ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Influence of Poly(ethylene glycol) Segment Length on CO2 Permeation and Stability of PolyActive Membranes and Their Nanocomposites with PEG POSS

View Author Information
Helmholtz-Zentrum Geesthacht, Institute of Polymer Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany
Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
Cite this: ACS Appl. Mater. Interfaces 2015, 7, 23, 12289–12298
Publication Date (Web):September 30, 2014
https://doi.org/10.1021/am504223f
Copyright © 2014 American Chemical Society

    Article Views

    1669

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Three grades of PolyActive block copolymers are investigated for CO2 separation from light gases. The polymers are composed of 23 wt % poly(butylene terephthalate) (PBT) and 77 wt % poly(ethylene glycol terephthalate) (PEGT) having the poly(ethylene glycol) segments of 1500, 3000, and 4000 g/mol, respectively. A commercial PEG POSS (poly(ethylene glycol) functionalized polyoctahedral oligomeric silsesquioxanes) is used as a nanofiller for these polymers to prepare nanocomposites via a solvent casting method. Single gas permeabilities of N2, H2, CH4, and CO2 are measured via the time-lag method in the temperature range from 30 to 70 °C. The thermal transitions of the prepared membranes are studied by differential scanning calorimetry (DSC). It is found that the length of PEG segment has a pronounced influence on the thermal transition of the polymers that regulates the gas separation performance of the membranes. The stability of the nanocomposites is also correlated with the thermal transition of the polyether blocks of the polymer matrices.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    DSC curves of the three grades of PolyActive and their nanocomposites with PEG POSS (Figure S1); permeability of N2, CH4, and H2 (Table S1); CO2/N2 selectivity (Figure S2); CO2/CH4 selectivity (Figure S3); CO2/H2 selectivity (Figure S4); comparison of CO2 permeability of the presented membranes with previously published PEBAX MH 1657 membranes (Table S2); Robeson Plot 2008 for CO2/N2 gas pair (Figure S5); Robeson Plot 2008 for CO2/CH4 gas pair (Figure S6). This material is available free of charge via the Internet at http://pubs.acs.org/.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 57 publications.

    1. Iqubal Hossain, Dongyoung Kim, Abu Zafar Al Munsur, Jong Min Roh, Ho Bum Park, Tae-Hyun Kim. PEG/PPG–PDMS-Based Cross-Linked Copolymer Membranes Prepared by ROMP and In Situ Membrane Casting for CO2 Separation: An Approach to Endow Rubbery Materials with Properties of Rigid Polymers. ACS Applied Materials & Interfaces 2020, 12 (24) , 27286-27299. https://doi.org/10.1021/acsami.0c06926
    2. Tao Hong, Peng-Fei Cao, Sheng Zhao, Bingrui Li, Connor Smith, Michelle Lehmann, Andrew J. Erwin, Shannon M. Mahurin, Surendar R. Venna, Alexei P. Sokolov, Tomonori Saito. Tailored CO2-philic Gas Separation Membranes via One-Pot Thiol–ene Chemistry. Macromolecules 2019, 52 (15) , 5819-5828. https://doi.org/10.1021/acs.macromol.9b00497
    3. Rimpa Chatterjee, Soumendu Bisoi, Anaparthi Ganesh Kumar, Venkat Padmanabhan, Susanta Banerjee. Polyimides Containing Phosphaphenanthrene Skeleton: Gas-Transport Properties and Molecular Dynamics Simulations. ACS Omega 2018, 3 (10) , 13510-13523. https://doi.org/10.1021/acsomega.8b01364
    4. Md. Mushfequr Rahman, Clarissa Abetz, Sergey Shishatskiy, Jaime Martin, Alejandro J. Müller, Volker Abetz. CO2 Selective PolyActive Membrane: Thermal Transitions and Gas Permeance as a Function of Thickness. ACS Applied Materials & Interfaces 2018, 10 (31) , 26733-26744. https://doi.org/10.1021/acsami.8b09259
    5. Ali Pournaghshband Isfahani, Morteza Sadeghi, Kazuki Wakimoto, Binod Babu Shrestha, Rouhollah Bagheri, Easan Sivaniah, Behnam Ghalei. Pentiptycene-Based Polyurethane with Enhanced Mechanical Properties and CO2-Plasticization Resistance for Thin Film Gas Separation Membranes. ACS Applied Materials & Interfaces 2018, 10 (20) , 17366-17374. https://doi.org/10.1021/acsami.7b18475
    6. Haiyang Zhang, Ruili Guo, Jinpeng Hou, Zhong Wei, and Xueqin Li . Mixed-Matrix Membranes Containing Carbon Nanotubes Composite with Hydrogel for Efficient CO2 Separation. ACS Applied Materials & Interfaces 2016, 8 (42) , 29044-29051. https://doi.org/10.1021/acsami.6b09786
    7. Liangliang Dong, Chunfang Zhang, Yunxiang Bai, Dongjian Shi, Xiaojie Li, Hongji Zhang, and Mingqing Chen . High-Performance PEBA2533-Functional MMT Mixed Matrix Membrane Containing High-Speed Facilitated Transport Channels for CO2/N2 Separation. ACS Sustainable Chemistry & Engineering 2016, 4 (6) , 3486-3496. https://doi.org/10.1021/acssuschemeng.6b00536
    8. Liangliang Dong, Bingbing Gao, Hua Ma, Yang Liu, Yuming Dong, Yongfa Zhu, Yunxiang Bai, Chunfang Zhang, Haiqi Gao, Hongyan He, Hong Meng. Rational design of the PEBA2533 mixed matrix membrane containing metallo-supramolecular polymers for efficient CO2/H2 separation. Chemical Engineering Science 2024, 285 , 119562. https://doi.org/10.1016/j.ces.2023.119562
    9. Laura Matesanz-Niño, Jorge Moranchel-Pérez, Cristina Álvarez, Ángel E. Lozano, Clara Casado-Coterillo. Mixed Matrix Membranes Using Porous Organic Polymers (POPs)—Influence of Textural Properties on CO2/CH4 Separation. Polymers 2023, 15 (20) , 4135. https://doi.org/10.3390/polym15204135
    10. Md. Mushfequr Rahman. Material Design Concepts and Gas Separation Mechanism of CO 2 Selective Polyether‐Based Multiblock Copolymers. Macromolecular Rapid Communications 2023, 44 (14) https://doi.org/10.1002/marc.202300114
    11. Artur Bukowczan, Konstantinos N. Raftopoulos, Jacek Nizioł, Krzysztof Pielichowski. Molecular mobility of liquid crystalline polyurethanes modified by polyhedral oligomeric silsesquioxanes. Polymer 2023, 277 , 125981. https://doi.org/10.1016/j.polymer.2023.125981
    12. Arijit Ghorai, Susanta Banerjee. Phosphorus-containing aromatic polymers: Synthesis, structure, properties and membrane-based applications. Progress in Polymer Science 2023, 138 , 101646. https://doi.org/10.1016/j.progpolymsci.2023.101646
    13. Md. Mushfequr Rahman. Multiblock copolymers containing polyether segments for separation of C4 hydrocarbons. Journal of Membrane Science 2023, 666 , 121176. https://doi.org/10.1016/j.memsci.2022.121176
    14. Dionysios Vroulias, Eirini Staurianou, Theophilos Ioannides, Valadoula Deimede. Poly(ethylene oxide)-Based Copolymer-IL Composite Membranes for CO2 Separation. Membranes 2023, 13 (1) , 26. https://doi.org/10.3390/membranes13010026
    15. Xavier Solimando, Jérôme Babin, Carole Arnal-Herault, Denis Roizard, Danielle Barth, Marc Poncot, Isabelle Royaud, Pierre Alcouffe, Laurent David, Anne Jonquieres. Controlled grafting of multi-block copolymers for improving membrane properties for CO2 separation. Polymer 2022, 255 , 125164. https://doi.org/10.1016/j.polymer.2022.125164
    16. Nishel Saini, Kamakshi Pandey, Kamlendra Awasthi. Conjugate polymer-based membranes for gas separation applications: current status and future prospects. Materials Today Chemistry 2021, 22 , 100558. https://doi.org/10.1016/j.mtchem.2021.100558
    17. Md. Mushfequr Rahman. Membrane Separation of Gaseous Hydrocarbons by Semicrystalline Multiblock Copolymers: Role of Cohesive Energy Density and Crystallites of the Polyether Block. Polymers 2021, 13 (23) , 4181. https://doi.org/10.3390/polym13234181
    18. A. Ioannidi, D. Vroulias, J. Kallitsis, T. Ioannides, V. Deimede. Synthesis and characterization of poly(ethylene oxide) based copolymer membranes for efficient gas/vapor separation: Effect of PEO content and chain length. Journal of Membrane Science 2021, 632 , 119353. https://doi.org/10.1016/j.memsci.2021.119353
    19. Md. Mushfequr Rahman, Volker Abetz. Tailoring Crosslinked Polyether Networks for Separation of CO 2 from Light Gases. Macromolecular Rapid Communications 2021, 42 (13) https://doi.org/10.1002/marc.202100160
    20. Parisa Taheri, Ahmadreza Raisi, Mohammad Salehi Maleh. CO2-selective poly (ether-block-amide)/polyethylene glycol composite blend membrane for CO2 separation from gas mixtures. Environmental Science and Pollution Research 2021, 28 (28) , 38274-38291. https://doi.org/10.1007/s11356-021-13447-y
    21. Valiya Parambath Swapna, Abitha Vayyaprontavida Kaliyathan, Vakkoottil Sivadasan Abhisha, Hanna Joseph Maria, Padinharu Madathil Gopalakrishnan Nambissan, Sabu Thomas, Ranimol Stephen. Changes in free volume and gas permeation properties of poly(vinyl alcohol) nanocomposite membranes modified using cage‐structured polyhedral oligomeric silsesquioxane. Journal of Applied Polymer Science 2021, 138 (10) https://doi.org/10.1002/app.49953
    22. Hwa Jin Lee, Sang Wook Kang. Activated potassium ions as CO2 carriers for PEBAX-5513/KBF4 composite membranes. Separation and Purification Technology 2021, 258 , 117971. https://doi.org/10.1016/j.seppur.2020.117971
    23. Jelena Lillepärg, Evgeni Sperling, Marit Blanke, Martin Held, Sergey Shishatskiy. Multicomponent Network Formation in Selective Layer of Composite Membrane for CO2 Separation. Membranes 2021, 11 (3) , 174. https://doi.org/10.3390/membranes11030174
    24. Martina Klepić, Alessio Fuoco, Marcello Monteleone, Elisa Esposito, Karel Friess, Pavel Izák, Johannes C. Jansen. Effect of the CO2-philic ionic liquid [BMIM][Tf2N] on the single and mixed gas transport in PolyActive™ membranes. Separation and Purification Technology 2021, 256 , 117813. https://doi.org/10.1016/j.seppur.2020.117813
    25. Konstantinos N. Raftopoulos, Edyta Hebda, Anna Grzybowska, Panagiotis A. Klonos, Apostolos Kyritsis, Krzysztof Pielichowski. PEG-POSS Star Molecules Blended in Polyurethane with Flexible Hard Segments: Morphology and Dynamics. Molecules 2021, 26 (1) , 99. https://doi.org/10.3390/molecules26010099
    26. Danial Nasirian, Iman Salahshoori, Morteza Sadeghi, Niloufar Rashidi, Majid Hassanzadeganroudsari. Investigation of the gas permeability properties from polysulfone/polyethylene glycol composite membrane. Polymer Bulletin 2020, 77 (10) , 5529-5552. https://doi.org/10.1007/s00289-019-03031-3
