontiers in Plant Science 2021, 12 https://doi.org/10.3389/fpls.2021.719148
    46. Zi-Xu Zhang, Ling-Ru Wang, Ying-Shuang Xu, Wan-Ting Jiang, Tian-Qiong Shi, Xiao-Man Sun, He Huang. Recent advances in the application of multiplex genome editing in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 2021, 105 (10) , 3873-3882. https://doi.org/10.1007/s00253-021-11287-x
    47. Paola Randazzo, Nicole Xanthe Bennis, Jean-Marc Daran, Pascale Daran-Lapujade. gEL DNA: A Cloning- and Polymerase Chain Reaction–Free Method for CRISPR-Based Multiplexed Genome Editing. The CRISPR Journal 2021, https://doi.org/10.1089/crispr.2020.0028
    48. Maryam Saifaldeen, Dana E. Al-Ansari, Dindial Ramotar, Mustapha Aouida. Dead Cas9–sgRNA Complex Shelters Vulnerable DNA Restriction Enzyme Sites from Cleavage for Cloning Applications. The CRISPR Journal 2021, 4 (2) , 275-289. https://doi.org/10.1089/crispr.2020.0134
    49. Sihyun Baek, Joseph Christian Utomo, Ji Young Lee, Kunal Dalal, Yeo Joon Yoon, Dae-Kyun Ro. The yeast platform engineered for synthetic gRNA-landing pads enables multiple gene integrations by a single gRNA/Cas9 system. Metabolic Engineering 2021, 64 , 111-121. https://doi.org/10.1016/j.ymben.2021.01.011
    50. Dongdong Zhao, Xinna Zhu, Hang Zhou, Naxin Sun, Ting Wang, Changhao Bi, Xueli Zhang. CRISPR-based metabolic pathway engineering. Metabolic Engineering 2021, 63 , 148-159. https://doi.org/10.1016/j.ymben.2020.10.004
    51. Nicholas S. McCarty, Alicia E. Graham, Lucie Studená, Rodrigo Ledesma-Amaro. Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-15053-x
    52. C. Moses, S. I. Hodgetts, F. Nugent, G. Ben-Ary, K. K. Park, P. Blancafort, A. R. Harvey. Transcriptional repression of PTEN in neural cells using CRISPR/dCas9 epigenetic editing. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-68257-y
    53. Jie Meng, Yue Qiu, Shuobo Shi. CRISPR/Cas9 Systems for the Development of Saccharomyces cerevisiae Cell Factories. Frontiers in Bioengineering and Biotechnology 2020, 8 https://doi.org/10.3389/fbioe.2020.594347
    54. Youdiil Ophinni, Sayaka Miki, Yoshitake Hayashi, Masanori Kameoka. Multiplexed tat-Targeting CRISPR-Cas9 Protects T Cells from Acute HIV-1 Infection with Inhibition of Viral Escape. Viruses 2020, 12 (11) , 1223. https://doi.org/10.3390/v12111223
    55. Koray Malcı, Laura E. Walls, Leonardo Rios-Solis. Multiplex Genome Engineering Methods for Yeast Cell Factory Development. Frontiers in Bioengineering and Biotechnology 2020, 8 https://doi.org/10.3389/fbioe.2020.589468
    56. Tamer Ali, Phillip Grote. Beyond the RNA-dependent function of LncRNA genes. eLife 2020, 9 https://doi.org/10.7554/eLife.60583
    57. Wentao Ding, Yang Zhang, Shuobo Shi. Development and Application of CRISPR/Cas in Microbial Biotechnology. Frontiers in Bioengineering and Biotechnology 2020, 8 https://doi.org/10.3389/fbioe.2020.00711
    58. Yu Zhao, Jef D Boeke. CRISPR–Cas12a system in fission yeast for multiplex genomic editing and CRISPR interference. Nucleic Acids Research 2020, 48 (10) , 5788-5798. https://doi.org/10.1093/nar/gkaa329
    59. Vicki Hsieh-Feng, Yinong Yang. Efficient expression of multiple guide RNAs for CRISPR/Cas genome editing. aBIOTECH 2020, 1 (2) , 123-134. https://doi.org/10.1007/s42994-019-00014-w
    60. Takayuki Arazoe, Osamu Mizutani. Targeted genome editing using CRISPR/Cas9 system in fungi. 2020, 45-67. https://doi.org/10.1016/B978-0-12-818140-9.00005-2
    61. Celia Payen, Dawn Thompson. The renaissance of yeasts as microbial factories in the modern age of biomanufacturing. Yeast 2019, 36 (12) , 685-700. https://doi.org/10.1002/yea.3439
    62. Yueping Zhang, Juan Wang, Zibai Wang, Yiming Zhang, Shuobo Shi, Jens Nielsen, Zihe Liu. A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-09005-3
    63. Chunyu Liao, Fani Ttofali, Rebecca A. Slotkowski, Steven R. Denny, Taylor D. Cecil, Ryan T. Leenay, Albert J. Keung, Chase L. Beisel. Modular one-pot assembly of CRISPR arrays enables library generation and reveals factors influencing crRNA biogenesis. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-10747-3
    64. Maximilian Otto, Paulo Gonçalves Teixeira, Maria Isabel Vizcaino, Florian David, Verena Siewers. Integration of a multi-step heterologous pathway in Saccharomyces cerevisiae for the production of abscisic acid. Microbial Cell Factories 2019, 18 (1) https://doi.org/10.1186/s12934-019-1257-z
    65. Matthew Deaner, Hal S Alper. Enhanced scale and scope of genome engineering and regulation using CRISPR/Cas in Saccharomyces cerevisiae. FEMS Yeast Research 2019, 19 (7) https://doi.org/10.1093/femsyr/foz076
    66. Sanskriti Vats, Surbhi Kumawat, Virender Kumar, Gunvant B. Patil, Trupti Joshi, Humira Sonah, Tilak Raj Sharma, Rupesh Deshmukh. Genome Editing in Plants: Exploration of Technological Advancements and Challenges. Cells 2019, 8 (11) , 1386. https://doi.org/10.3390/cells8111386
    67. Dominik Mojzita, Anssi Rantasalo, Jussi Jäntti. Gene expression engineering in fungi. Current Opinion in Biotechnology 2019, 59 , 141-149. https://doi.org/10.1016/j.copbio.2019.04.007
    68. Yi Zheng, Tianyuan Su, Qingsheng Qi. Microbial CRISPRi and CRISPRa Systems for Metabolic Engineering. Biotechnology and Bioprocess Engineering 2019, 24 (4) , 579-591. https://doi.org/10.1007/s12257-019-0107-5
    69. Xu Tang, Qiurong Ren, Lijia Yang, Yu Bao, Zhaohui Zhong, Yao He, Shishi Liu, Caiyan Qi, Binglin Liu, Yan Wang, Simon Sretenovic, Yingxiao Zhang, Xuelian Zheng, Tao Zhang, Yiping Qi, Yong Zhang. Single transcript unit CRISPR 2.0 systems for robust Cas9 and Cas12a mediated plant genome editing. Plant Biotechnology Journal 2019, 17 (7) , 1431-1445. https://doi.org/10.1111/pbi.13068
    70. Belén Adiego-Pérez, Paola Randazzo, Jean Marc Daran, René Verwaal, Johannes A Roubos, Pascale Daran-Lapujade, John van der Oost. Multiplex genome editing of microorganisms using CRISPR-Cas. FEMS Microbiology Letters 2019, 366 (8) https://doi.org/10.1093/femsle/fnz086
    71. Melanie Wijsman, Michał A Świat, Wesley L Marques, Johanna K Hettinga, Marcel van den Broek, Pilar de la Torre Cortés, Robert Mans, Jack T Pronk, Jean-Marc Daran, Pascale Daran-Lapujade. A toolkit for rapid CRISPR- Sp Cas9 assisted construction of hexose-transport-deficient Saccharomyces cerevisiae strains. FEMS Yeast Research 2019, 19 (1) https://doi.org/10.1093/femsyr/foy107
    72. M. Larroude, T. Rossignol, J.-M. Nicaud, R. Ledesma-Amaro. Synthetic biology tools for engineering Yarrowia lipolytica. Biotechnology Advances 2018, 36 (8) , 2150-2164. https://doi.org/10.1016/j.biotechadv.2018.10.004
    73. Michael K Jensen. Design principles for nuclease-deficient CRISPR-based transcriptional regulators. FEMS Yeast Research 2018, 18 (4) https://doi.org/10.1093/femsyr/foy039

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect