ACS Publications. Most Trusted. Most Cited. Most Read
An Engineered Device for Indoleacetic Acid Production under Quorum Sensing Signals Enables Cupriavidus pinatubonensis JMP134 To Stimulate Plant Growth
My Activity

Figure 1Loading Img
    Research Article

    An Engineered Device for Indoleacetic Acid Production under Quorum Sensing Signals Enables Cupriavidus pinatubonensis JMP134 To Stimulate Plant Growth
    Click to copy article linkArticle link copied!

    • Ana Zúñiga*
      Ana Zúñiga
      Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez—Center of Applied Ecology and Sustainability, Santiago de Chile, 2640, Chile
      Centre de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
      *E-mail: [email protected]
      More by Ana Zúñiga
    • Francisco de la Fuente
      Francisco de la Fuente
      Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez—Center of Applied Ecology and Sustainability, Santiago de Chile, 2640, Chile
      R2B Catalyst, Research Center, Andrés Bello 2299, Santiago, Chile
    • Fernán Federici
      Fernán Federici
      Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Fondo de Desarrollo de Áreas Prioritarias, Center for Genome Regulation, Millennium Institute for Integrative Systems and Synthetic Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
    • Corinne Lionne
      Corinne Lionne
      Centre de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
    • Jérome Bônnet
      Jérome Bônnet
      Centre de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
    • Victor de Lorenzo
      Victor de Lorenzo
      Centro Nacional de Biotecnología, Madrid, 28049, Spain
    • Bernardo González
      Bernardo González
      Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez—Center of Applied Ecology and Sustainability, Santiago de Chile, 2640, Chile
    Other Access OptionsSupporting Information (1)

    ACS Synthetic Biology

    Cite this: ACS Synth. Biol. 2018, 7, 6, 1519–1527
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acssynbio.8b00002
    Published May 10, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The environmental effects of chemical fertilizers and pesticides have encouraged the quest for new strategies to increase crop productivity with minimal impacts on the natural medium. Plant growth promoting rhizobacteria (PGPR) can contribute to this endeavor by improving fitness through better nutrition acquisition and stress tolerance. Using the neutral (non PGPR) rhizobacterium Cupriavidus pinatubonensis JMP134 as the host, we engineered a regulatory forward loop that triggered the synthesis of the phytohormone indole-3-acetic acid (IAA) in a manner dependent on quorum sensing (QS) signals. Implementation of the device in JMP134 yielded synthesis of IAA in an autoregulated manner, improving the growth of the roots of inoculated Arabidopsis thaliana. These results not only demonstrated the value of the designed genetic module, but also validated C. pinatubonensis JMP134 as a suitable vehicle for agricultural applications, as it is amenable to genetic manipulations.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acssynbio.8b00002.

    • Further details of supplemental figures and tables (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 22 publications.

    1. Adhi Singh, Kailash Chand Kumawat. Unraveling the potential of microbial diversity in pesticide remediation: An eco-friendly approach for environmental sustainability. Journal of Agriculture and Food Research 2025, 21 , 101832. https://doi.org/10.1016/j.jafr.2025.101832
    2. Jyotsana Tilgam, Ritu Vishwakrma, Shaloo Verma, Khushboo Upadhayay, Alok Ranjan. The Biochemistry of Plant-Microbe Interactions in the Rhizosphere. 2025, 149-161. https://doi.org/10.1007/978-981-96-3534-4_7
    3. Sougata Ghosh, Bishwarup Sarkar, Ajay Kumar. Microbiome nanoengineering to increase crop productivity. 2025, 313-335. https://doi.org/10.1016/B978-0-443-21692-3.00006-9
    4. Carin J. Ragland, Kevin Y. Shih, José R. Dinneny. Choreographing root architecture and rhizosphere interactions through synthetic biology. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-45272-5
    5. Tamanna Bhardwaj, Kanika Khanna, Pooja Sharma, Shalini Dhiman, Mohd Ibrahim, Upma Arora, Priyanka Sharma, Indu Sharma, Priya Arora, Ashutosh Sharma, Rupinder Kaur, Bilal Ahmad Mir, Puja Ohri, Renu Bhardwaj. Plant Growth-Promoting Rhizobacteria (PGPR): A Credible Tool for Sustainable Agriculture. 2024, 211-250. https://doi.org/10.2174/9789815179699124010011
    6. Shweta Sharma, Amit Kumar Kesharwani, Aditya Kulshreshtha. Bioengineered Microbes for Restoration of Soil Health. 2024, 33-47. https://doi.org/10.1007/978-981-99-9482-3_3
    7. Sekar Hamsa, Ruby Tiwari, Chanderkant Chaudhary. Utility of Biofertilizers for Soil Sustainability. 2023, 293-330. https://doi.org/10.2174/9789815124033123010019
    8. Smaranika Panda, Kang Zhou. Engineering microbes to overproduce natural products as agrochemicals. Synthetic and Systems Biotechnology 2023, 8 (1) , 79-85. https://doi.org/10.1016/j.synbio.2022.11.005
    9. E. Sebastian Gomez-Hinostroza, Nicolás Gurdo, María Victoria Gracia Alvan Vargas, Pablo I. Nikel, María-Eugenia Guazzaroni, Linda P. Guaman, David J. Castillo Cornejo, Raúl Platero, Carlos Barba-Ostria. Current landscape and future directions of synthetic biology in South America. Frontiers in Bioengineering and Biotechnology 2023, 11 https://doi.org/10.3389/fbioe.2023.1069628
    10. Timothy L. Haskett, Barney A. Geddes, Ponraj Paramasivan, Patrick Green, Samir Chitnavis, Marta D. Mendes, Beatriz Jorrín, Hayley E. Knights, Tahlia R. Bastholm, Joshua P. Ramsay, Giles E. D. Oldroyd, Philip S. Poole. Rhizopine biosensors for plant‐dependent control of bacterial gene expression. Environmental Microbiology 2023, 25 (2) , 383-396. https://doi.org/10.1111/1462-2920.16288
    11. Sang-Woo Han, Yasuo Yoshikuni. Microbiome engineering for sustainable agriculture: using synthetic biology to enhance nitrogen metabolism in plant-associated microbes. Current Opinion in Microbiology 2022, 68 , 102172. https://doi.org/10.1016/j.mib.2022.102172
    12. Christopher M. Dundas, José R. Dinneny. Genetic Circuit Design in Rhizobacteria. BioDesign Research 2022, 2022 , 9858049. https://doi.org/10.34133/2022/9858049
    13. Rajinder Kaur, Sukhminderjit Kaur, Gurleen Kaur. Molecular and physiological manipulations in rhizospheric bacteria. Acta Physiologiae Plantarum 2021, 43 (5) https://doi.org/10.1007/s11738-021-03251-z
    14. Timothy L Haskett, Andrzej Tkacz, Philip S Poole. Engineering rhizobacteria for sustainable agriculture. The ISME Journal 2021, 15 (4) , 949-964. https://doi.org/10.1038/s41396-020-00835-4
    15. Vipin Chandra Kalia, Chunjie Gong, Sanjay K. S. Patel, Jung-Kul Lee. Regulation of Plant Mineral Nutrition by Signal Molecules. Microorganisms 2021, 9 (4) , 774. https://doi.org/10.3390/microorganisms9040774
    16. Jing Ke, Bing Wang, Yasuo Yoshikuni. Microbiome Engineering: Synthetic Biology of Plant-Associated Microbiomes in Sustainable Agriculture. Trends in Biotechnology 2021, 39 (3) , 244-261. https://doi.org/10.1016/j.tibtech.2020.07.008
    17. Ilenne Del Valle, Emily M. Fulk, Prashant Kalvapalle, Jonathan J. Silberg, Caroline A. Masiello, Lauren B. Stadler. Translating New Synthetic Biology Advances for Biosensing Into the Earth and Environmental Sciences. Frontiers in Microbiology 2021, 11 https://doi.org/10.3389/fmicb.2020.618373
    18. Debanjan Sanyal, G. Venkata Subhash, Vinay Dwivedi, Santanu Dasgupta. Impact of Climate Change on Localized Plant–Microbe Signalling and Technology Advancement in Microbial Quorum Sensing. 2021, 695-715. https://doi.org/10.1007/978-3-030-76863-8_35
    19. Wen-Dong Xian, Nimaichand Salam, Meng-Meng Li, En-Min Zhou, Yi-Rui Yin, Ze-Tao Liu, Yu-Zhen Ming, Xiao-Tong Zhang, Geng Wu, Lan Liu, Min Xiao, Hong-Chen Jiang, Wen-Jun Li. Network-directed efficient isolation of previously uncultivated Chloroflexi and related bacteria in hot spring microbial mats. npj Biofilms and Microbiomes 2020, 6 (1) https://doi.org/10.1038/s41522-020-0131-4
    20. Kristina Stephens, William E. Bentley. Synthetic Biology for Manipulating Quorum Sensing in Microbial Consortia. Trends in Microbiology 2020, 28 (8) , 633-643. https://doi.org/10.1016/j.tim.2020.03.009
    21. Agnieszka Kuźniar, Kinga Włodarczyk, Agnieszka Wolińska. Agricultural and Other Biotechnological Applications Resulting from Trophic Plant-Endophyte Interactions. Agronomy 2019, 9 (12) , 779. https://doi.org/10.3390/agronomy9120779
    22. Dattatray K. Bedade, Manoj J. Dev, Rekha S. Singhal. Bioreactor studies on acrylamidase produced from Cupriavidus oxalaticus ICTDB921: Production, kinetic modeling, and purification. Biochemical Engineering Journal 2019, 149 , 107245. https://doi.org/10.1016/j.bej.2019.107245

    ACS Synthetic Biology

    Cite this: ACS Synth. Biol. 2018, 7, 6, 1519–1527
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acssynbio.8b00002
    Published May 10, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    1486

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.