ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Optical Nanosensor Platform Operating in Near-Physiological pH Range via Polymer-Brush-Mediated Plasmon Coupling

View Author Information
Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
Cite this: ACS Appl. Mater. Interfaces 2011, 3, 2, 143–146
Publication Date (Web):January 28, 2011
https://doi.org/10.1021/am101250x
Copyright © 2011 American Chemical Society

    Article Views

    1418

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    The nanosensors’ platform made of a stimuli-responsive polymer/noble metal nanoparticle composite thin film exploits the combination of the swelling−shrinking transition in a poly(N,N′-dimethylaminoethyl methacrylate) brush and the localized surface plasmon resonance in metal nanoparticles to enable the transduction of changes in the solution pH in the near-physiological range into a pronounced optical signal.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 50 publications.

    1. Christian W. Pester, Harm-Anton Klok, Edmondo M. Benetti. Opportunities, Challenges, and Pitfalls in Making, Characterizing, and Understanding Polymer Brushes. Macromolecules 2023, 56 (24) , 9915-9938. https://doi.org/10.1021/acs.macromol.3c01292
    2. Hadi Rahmaninejad, Andrew J. Parnell, Wei-Liang Chen, Nilay Duzen, Thomas Sexton, Gary Dunderdale, John F. Ankner, Wim Bras, Christopher K. Ober, Anthony J. Ryan, Rana Ashkar. Synthesis and Characterization of Stimuli-Responsive Polymer Brushes in Nanofluidic Channels. ACS Applied Materials & Interfaces 2023, 15 (47) , 54942-54951. https://doi.org/10.1021/acsami.3c12744
    3. Simone Hageneder, Vanessa Jungbluth, Regina Soldo, Christian Petri, Matthias Pertiller, Marjut Kreivi, Andreas Weinhäusel, Ulrich Jonas, Jakub Dostalek. Responsive Hydrogel Binding Matrix for Dual Signal Amplification in Fluorescence Affinity Biosensors and Peptide Microarrays. ACS Applied Materials & Interfaces 2021, 13 (23) , 27645-27655. https://doi.org/10.1021/acsami.1c05950
    4. Lucca Trachsel, Matteo Romio, Benjamin Grob, Marcy Zenobi-Wong, Nicholas D. Spencer, Shivaprakash N. Ramakrishna, Edmondo M. Benetti. Functional Nanoassemblies of Cyclic Polymers Show Amplified Responsiveness and Enhanced Protein-Binding Ability. ACS Nano 2020, 14 (8) , 10054-10067. https://doi.org/10.1021/acsnano.0c03239
    5. Nina Jiang, Xiaolu Zhuo, Jianfang Wang. Active Plasmonics: Principles, Structures, and Applications. Chemical Reviews 2018, 118 (6) , 3054-3099. https://doi.org/10.1021/acs.chemrev.7b00252
    6. Stephanie Christau, Tim Moeller, Jan Genzer, Ralf Koehler, and Regine von Klitzing . Salt-Induced Aggregation of Negatively Charged Gold Nanoparticles Confined in a Polymer Brush Matrix. Macromolecules 2017, 50 (18) , 7333-7343. https://doi.org/10.1021/acs.macromol.7b00866
    7. Ryan T. Hill, Klaudia M. Kozek, Angus Hucknall, David R. Smith, and Ashutosh Chilkoti . Nanoparticle–Film Plasmon Ruler Interrogated with Transmission Visible Spectroscopy. ACS Photonics 2014, 1 (10) , 974-984. https://doi.org/10.1021/ph500190q
    8. Zhuang Xie, Chaojian Chen, Xuechang Zhou, Tingting Gao, Danqing Liu, Qian Miao, and Zijian Zheng . Massively Parallel Patterning of Complex 2D and 3D Functional Polymer Brushes by Polymer Pen Lithography. ACS Applied Materials & Interfaces 2014, 6 (15) , 11955-11964. https://doi.org/10.1021/am405555e
    9. C. R. Daniels, L. J. Tauzin, E. Foster, R. C. Advincula, and C. F. Landes . On the pH-Responsive, Charge-Selective, Polymer-Brush-Mediated Transport Probed by Traditional and Scanning Fluorescence Correlation Spectroscopy. The Journal of Physical Chemistry B 2013, 117 (16) , 4284-4290. https://doi.org/10.1021/jp3053828
    10. Mukesh Agrawal, Juan Carlos Rueda, Petra Uhlmann, Martin Müller, Frank Simon, and Manfred Stamm . Facile Approach to Grafting of Poly(2-oxazoline) Brushes on Macroscopic Surfaces and Applications Thereof. ACS Applied Materials & Interfaces 2012, 4 (3) , 1357-1364. https://doi.org/10.1021/am2016188
    11. Ahmed Aied, Yu Zheng, Abhay Pandit, and Wenxin Wang . DNA Immobilization and Detection on Cellulose Paper using a Surface Grown Cationic Polymer via ATRP. ACS Applied Materials & Interfaces 2012, 4 (2) , 826-831. https://doi.org/10.1021/am201483h
    12. Hajun Yoo, Hyunwoong Lee, Seongmin Im, Sukhyeon Ka, Gwiyeong Moon, Kyungnam Kang, Donghyun Kim. Switching on Versatility: Recent Advances in Switchable Plasmonic Nanostructures. Small Science 2023, 3 (10) https://doi.org/10.1002/smsc.202300048
    13. Rui Wang, Qiangbing Wei, Wenbo Sheng, Bo Yu, Feng Zhou, Bin Li. Driving Polymer Brushes from Synthesis to Functioning. Angewandte Chemie International Edition 2023, 62 (27) https://doi.org/10.1002/anie.202219312
    14. Rui Wang, Qiangbing Wei, Wenbo Sheng, Bo Yu, Feng Zhou, Bin Li. Driving Polymer Brushes from Synthesis to Functioning. Angewandte Chemie 2023, 135 (27) https://doi.org/10.1002/ange.202219312
    15. Raja Muhammad Asif Khan, Nasir M. Ahmad, Habib Nasir, Azhar Mahmood, Mudassir Iqbal, Hussnain A. Janjua. Antifouling and Water Flux Enhancement in Polyethersulfone Ultrafiltration Membranes by Incorporating Water-Soluble Cationic Polymer of Poly [2-(Dimethyl amino) ethyl Methacrylate]. Polymers 2023, 15 (13) , 2868. https://doi.org/10.3390/polym15132868
    16. Soumyadip Dutta, Nehil Shreyash, Bhabani Kumar Satapathy, Sampa Saha. Advances in design of polymer brush functionalized inorganic nanomaterials and their applications in biomedical arena. WIREs Nanomedicine and Nanobiotechnology 2023, 15 (3) https://doi.org/10.1002/wnan.1861
    17. Annalisa Scroccarello, Flavio Della Pelle, Michele Del Carlo, Dario Compagnone. Optical plasmonic sensing based on nanomaterials integrated in solid supports. A critical review. Analytica Chimica Acta 2023, 1237 , 340594. https://doi.org/10.1016/j.aca.2022.340594
    18. Varnakumar Gayathri, Sellamuthu Nagappan Jaisankar, Debasis Samanta. Temperature and pH responsive polymers: sensing applications. Journal of Macromolecular Science, Part A 2022, 59 (2) , 98-126. https://doi.org/10.1080/10601325.2021.1988636
    19. Quinn A. Besford, Huaisong Yong, Holger Merlitz, Andrew J. Christofferson, Jens‐Uwe Sommer, Petra Uhlmann, Andreas Fery. FRET‐Integrated Polymer Brushes for Spatially Resolved Sensing of Changes in Polymer Conformation. Angewandte Chemie 2021, 133 (30) , 16736-16742. https://doi.org/10.1002/ange.202104204
    20. Quinn A. Besford, Huaisong Yong, Holger Merlitz, Andrew J. Christofferson, Jens‐Uwe Sommer, Petra Uhlmann, Andreas Fery. FRET‐Integrated Polymer Brushes for Spatially Resolved Sensing of Changes in Polymer Conformation. Angewandte Chemie International Edition 2021, 60 (30) , 16600-16606. https://doi.org/10.1002/anie.202104204
    21. Danyang Li, Lizhou Xu, Jing Wang, Julien E. Gautrot. Responsive Polymer Brush Design and Emerging Applications for Nanotheranostics. Advanced Healthcare Materials 2021, 10 (5) https://doi.org/10.1002/adhm.202000953
    22. Satoshi Nakamura, Hideyuki Mitomo, Kuniharu Ijiro. Assembly and Active Control of Nanoparticles using Polymer Brushes as a Scaffold. Chemistry Letters 2021, 50 (2) , 361-370. https://doi.org/10.1246/cl.200767
    23. Ekaterina V. Lengert, Semyon I. Koltsov, Jie Li, Alexey V. Ermakov, Bogdan V. Parakhonskiy, Ekaterina V. Skorb, Andre G. Skirtach. Nanoparticles in Polyelectrolyte Multilayer Layer-by-Layer (LbL) Films and Capsules—Key Enabling Components of Hybrid Coatings. Coatings 2020, 10 (11) , 1131. https://doi.org/10.3390/coatings10111131
    24. Stephanie Klinghammer, Sebastian Rauch, Sebastian Pregl, Petra Uhlmann, Larysa Baraban, Gianaurelio Cuniberti. Surface Modification of Silicon Nanowire Based Field Effect Transistors with Stimuli Responsive Polymer Brushes for Biosensing Applications. Micromachines 2020, 11 (3) , 274. https://doi.org/10.3390/mi11030274
    25. Piotr Mocny, Harm-Anton Klok. Complex polymer topologies and polymer—nanoparticle hybrid films prepared via surface-initiated controlled radical polymerization. Progress in Polymer Science 2020, 100 , 101185. https://doi.org/10.1016/j.progpolymsci.2019.101185
    26. Chih-Yu Jao, Panupon Samaimongkol, Hans D. Robinson. Tunable gap plasmons in gold nanospheres adsorbed into a pH-responsive polymer film. Journal of Colloid and Interface Science 2019, 553 , 197-209. https://doi.org/10.1016/j.jcis.2019.06.018
    27. Mohammad Divandari, Giulia Morgese, Shivaprakash N. Ramakrishna, Edmondo M. Benetti. Surface-grafted assemblies of cyclic polymers: Shifting between high friction and extreme lubricity. European Polymer Journal 2019, 110 , 301-306. https://doi.org/10.1016/j.eurpolymj.2018.11.039
    28. D. Boyaciyan, P. Krause, R. von Klitzing. Making strong polyelectrolyte brushes pH-sensitive by incorporation of gold nanoparticles. Soft Matter 2018, 14 (20) , 4029-4039. https://doi.org/10.1039/C8SM00411K
    29. Edmondo M. Benetti, Mohammad Divandari, Shivaprakash N. Ramakrishna, Giulia Morgese, Wenqing Yan, Lucca Trachsel. Loops and Cycles at Surfaces: The Unique Properties of Topological Polymer Brushes. Chemistry – A European Journal 2017, 23 (51) , 12433-12442. https://doi.org/10.1002/chem.201701940
    30. Venkatanarasimhan Swarnalatha, Mukundamurthy Kannan, Raghavachari Dhamodharan. Atom Transfer Radical Polymerization: A Key Tool Towards the Design and Synthesis of Functional Polymers. 2017, 57-126. https://doi.org/10.1201/9781315366524-4
    31. Joshua D. Willott, Timothy J. Murdoch, Grant B. Webber, Erica J. Wanless. Physicochemical behaviour of cationic polyelectrolyte brushes. Progress in Polymer Science 2017, 64 , 52-75. https://doi.org/10.1016/j.progpolymsci.2016.09.010
    32. Hatice Yilmaz, Sami Pekdemir, Hasan H. Ipekci, N. Burak Kiremitler, Mehmet Hancer, M. Serdar Onses. Ambient, rapid and facile deposition of polymer brushes for immobilization of plasmonic nanoparticles. Applied Surface Science 2016, 385 , 299-307. https://doi.org/10.1016/j.apsusc.2016.05.132
    33. Stephanie Christau, Tim Möller, Felix Brose, Jan Genzer, Olaf Soltwedel, Regine von Klitzing. Effect of gold nanoparticle hydrophobicity on thermally induced color change of PNIPAM brush/gold nanoparticle hybrids. Polymer 2016, 98 , 454-463. https://doi.org/10.1016/j.polymer.2016.03.088
    34. Abdul Rahim Ferhan, Dong-Hwan Kim. Nanoparticle polymer composites on solid substrates for plasmonic sensing applications. Nano Today 2016, 11 (4) , 415-434. https://doi.org/10.1016/j.nantod.2016.07.001
    35. Ryan T. Hill. Plasmonic biosensors. WIREs Nanomedicine and Nanobiotechnology 2015, 7 (2) , 152-168. https://doi.org/10.1002/wnan.1314
    36. Elin M. Larsson‐Langhammer, Svetlana Syrenova, Christoph Langhammer. Nanoplasmonic Sensing for Nanomaterials Science. 2015, 369-402. https://doi.org/10.1002/9781119011781.ch9
    37. Congjun Wang, Paul R. Ohodnicki, Xin Su, Murphy Keller, Thomas D. Brown, John P. Baltrus. Novel silica surface charge density mediated control of the optical properties of embedded optically active materials and its application for fiber optic pH sensing at elevated temperatures. Nanoscale 2015, 7 (6) , 2527-2535. https://doi.org/10.1039/C4NR06232A
    38. Zhuan Yi, Li-Ping Zhu, Yi-Fan Zhao, Zheng-Bao Wang, Bao-Ku Zhu, You-Yi Xu. Effects of coagulant pH and ion strength on the dehydration and self-assembly of poly(N, N-dimethylamino-2-ethyl methacrylate) chains in the preparation of stimuli-responsive polyethersulfone blend membranes. Journal of Membrane Science 2014, 463 , 49-57. https://doi.org/10.1016/j.memsci.2014.03.041
    39. Bruno P. Crulhas, Juliane R. Sempionatto, Murilo F. Cabral, Sergiy Minko, Valber A. Pedrosa. Stimuli‐Responsive Biointerface Based on Polymer Brushes for Glucose Detection. Electroanalysis 2014, 26 (4) , 815-822. https://doi.org/10.1002/elan.201400030
    40. Gang-Yan Zhou, Ai-Wei Lee, Jia-Yaw Chang, Chi-Hsien Huang, Jem-Kun Chen. Fabrication of metamaterial absorber using polymer brush – gold nanoassemblies for visualizing the reversible pH-responsiveness. J. Mater. Chem. C 2014, 2 (39) , 8226-8234. https://doi.org/10.1039/C4TC01380H
    41. Sebastian Rauch, Petra Uhlmann, Klaus-Jochen Eichhorn. In situ spectroscopic ellipsometry of pH-responsive polymer brushes on gold substrates. Analytical and Bioanalytical Chemistry 2013, 405 (28) , 9061-9069. https://doi.org/10.1007/s00216-013-7090-z
    42. Teh‐Hua Tsai, Chung‐Chin Yu, Yu‐Chuan Liu, Kuang‐Hsuan Yang. Effectively catalytic decomposition of acetaldehydes in spirits by using chitosan‐capped gold nanoparticles. Journal of Applied Polymer Science 2013, 130 (1) , 86-91. https://doi.org/10.1002/app.39127
    43. A. Furchner, E. Bittrich, P. Uhlmann, K.-J. Eichhorn, K. Hinrichs. In-situ characterization of the temperature-sensitive swelling behavior of poly(N-isopropylacrylamide) brushes by infrared and visible ellipsometry. Thin Solid Films 2013, 541 , 41-45. https://doi.org/10.1016/j.tsf.2012.10.135
    44. Caroline R. Basso, Bruna L. Santos, Valber A. Pedrosa. Switchable Biosensor Controlled by Biocatalytic Process. Electroanalysis 2013, 25 (8) , 1818-1822. https://doi.org/10.1002/elan.201300194
    45. Tamara R.T.A. Antonio, Murilo F. Cabral, Ivana Cesarino, Sergio A.S. Machado, Valber A. Pedrosa. Toward pH-controllable bioelectrocatalysis for hydrogen peroxide based on polymer brushes. Electrochemistry Communications 2013, 29 , 41-44. https://doi.org/10.1016/j.elecom.2012.12.026
    46. Tamara R.T.A. Antonio, Caroline R. Basso, Murilo F. Cabral, Valber A. Pedrosa. Electrochemical Studies Based on Local Interfacial pH Changes of Gold Nanoparticles Immobilized on Polystyrene Brushes. International Journal of Electrochemical Science 2013, 8 (3) , 4150-4159. https://doi.org/10.1016/S1452-3981(23)14461-0
    47. K. Binder, A. Milchev. Polymer brushes on flat and curved surfaces: How computer simulations can help to test theories and to interpret experiments. Journal of Polymer Science Part B: Polymer Physics 2012, 50 (22) , 1515-1555. https://doi.org/10.1002/polb.23168
    48. Omar Azzaroni. Polymer brushes here, there, and everywhere: Recent advances in their practical applications and emerging opportunities in multiple research fields. Journal of Polymer Science Part A: Polymer Chemistry 2012, 50 (16) , 3225-3258. https://doi.org/10.1002/pola.26119
    49. Hidenori Kuroki, Ihor Tokarev, Sergiy Minko. Responsive Surfaces for Life Science Applications. Annual Review of Materials Research 2012, 42 (1) , 343-372. https://doi.org/10.1146/annurev-matsci-070511-155044
    50. Ihor Tokarev, Sergiy Minko. Tunable plasmonic nanostructures from noble metal nanoparticles and stimuli-responsive polymers. Soft Matter 2012, 8 (22) , 5980. https://doi.org/10.1039/c2sm25069a

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect