ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVResearch ArticleNEXT

Li+- and Eu3+-Doped Poly(ε-caprolactone)/Siloxane Biohybrid Electrolytes for Electrochromic Devices

View Author Information
Department of Chemistry and CQ-VR, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
Department of Physics and CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
Department of Chemistry, University of Minho, Gualtar, 4710-057 Braga, Portugal
# CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa and CEMOP-UNINOVA, 2829-516 Caparica, Portugal
Phone: 00-351-259350253. Fax: 00-351-259350480. E-mail: [email protected]
Cite this: ACS Appl. Mater. Interfaces 2011, 3, 8, 2953–2965
Publication Date (Web):July 20, 2011
https://doi.org/10.1021/am200391b
Copyright © 2011 American Chemical Society

    Article Views

    730

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (5 MB)

    Abstract

    Abstract Image

    The sol–gel process has been successfully combined with the “mixed cation” effect to produce novel luminescent and ion conducting biohybrids composed of a diurethane cross-linked poly(ε-caprolactone) (PCL530)/siloxane hybrid network (PCL stands for the poly(ε-caprolactone) biopolymer and 530 is the average molecular weight in gmol–1) doped with a wide range of concentrations of lithium and europium triflates (LiCF3SO3 and Eu(CF3SO3)3, respectively) (molar ratio of ca. 50:50). The hybrid samples are all semicrystalline: whereas at n = 52.6 and 27.0 (n, composition, corresponds to the number of (C(═O)(CH2)5O) repeat units of PCL(530) per mixture of Li+ and Eu3+ ions) a minor proportion of crystalline PCL(530) chains is present, at n = 6.1, a new crystalline phase emerges. The latter electrolyte is thermally stable up to 220 °C and exhibits the highest conductivity over the entire range of temperatures studied (3.7 × 10–7 and 1.71 × 10–4 S cm–1 at 20 and 102 °C, respectively). According to infrared spectroscopic data, major modifications occur in terms of hydrogen bonding interactions at this composition. The electrochemical stability domain of the biohybrid sample with n = 27 spans more than 7 V versus Li/Li+. This sample is a room temperature white light emitter. Its emission color can be easily tuned across the Commission Internationale d’Éclairage (CIE) chromaticity diagram upon simply changing the excitation wavelength. Preliminary tests performed with a prototype electrochromic device (ECD) comprising the sample with n = 6.1 as electrolyte and WO3 as cathodically coloring layer are extremely encouraging. The device exhibits switching time around 50 s, an optical density change of 0.15, good open circuit memory under atmospheric conditions (ca. 1 month) and high coloration efficiency (577 cm2 C–1 in the second cycle).

    Cited By

    This article is cited by 23 publications.

    1. Gerard Marx , Chaim Gilon . The Molecular Basis of Memory. ACS Chemical Neuroscience 2012, 3 (8) , 633-642. https://doi.org/10.1021/cn300097b
    2. Vahideh Bayzi Isfahani, Maria Manuela Silva. Fundamentals and Advances of Electrochromic Systems: A Review. Advanced Engineering Materials 2021, 23 (12) https://doi.org/10.1002/adem.202100567
    3. M. Fernandes, V. de Zea Bermudez. Sol-gel materials for smart electrochromic devices. 2021, 439-475. https://doi.org/10.1016/B978-0-12-819718-9.00016-9
    4. Vikas Bharti, Pramod Kumar Singh, Jitender Paul Sharma. Development of polymer electrolyte membranes based on biodegradable polymer. Materials Today: Proceedings 2021, 34 , 856-862. https://doi.org/10.1016/j.matpr.2020.06.463
    5. Maria Cristina Gonçalves, Rui F. P. Pereira, Raquel Alves, Sílvia C. Nunes, Mariana Fernandes, Helena M. R. Gonçalves, Sónia Pereira, M. Manuela Silva, Elvira Fortunato, Rosa Rego, Verónica de Zea Bermudez. Electrochromic Device Composed of a Di-Urethanesil Electrolyte Incorporating Lithium Triflate and 1-Butyl-3-Methylimidazolium Chloride. Frontiers in Materials 2020, 7 https://doi.org/10.3389/fmats.2020.00139
    6. R. Leones, P. M. Reis, R. C. Sabadini, J. M. S. S. Esperança, A. Pawlicka, M. M. Silva. Chitosan polymer electrolytes doped with a dysprosium ionic liquid. Journal of Polymer Research 2020, 27 (3) https://doi.org/10.1007/s10965-020-2019-7
    7. Mariana Fernandes, Vânia Freitas, Sónia Pereira, Rita Leones, Maria Silva, Luís Carlos, Elvira Fortunato, Rute A. S. Ferreira, Rosa Rego, Verónica de Zea Bermudez. Luminescent Electrochromic Devices for Smart Windows of Energy-Efficient Buildings. Energies 2018, 11 (12) , 3513. https://doi.org/10.3390/en11123513
    8. Rita Leones, Rodrigo C. Sabadini, Franciani C. Sentanin, José M.S.S. Esperança, Agnieszka Pawlicka, Maria Manuela Silva. Polymer electrolytes for electrochromic devices through solvent casting and sol-gel routes. Solar Energy Materials and Solar Cells 2017, 169 , 98-106. https://doi.org/10.1016/j.solmat.2017.04.047
    9. M. Fernandes, M.A. Cardoso, L.C. Rodrigues, M.M. Silva, R.A.S. Ferreira, L.D. Carlos, S.C. Nunes, V. de Zea Bermudez. d-Poly(e-caprolactone) (530)/siloxane biohybrid films doped with protic ionic liquids. Journal of Electroanalytical Chemistry 2017, 799 , 249-256. https://doi.org/10.1016/j.jelechem.2017.06.009
    10. M. Fernandes, R. Leones, S. Pereira, A.M.S. Costa, J.F. Mano, M.M. Silva, E. Fortunato, V. de Zea Bermudez, R. Rego. Eco-friendly sol-gel derived sodium-based ormolytes for electrochromic devices. Electrochimica Acta 2017, 232 , 484-494. https://doi.org/10.1016/j.electacta.2017.02.098
    11. R.F.P. Pereira, J.P. Donoso, C.J. Magon, I.D.A. Silva, M.A. Cardoso, M.C. Gonçalves, R.C. Sabadini, A. Pawlicka, V. de Zea Bermudez, M.M. Silva. Ion conducting and paramagnetic d-PCL(530)/siloxane-based biohybrids doped with Mn2+ ions. Electrochimica Acta 2016, 211 , 804-813. https://doi.org/10.1016/j.electacta.2016.06.088
    12. L.M.N. Assis, R. Leones, J. Kanicki, A. Pawlicka, M.M. Silva. Prussian blue for electrochromic devices. Journal of Electroanalytical Chemistry 2016, 777 , 33-39. https://doi.org/10.1016/j.jelechem.2016.05.007
    13. Rui F. P. Pereira, Franciani Sentanin, Agnieszka Pawlicka, M. Cristina Gonçalves, Maria M. Silva, Verónica de Zea Bermudez. Smart Windows Prepared from Bombyx mori Silk. ChemElectroChem 2016, 3 (7) , 1084-1097. https://doi.org/10.1002/celc.201600095
    14. R. Alves, A.S.S. de Camargo, A. Pawlicka, M.M. Silva. Luminescent polymer electrolytes based on chitosan and containing europium triflate. Journal of Rare Earths 2016, 34 (7) , 661-666. https://doi.org/10.1016/S1002-0721(16)60076-5
    15. M. Ravi, S.-H. Song, K.-M. Gu, J.-N. Tang, Z.-Y. Zhang. Effect of lithium thiocyanate addition on the structural and electrical properties of biodegradable poly(ε-caprolactone) polymer films. Ionics 2015, 21 (8) , 2171-2183. https://doi.org/10.1007/s11581-015-1384-4
    16. R. Leones, J.P. Donoso, C.J. Magon, I.D.A. Silva, A.S.S. de Camargo, A. Pawlicka, M.M. Silva. Ionic, paramagnetic and photophysical properties of a new biohybrid material incorporating copper perchlorate. Electrochimica Acta 2015, 173 , 76-81. https://doi.org/10.1016/j.electacta.2015.04.158
    17. M. Fernandes, R. Leones, A.M.S. Costa, M.M. Silva, S. Pereira, J.F. Mano, E. Fortunato, R. Rego, V. de Zea Bermudez. Electrochromic devices incorporating biohybrid electrolytes doped with a lithium salt, an ionic liquid or a mixture of both. Electrochimica Acta 2015, 161 , 226-235. https://doi.org/10.1016/j.electacta.2015.02.036
    18. M. Fernandes, V.T. Freitas, S. Pereira, E. Fortunato, R.A.S. Ferreira, L.D. Carlos, R. Rego, V. de Zea Bermudez. Green Li+- and Er3+-doped poly(ε-caprolactone)/siloxane biohybrid electrolytes for smart electrochromic windows. Solar Energy Materials and Solar Cells 2014, 123 , 203-210. https://doi.org/10.1016/j.solmat.2014.01.011
    19. C. B. Ferreira, M. Fernandes, L. C. Rodrigues, M. M. Silva, M. J. Smith, V. de Zea Bermudez. Vibrational analysis of d-PCL(530)/siloxane-based hybrid electrolytes doped with two lithium salts. Ionics 2013, 19 (12) , 1803-1809. https://doi.org/10.1007/s11581-013-0917-y
    20. R. Leones, L.C. Rodrigues, M. Fernandes, R.A.S. Ferreira, I. Cesarino, A. Pawlicka, L.D. Carlos, V. de Zea Bermudez, M.M. Silva. Electro-optical properties of the DNA-Eu3+ bio-membranes. Journal of Electroanalytical Chemistry 2013, 708 , 116-123. https://doi.org/10.1016/j.jelechem.2013.08.031
    21. Rita Leones, F. Sentanin, Luísa C. Rodrigues, Rute A.S. Ferreira, Isabel M. Marrucho, José M.S.S. Esperança, Agnieszka Pawlicka, Luís D. Carlos, M. Manuela Silva. Novel polymer electrolytes based on gelatin and ionic liquids. Optical Materials 2012, 35 (2) , 187-195. https://doi.org/10.1016/j.optmat.2012.07.027
    22. Vijay Kumar Thakur, Guoqiang Ding, Jan Ma, Pooi See Lee, Xuehong Lu. Hybrid Materials and Polymer Electrolytes for Electrochromic Device Applications. Advanced Materials 2012, 24 (30) , 4071-4096. https://doi.org/10.1002/adma.201200213
    23. M. Fernandes, L.C. Rodrigues, R.A.S. Ferreira, A. Gonçalves, E. Fortunato, M.M. Silva, M.J. Smith, L.D. Carlos, V. de Zea Bermudez. K+-doped poly(ε-caprolactone)/siloxane biohybrid electrolytes for electrochromic devices. Solid State Ionics 2011, 204-205 , 129-139. https://doi.org/10.1016/j.ssi.2011.10.012

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect