Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVResearch ArticleNEXT

Simultaneous Analysis of Optical and Mechanical Properties of Cross-Linked Azobenzene-Containing Liquid-Crystalline Polymer Films

View Author Information
Chemical Resources Laboratory, Tokyo Institute of Technology, R1-12, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
Department of Materials Science, Fudan University, 220 Handan Road, Shanghai 200433, China
§ Department of Chemistry, McGill University, Montreal, Quebec, Canada H3A 2K6
Cite this: ACS Appl. Mater. Interfaces 2011, 3, 11, 4190–4196
Publication Date (Web):October 21, 2011
https://doi.org/10.1021/am200621j
Copyright © 2011 American Chemical Society

    Article Views

    2333

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    The photomechanical behavior of cross-linked azobenzene-containing liquid-crystalline polymer films was investigated by means of simultaneous measurement of their optical and mechanical properties. The connection between photoisomerization of the azobenzene moieties, photoinduced change in molecular alignment, photoinduced stress generation, and macroscopic bending was analyzed. Upon UV irradiation, the films exhibited bending due to gradient in cis-azobenzene content, and subsequent unbending when cis-azobenzene content became uniform throughout the film. The maximum photoinduced stress was generated in the same time scale as the time required to reach photostationary state in the cis-azobenzene concentration. The maximum values of photogenerated stress strongly depended on the crosslinker concentration, even if the azobenzene concentration and the cis-azobenzene content in the photostationary state were similar for all the polymer films. The stress is connected to the initial Young’s modulus and also to the photoinduced change in birefringence of the polymer films. In addition, a significant photoinduced decrease in Young’s modulus was for the first time observed in cross-linked azobenzene-containing liquid-crystalline polymers, which is likely to be an important factor in dictating their photomechanical behavior.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 85 publications.

    1. Ziyue Yang, Lidong Zhang. Photoresponsive Non-Cross-Linking Film Actuator that Bends Away from a Light Source. Macromolecules 2023, 56 (18) , 7551-7560. https://doi.org/10.1021/acs.macromol.3c01263
    2. Gregor Skačej, Lara Querciagrossa, Claudio Zannoni. On the Effects of Different trans and cis Populations in Azobenzene Liquid Crystal Elastomers: A Monte Carlo Investigation. ACS Applied Polymer Materials 2023, 5 (8) , 5805-5815. https://doi.org/10.1021/acsapm.3c00361
    3. Xinning Dong, Tianyi Guo, Daichi Kitagawa, Seiya Kobatake, Peter Palffy-Muhoray, Christopher J. Bardeen. Performance of Composite Glass–Diarylethene Crystal Photomechanical Actuator Membranes. ACS Applied Materials & Interfaces 2022, 14 (23) , 27149-27156. https://doi.org/10.1021/acsami.2c04112
    4. Tian-Yi Xu, Fei Tong, Hui Xu, Meng-Qi Wang, He Tian, Da-Hui Qu. Engineering Photomechanical Molecular Crystals to Achieve Extraordinary Expansion Based on Solid-State [2 + 2] Photocycloaddition. Journal of the American Chemical Society 2022, 144 (14) , 6278-6290. https://doi.org/10.1021/jacs.1c12485
    5. Jianchuang Wang, Bowen Yang, Mingming Yu, Haifeng Yu. Light-Powered Self-Sustained Oscillators of Graphene Oxide/Liquid Crystalline Network Composites Showing Amplitude and Frequency Superposition. ACS Applied Materials & Interfaces 2022, 14 (13) , 15632-15640. https://doi.org/10.1021/acsami.2c00680
    6. Artem Boychuk, Valery Shibaev, Martin Cigl, Karel Pomeisl, Vĕra Hamplová, Damian Pociecha, Alexej Bubnov, Alexey Bobrovsky. Photo-orientation Processes in Liquid Crystalline Polymethacrylates with Side Azobenzene Groups Having Lateral Methyl Substituents. Macromolecules 2021, 54 (22) , 10499-10509. https://doi.org/10.1021/acs.macromol.1c01637
    7. Sirun Yang, Jared D. Harris, Aloshious Lambai, Laura L. Jeliazkov, Gaurav Mohanty, Hao Zeng, Arri Priimagi, Ivan Aprahamian. Multistage Reversible Tg Photomodulation and Hardening of Hydrazone-Containing Polymers. Journal of the American Chemical Society 2021, 143 (40) , 16348-16353. https://doi.org/10.1021/jacs.1c07504
    8. Markus Lahikainen, Kim Kuntze, Hao Zeng, Seidi Helantera, Stefan Hecht, Arri Priimagi. Tunable Photomechanics in Diarylethene-Driven Liquid Crystal Network Actuators. ACS Applied Materials & Interfaces 2020, 12 (42) , 47939-47947. https://doi.org/10.1021/acsami.0c12735
    9. Hanne M. van der Kooij, Dirk J. Broer, Danqing Liu, Joris Sprakel. Electroplasticization of Liquid Crystal Polymer Networks. ACS Applied Materials & Interfaces 2020, 12 (17) , 19927-19937. https://doi.org/10.1021/acsami.0c01748
    10. Chuanyong Zong, Umair Azhar, Chunhua Zhou, Juanjuan Wang, Luqing Zhang, Yanping Cao, Shuxiang Zhang, Shichun Jiang, Conghua Lu. Photocontrollable Wrinkle Morphology Evolution on Azo-Based Multilayers for Hierarchical Surface Micropatterns Fabrication. Langmuir 2019, 35 (7) , 2601-2609. https://doi.org/10.1021/acs.langmuir.8b04237
    11. Jung-Hoon Yun, Chenzhe Li, Seongseop Kim, Maenghyo Cho. Comparing Photoactuation of an Azobenzene-Doped Nematic Liquid Crystal Polymer through Its Activation Mechanism: Trans–Cis–Trans Reorientation and Photoisomerization. The Journal of Physical Chemistry C 2018, 122 (11) , 6310-6317. https://doi.org/10.1021/acs.jpcc.7b12184
    12. Hari Krishna Bisoyi and Quan Li . Light-Driven Liquid Crystalline Materials: From Photo-Induced Phase Transitions and Property Modulations to Applications. Chemical Reviews 2016, 116 (24) , 15089-15166. https://doi.org/10.1021/acs.chemrev.6b00415
    13. Chenzhe Li, Jung-Hoon Yun, Hyunsu Kim, and Maenghyo Cho . Light Propagation and Photoactuation in Densely Cross-Linked Azobenzene-Functionalized Liquid-Crystalline Polymers: Contribution of Host and Concerted Isomerism. Macromolecules 2016, 49 (16) , 6012-6020. https://doi.org/10.1021/acs.macromol.6b01002
    14. Thomas Mosciatti, Sara Bonacchi, Marco Gobbi, Laura Ferlauto, Fabiola Liscio, Loris Giorgini, Emanuele Orgiu, and Paolo Samorì . Optical Input/Electrical Output Memory Elements based on a Liquid Crystalline Azobenzene Polymer. ACS Applied Materials & Interfaces 2016, 8 (10) , 6563-6569. https://doi.org/10.1021/acsami.5b12430
    15. Takahiro Takeshima, Wan-yu Liao, Yuki Nagashima, Koichiro Beppu, Mitsuo Hara, Shusaku Nagano, and Takahiro Seki . Photoresponsive Surface Wrinkle Morphologies in Liquid Crystalline Polymer Films. Macromolecules 2015, 48 (18) , 6378-6384. https://doi.org/10.1021/acs.macromol.5b01577
    16. Kristen E. Snell, Renjie Hou, Eléna Ishow, and François Lagugné-Labarthet . Enhanced Rates of Photoinduced Molecular Orientation in a Series of Molecular Glassy Thin Films. Langmuir 2015, 31 (26) , 7296-7305. https://doi.org/10.1021/acs.langmuir.5b01319
    17. Xin Wang, Jaana Vapaavuori, Yue Zhao, and C. Geraldine Bazuin . A Supramolecular Approach to Photoresponsive Thermo/Solvoplastic Block Copolymer Elastomers. Macromolecules 2014, 47 (20) , 7099-7108. https://doi.org/10.1021/ma501278b
    18. Komal Garg, Albert W. King, and Jeffrey J. Rack . One Photon Yields Two Isomerizations: Large Atomic Displacements during Electronic Excited-State Dynamics in Ruthenium Sulfoxide Complexes. Journal of the American Chemical Society 2014, 136 (5) , 1856-1863. https://doi.org/10.1021/ja409262r
    19. Alexey Bobrovsky, Valery Shibaev, Alexej Bubnov, Vĕra Hamplová, Miroslav Kašpar, and Milada Glogarová . Effect of Molecular Structure on Chiro-Optical and Photo-Optical Properties of Smart Liquid Crystalline Polyacrylates. Macromolecules 2013, 46 (11) , 4276-4284. https://doi.org/10.1021/ma401010t
    20. Arri Priimagi, Aki Shimamura, Mizuho Kondo, Tomohiro Hiraoka, Shoichi Kubo, Jun-Ichi Mamiya, Motoi Kinoshita, Tomiki Ikeda, and Atsushi Shishido . Location of the Azobenzene Moieties within the Cross-Linked Liquid-Crystalline Polymers Can Dictate the Direction of Photoinduced Bending. ACS Macro Letters 2012, 1 (1) , 96-99. https://doi.org/10.1021/mz200056w
    21. Hyunsu Kim, Sungwoo Park, Hayoung Chung, Chenzhe Li, Maenghyo Cho. Effect of azobenzene composition ratio on the degree of photosoftening: Experimental and molecular dynamics simulation studies. Mechanics of Advanced Materials and Structures 2024, 31 (4) , 927-934. https://doi.org/10.1080/15376494.2022.2127037
    22. Gabriele Barrera, Daniele Martella, Federica Celegato, Neri Fuochi, Marco Coïsson, Camilla Parmeggiani, Diederik Sybolt Wiersma, Paola Tiberto. Opto-Mechanical Control Over Magnetic Properties Via Liquid Crystalline Networks. 2024https://doi.org/10.2139/ssrn.4812104
    23. Artem Boychuk, Valery Shibaev, Martin Cigl, Vĕra Hamplová, Vladimíra Novotná, Alexey Bobrovsky. Large Thermally Irreversible Photoinduced Shift of Selective Light Reflection in Hydrazone‐Containing Cholesteric Polymer Systems. ChemPhysChem 2023, 24 (11) https://doi.org/10.1002/cphc.202300011
    24. Jasleen Lall, Hans Zappe. Understanding Photomechanical Behavior of Liquid Crystalline‐Based Actuators. Macromolecular Materials and Engineering 2023, 308 (5) https://doi.org/10.1002/mame.202300063
    25. Cheng-Ling Lee, Chao-Tsung Ma, Kuei-Chun Yeh, Yu-Ming Chen. A Dual-Cavity Fiber Fabry–Pérot Interferometer for Simultaneous Measurement of Thermo-Optic and Thermal Expansion Coefficients of a Polymer. Polymers 2022, 14 (22) , 4966. https://doi.org/10.3390/polym14224966
    26. Muhammad Rehan Asghar Bhatti, Arnaud Kernin, Muhammad Tausif, Han Zhang, Dimitrios Papageorgiou, Emiliano Bilotti, Ton Peijs, Cees W. M. Bastiaansen. Light‐Driven Actuation in Synthetic Polymers: A Review from Fundamental Concepts to Applications. Advanced Optical Materials 2022, 10 (10) https://doi.org/10.1002/adom.202102186
    27. Zhe Liu, Hua Wang, Chuanjian Zhou. The Effect of Phenyl Content on the Liquid Crystal-Based Organosilicone Elastomers with Mechanical Adaptability. Polymers 2022, 14 (5) , 903. https://doi.org/10.3390/polym14050903
    28. Jae Gwang Kim, Jisoo Jeon, Rajamanickam Sivakumar, Jonggeon Lee, Yun Ho Kim, Maenghyo Cho, Ji Ho Youk, Jeong Jae Wie. Light‐Fueled Climbing of Monolithic Torsional Soft Robots via Molecular Engineering. Advanced Intelligent Systems 2022, 4 (3) https://doi.org/10.1002/aisy.202100148
    29. Frédéric Héraly, Miao Zhang, Agnes Åhl, Wei Cao, Lennart Bergström, Jiayin Yuan. Nanodancing with Moisture: Humidity‐Sensitive Bilayer Actuator Derived from Cellulose Nanofibrils and Reduced Graphene Oxide. Advanced Intelligent Systems 2022, 4 (1) https://doi.org/10.1002/aisy.202100084
    30. Ghislaine Vantomme, Lars C. M. Elands, Anne Helene Gelebart, E. W. Meijer, Alexander Y. Pogromsky, Henk Nijmeijer, Dirk J. Broer. Coupled liquid crystalline oscillators in Huygens’ synchrony. Nature Materials 2021, 20 (12) , 1702-1706. https://doi.org/10.1038/s41563-021-00931-6
    31. Jisoo Jeon, Jun-Chan Choi, Hyeok Lee, Woongbi Cho, Kwangseok Lee, Jae Gwang Kim, Jae-Won Lee, Kyung-Il Joo, Maenghyo Cho, Hak-Rin Kim, Jeong Jae Wie. Continuous and programmable photomechanical jumping of polymer monoliths. Materials Today 2021, 49 , 97-106. https://doi.org/10.1016/j.mattod.2021.04.014
    32. Yan Chen, Quan Liu, Patrick Theato, Jia Wei, Yanlei Yu. A Convenient Route to Prepare Reactive Azobenzene‐Containing Liquid Crystal Polymers and Photodeformable Fibers. Advanced Intelligent Systems 2021, 3 (10) https://doi.org/10.1002/aisy.202000254
    33. Jing Sun, Fan Wang, Hongjie Zhang, Kai Liu. Azobenzene‐Based Photomechanical Biomaterials. Advanced NanoBiomed Research 2021, 1 (9) https://doi.org/10.1002/anbr.202100020
    34. Takuya Ohzono, Hiroyuki Minamikawa, Emiko Koyama, Yasuo Norikane. Unlocking Entropic Elasticity of Nematic Elastomers Through Light and Dynamic Adhesion. Advanced Materials Interfaces 2021, 8 (14) https://doi.org/10.1002/admi.202100672
    35. Juanjuan Wang, Xue Han, Haipeng Ji, Conghua Lu. Light‐Associated Surface Wrinkling‐Based Metrology for the Photosoftening Characterization in Azobenzene‐Polymer Supramolecular Complexes. Macromolecular Rapid Communications 2021, 42 (7) https://doi.org/10.1002/marc.202000704
    36. Liyuan Tan, Aaron C. Davis, David J. Cappelleri. Smart Polymers for Microscale Machines. Advanced Functional Materials 2021, 31 (9) https://doi.org/10.1002/adfm.202007125
    37. Kevin R. Chalek, Xinning Dong, Fei Tong, Ryan A. Kudla, Lingyan Zhu, Adam D. Gill, Wenwen Xu, Chen Yang, Joshua D. Hartman, Alviclér Magalhães, Rabih O. Al-Kaysi, Ryan C. Hayward, Richard J. Hooley, Gregory J. O. Beran, Christopher J. Bardeen, Leonard J. Mueller. Bridging photochemistry and photomechanics with NMR crystallography: the molecular basis for the macroscopic expansion of an anthracene ester nanorod. Chemical Science 2021, 12 (1) , 453-463. https://doi.org/10.1039/D0SC05118G
    38. Junghwan Moon, Hayoung Chung, Maenghyo Cho. Combined coarse-grained molecular dynamics and finite-element study of light-activated deformation of photoresponsive polymers. Physical Review E 2021, 103 (1) https://doi.org/10.1103/PhysRevE.103.012703
    39. Mark G. Kuzyk, Nathan J. Dawson. Photomechanical materials and applications: a tutorial. Advances in Optics and Photonics 2020, 12 (4) , 847. https://doi.org/10.1364/AOP.387366
    40. Marina Pilz da Cunha, Harkamaljot S. Kandail, Jaap M. J. den Toonder, Albert P. H. J. Schenning. An artificial aquatic polyp that wirelessly attracts, grasps, and releases objects. Proceedings of the National Academy of Sciences 2020, 117 (30) , 17571-17577. https://doi.org/10.1073/pnas.2004748117
    41. Zhao-Tao Shi, Qi Zhang, He Tian, Da-Hui Qu. Driving Smart Molecular Systems by Artificial Molecular Machines. Advanced Intelligent Systems 2020, 2 (5) https://doi.org/10.1002/aisy.201900169
    42. Fei Tong, Wenwen Xu, Tianyi Guo, Brandon F. Lui, Ryan C. Hayward, Peter Palffy-Muhoray, Rabih O. Al-Kaysi, Christopher J. Bardeen. Photomechanical molecular crystals and nanowire assemblies based on the [2+2] photodimerization of a phenylbutadiene derivative. Journal of Materials Chemistry C 2020, 8 (15) , 5036-5044. https://doi.org/10.1039/C9TC06946A
    43. Marina Pilz da Cunha, Sebastiaan Ambergen, Michael G. Debije, Erik F. G. A. Homburg, Jaap M. J. den Toonder, Albert P. H. J. Schenning. A Soft Transporter Robot Fueled by Light. Advanced Science 2020, 7 (5) https://doi.org/10.1002/advs.201902842
    44. Federico Lancia, Alexander Ryabchun, Anne-Déborah Nguindjel, Supaporn Kwangmettatam, Nathalie Katsonis. Mechanical adaptability of artificial muscles from nanoscale molecular action. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-12786-2
    45. Xinlei Pang, Jiu‐an Lv, Chongyu Zhu, Lang Qin, Yanlei Yu. Photodeformable Azobenzene‐Containing Liquid Crystal Polymers and Soft Actuators. Advanced Materials 2019, 31 (52) https://doi.org/10.1002/adma.201904224
    46. Shohei Saito. Flapping Molecules for Photofunctional Materials. 2019, 17-51. https://doi.org/10.1002/9783527823987.vol3_c2
    47. Elvira Pantuso, Giovanni De Filpo, Fiore Pasquale Nicoletta. Light‐Responsive Polymer Membranes. Advanced Optical Materials 2019, 7 (16) https://doi.org/10.1002/adom.201900252
    48. Victoria Y. Chang, Chiara Fedele, Arri Priimagi, Atsushi Shishido, Christopher J. Barrett. Photoreversible Soft Azo Dye Materials: Toward Optical Control of Bio‐Interfaces. Advanced Optical Materials 2019, 7 (16) https://doi.org/10.1002/adom.201900091
    49. Marina Pilz da Cunha, Yari Foelen, Roel J. H. van Raak, Jeffrey N. Murphy, Tom A. P. Engels, Michael G. Debije, Albert P. H. J. Schenning. An Untethered Magnetic‐ and Light‐Responsive Rotary Gripper: Shedding Light on Photoresponsive Liquid Crystal Actuators. Advanced Optical Materials 2019, 7 (7) https://doi.org/10.1002/adom.201801643
    50. Yuanyuan Shang, Jingxia Wang, Tomiki Ikeda, Lei Jiang. Bio-inspired liquid crystal actuator materials. Journal of Materials Chemistry C 2019, 7 (12) , 3413-3428. https://doi.org/10.1039/C9TC00107G
    51. Ling Liu, Patrick R. Onck. Light-driven topographical morphing of azobenzene-doped liquid crystal polymer films via tunable photo-polymerization induced diffusion. Journal of the Mechanics and Physics of Solids 2019, 123 , 247-266. https://doi.org/10.1016/j.jmps.2018.09.021
    52. Hao Zeng, Markus Lahikainen, Owies M. Wani, Alex Berdin, Arri Priimagi. Liquid Crystal Polymer Networks and Elastomers for Light‐Fueled Robotics. 2019, 197-226. https://doi.org/10.1002/9783527816774.ch6
    53. Jun-ichi Mamiya. Photomechanical Energy Conversion with Cross-Linked Liquid-Crystalline Polymers. 2019, 321-333. https://doi.org/10.1007/978-981-13-6850-9_18
    54. Takahiro Yamamoto, Yasuo Norikane, Haruhisa Akiyama. Photochemical liquefaction and softening in molecular materials, polymers, and related compounds. Polymer Journal 2018, 50 (8) , 551-562. https://doi.org/10.1038/s41428-018-0064-4
    55. Yan Jiang, Zulin Da, Fengxian Qiu, Dongya Yang, Yijun Guan, Guorong Cao. Preparation of novel graphene oxide crosslinked azo polyurethane composite and its application in thermo-optic switch. Optik 2018, 159 , 50-56. https://doi.org/10.1016/j.ijleo.2018.01.057
    56. Takahiro Yamamoto, Rikuo Hasegawa, Yuki Kawata, Hideyuki Kihara, Naofumi Naga. Photoplasticization Effect of an Azobenzene-doped Liquid Crystal Depending on Phase Structures. Chemistry Letters 2018, 47 (3) , 272-275. https://doi.org/10.1246/cl.171072
    57. Oleksandr S. Bushuyev, Miho Aizawa, Atsushi Shishido, Christopher J. Barrett. Shape‐Shifting Azo Dye Polymers: Towards Sunlight‐Driven Molecular Devices. Macromolecular Rapid Communications 2018, 39 (1) https://doi.org/10.1002/marc.201700253
    58. Daniele Martella, Sara Nocentini, Dmitry Nuzhdin, Camilla Parmeggiani, Diederik S. Wiersma. Photonic Microhand with Autonomous Action. Advanced Materials 2017, 29 (42) https://doi.org/10.1002/adma.201704047
    59. Chenzhe Li, Junghwan Moon, Jung-Hoon Yun, Hyunsu Kim, Maenghyo Cho. Influence of external loads on structure and photoactuation in densely crosslinked azo-incorporated liquid crystalline polymers. Polymer 2017, 129 , 252-260. https://doi.org/10.1016/j.polymer.2017.09.061
    60. Shun Mitsui, Shusaku Nagano, Mitsuo Hara, Takahiro Seki. SRG Inscription in Supramolecular Liquid Crystalline Polymer Film: Replacement of Mesogens. Crystals 2017, 7 (2) , 52. https://doi.org/10.3390/cryst7020052
    61. I. Roppolo, A. Chiappone, A. Angelini, S. Stassi, F. Frascella, C. F. Pirri, C. Ricciardi, E. Descrovi. 3D printable light-responsive polymers. Materials Horizons 2017, 4 (3) , 396-401. https://doi.org/10.1039/C7MH00072C
    62. Xin Qing, Lang Qin, Wei Gu, Yanlei Yu. Deformation of cross-linked liquid crystal polymers by light – from ultraviolet to visible and infrared. Liquid Crystals 2016, 43 (13-15) , 2114-2135. https://doi.org/10.1080/02678292.2016.1217358
    63. Chuanyong Zong, Yan Zhao, Haipeng Ji, Jixun Xie, Xue Han, Juanjuan Wang, Yanping Cao, Conghua Lu, Hongfei Li, Shichun Jiang. Patterning Surfaces on Azo‐Based Multilayer Films via Surface Wrinkling Combined with Visible Light Irradiation. Macromolecular Rapid Communications 2016, 37 (15) , 1288-1294. https://doi.org/10.1002/marc.201600229
    64. Nataraja Sekhar Yadavalli, Sarah Loebner, Thomas Papke, Elena Sava, Nicolae Hurduc, Svetlana Santer. A comparative study of photoinduced deformation in azobenzene containing polymer films. Soft Matter 2016, 12 (9) , 2593-2603. https://doi.org/10.1039/C6SM00029K
    65. Norihisa Akamatsu, Miho Aizawa, Ryoichi Tatsumi, Kyohei Hisano, Arri Priimagi, Atsushi Shishido. Photoresponsive Liquid-Crystalline Polymer Films Bilayered with an Inverse Opal Structure. Journal of Photopolymer Science and Technology 2016, 29 (1) , 145-148. https://doi.org/10.2494/photopolymer.29.145
    66. Yuki Arakawa, Sungmin Kang, Junji Watanabe, Gen-ichi Konishi. Synthesis of novel fluorinated bis(biphenyl)diacetylene derivatives as highly birefringent nematic liquid crystalline materials. Phase Transitions 2015, 88 (12) , 1181-1192. https://doi.org/10.1080/01411594.2015.1041952
    67. Caihong Chen, Zhening Yang, Zulin Da, Fengxian Qiu, Feiyan Ye, Guorong Cao, Yijun Guan, Dongya Yang. Noval chiral azobenzene-containing polyurethanes: synthesis, optical properties and simulation comparison of two kind of polymeric thermo-optic switches. Journal of Polymer Research 2015, 22 (10) https://doi.org/10.1007/s10965-015-0831-2
    68. Paraskevi Christogianni, Mohammed Moniruzzaman, Guillaume Kister. Light-triggered enhancement of mechanical properties and healing effect in azobenzene-based polymer films. Polymer 2015, 77 , 272-277. https://doi.org/10.1016/j.polymer.2015.09.022
    69. Jung-Hoon Yun, Chenzhe Li, Hayoung Chung, Joonmyung Choi, Maenghyo Cho. Photo deformation in azobenzene liquid-crystal network: Multiscale model prediction and its validation. Polymer 2015, 75 , 51-56. https://doi.org/10.1016/j.polymer.2015.08.013
    70. Caihong Chen, Zhening Yang, Fengxian Qiu, Feiyan Ye, Guorong Cao, Yijun Guan, Dongya Yang. Novel three chiral azobenzene polyurethanes: Preparation, optical properties and simulation comparisons of two different polymeric thermo-optic switches. Journal of Nonlinear Optical Physics & Materials 2015, 24 (03) , 1550028. https://doi.org/10.1142/S0218863515500289
    71. N. I. Boiko, M. A. Bugakov, E. V. Chernikova, A. A. Piryazev, Ya. I. Odarchenko, D. A. Ivanov, V. P. Shibaev. Liquid crystalline side-chain triblock copolymers consisting of a nematic central subblock edged by photochromic azobenzene-containing fragments: their synthesis, structure and photooptical behaviour. Polymer Chemistry 2015, 6 (35) , 6358-6371. https://doi.org/10.1039/C5PY00555H
    72. Norihisa Akamatsu, Wataru Tashiro, Keisuke Saito, Jun-ichi Mamiya, Motoi Kinoshita, Tomiki Ikeda, Jun Takeya, Shigenori Fujikawa, Arri Priimagi, Atsushi Shishido. Facile strain analysis of largely bending films by a surface-labelled grating method. Scientific Reports 2014, 4 (1) https://doi.org/10.1038/srep05377
    73. Arri Priimagi, Andriy Shevchenko. Azopolymer‐based micro‐ and nanopatterning for photonic applications. Journal of Polymer Science Part B: Polymer Physics 2014, 52 (3) , 163-182. https://doi.org/10.1002/polb.23390
    74. Zhen Jiang, Jiu-an Lv, Futao Chen, Jia Wei, Yanlei Yu. Photoinduced Bending Behaviour of Cross-linked Liquid Crystalline Polymers with High Cross-linking Densities. Australian Journal of Chemistry 2014, 67 (4) , 570. https://doi.org/10.1071/CH13526
    75. Jun-ichi Mamiya. Photomechanical Energy Conversion with Cross-Linked Liquid-Crystalline Polymers. 2014, 231-243. https://doi.org/10.1007/978-4-431-54767-9_17
    76. Matthew Worden, Hongbo Wang, Anant Paravastu, William Oates. Characterization of azobenzene polymer networks using in situ solid state NMR and temperature dependent photostriction. Smart Materials and Structures 2013, 22 (9) , 094013. https://doi.org/10.1088/0964-1726/22/9/094013
    77. Paulo J. Coelho, M. Cidália R. Castro, M. Manuela M. Raposo. Reversible trans–cis photoisomerization of new pyrrolidene heterocyclic imines. Journal of Photochemistry and Photobiology A: Chemistry 2013, 259 , 59-65. https://doi.org/10.1016/j.jphotochem.2013.03.004
    78. Ramón Cervera‐Procas, Carlos Sánchez‐Somolinos, José L. Serrano, Ana Omenat. A Polymer Network Prepared by the Thiol‐yne Photocrosslinking of a Liquid Crystalline Dendrimer. Macromolecular Rapid Communications 2013, 34 (6) , 498-503. https://doi.org/10.1002/marc.201200730
    79. Jun-ichi Mamiya. Photomechanical energy conversion based on cross-linked liquid-crystalline polymers. Polymer Journal 2013, 45 (3) , 239-246. https://doi.org/10.1038/pj.2012.140
    80. Hongjun Xu, Yaqiong Zhang, Jingjing Yang, Lei Ye, Qianghua Wu, Baojun Qu, Qiao Wang, Zhigang Wang. Simultaneous enhancements of toughness and tensile strength for thermoplastic/elastomer blends through interfacial photocrosslinking with UV radiation. Polymer Chemistry 2013, 4 (10) , 3028. https://doi.org/10.1039/c3py00185g
    81. Jaana Vapaavuori, Zahid Mahimwalla, Richard R. Chromik, Matti Kaivola, Arri Priimagi, Christopher J. Barrett. Nanoindentation study of light-induced softening of supramolecular and covalently functionalized azo polymers. Journal of Materials Chemistry C 2013, 1 (16) , 2806. https://doi.org/10.1039/c3tc30246f
    82. Arri Priimagi, Keiji Ogawa, Matti Virkki, Jun‐ichi Mamiya, Martti Kauranen, Atsushi Shishido. High‐Contrast Photoswitching of Nonlinear Optical Response in Crosslinked Ferroelectric Liquid‐Crystalline Polymers. Advanced Materials 2012, 24 (48) , 6410-6415. https://doi.org/10.1002/adma.201203369
    83. Zahid Mahimwalla, Kevin G. Yager, Jun-ichi Mamiya, Atsushi Shishido, Arri Priimagi, Christopher J. Barrett. Azobenzene photomechanics: prospects and potential applications. Polymer Bulletin 2012, 69 (8) , 967-1006. https://doi.org/10.1007/s00289-012-0792-0
    84. Jun-ichi MAMIYA. Creation of Polymer Materials for Energy Conversion by Means of Photochromism. KOBUNSHI RONBUNSHU 2012, 69 (8) , 449-459. https://doi.org/10.1295/koron.69.449
    85. AKI SHIMAMURA, ARRI PRIIMAGI, JUN-ICHI MAMIYA, MOTOI KINOSHITA, TOMIKI IKEDA, ATSUSHI SHISHIDO. PHOTOINDUCED BENDING UPON PULSED IRRADIATION IN AZOBENZENE-CONTAINING CROSSLINKED LIQUID-CRYSTALLINE POLYMERS. Journal of Nonlinear Optical Physics & Materials 2011, 20 (04) , 405-413. https://doi.org/10.1142/S0218863511006200