    27. Fereshteh Motahari, Ahmadreza Raisi. UV irradiation-assisted cross-linking of high molecular weight poly (ethylene oxide) with poly (ethylene glycol) diacrylate to prepare CO2 selective membranes. Polymer 2020, 205 , 122821. https://doi.org/10.1016/j.polymer.2020.122821
    28. V. G. Polevaya, M. G. Shalygin, V. S. Khotimskiy, V. V. Teplyakov. Membrane Control of the Composition of Synthesis Gas Using Membranes Based on Modified 1,2-Disubstituted Polyacetylenes. Membranes and Membrane Technologies 2020, 2 (3) , 181-188. https://doi.org/10.1134/S2517751620030063
    29. Ali Kargari, Sheida Rezaeinia. State-of-the-art modification of polymeric membranes by PEO and PEG for carbon dioxide separation: A review of the current status and future perspectives. Journal of Industrial and Engineering Chemistry 2020, 84 , 1-22. https://doi.org/10.1016/j.jiec.2019.12.020
    30. Martina Klepić, Alessio Fuoco, Marcello Monteleone, Elisa Esposito, Karel Friess, Zuzana Petrusová, Pavel Izák, Johannes Carolus Jansen. Tailoring the Thermal and Mechanical Properties of PolyActiveTM Poly(Ether-Ester) Multiblock Copolymers Via Blending with CO2-Phylic Ionic Liquid. Polymers 2020, 12 (4) , 890. https://doi.org/10.3390/polym12040890
    31. V. G. Polevaya, V. Yu. Geiger, S. M. Matson, G. A. Shandryuk, S. M. Shishatskii, V. S. Khotimskii. Synthesis and Properties of Poly(1-trimethylsilyl-1-propyne) Containing Quaternary Ammonium Salts with Methyl and Ethyl Substituents. Polymer Science, Series B 2019, 61 (5) , 613-621. https://doi.org/10.1134/S1560090419050130
    32. Viktoriya Polevaya, Viktoriya Geiger, Galina Bondarenko, Sergey Shishatskiy, Valeriy Khotimskiy. Chemical Modification of Poly(1-Trimethylsylil-1-Propyne) for the Creation of Highly Efficient CO2-Selective Membrane Materials. Materials 2019, 12 (17) , 2763. https://doi.org/10.3390/ma12172763
    33. Jianhua Zhao, Ke Xie, Liang Liu, Min Liu, Wenlian Qiu, Paul A. Webley. Enhancing plasticization-resistance of mixed-matrix membranes with exceptionally high CO2/CH4 selectivity through incorporating ZSM-25 zeolite. Journal of Membrane Science 2019, 583 , 23-30. https://doi.org/10.1016/j.memsci.2019.03.073
    34. Junfeng Wang, Wenjuan Fang, Jianquan Luo, Ming Gao, Yinhua Wan, Suojiang Zhang, Xiangping Zhang, Ah-Hyung Alissa Park. Selective separation of CO2 using novel mixed matrix membranes based on Pebax and liquid-like nanoparticle organic hybrid materials. Journal of Membrane Science 2019, 584 , 79-88. https://doi.org/10.1016/j.memsci.2019.04.079
    35. Ilsiya Davletbaeva, Ilnaz Zaripov, Alexander Mazilnikov, Ruslan Davletbaev, Raphael Sharifullin, Artem Atlaskin, Tatyana Sazanova, Ilya Vorotyntsev. Synthesis and Study of Gas Transport Properties of Polymers Based on Macroinitiators and 2,4-Toluene Diisocyanate. Membranes 2019, 9 (3) , 42. https://doi.org/10.3390/membranes9030042
    36. Karina Schuldt, Jan Pohlmann, Sergey Shishatskiy, Torsten Brinkmann. Applicability of PolyActive™ Thin Film Composite Membranes for CO2 Separation from C2H4 Containing Multi-Component Gas Mixtures at Pressures up to 30 Bar. Membranes 2018, 8 (2) , 27. https://doi.org/10.3390/membranes8020027
    37. Gabriel Guerrero, May-Britt Hägg, Christian Simon, Thijs Peters, Nicolas Rival, Christelle Denonville. CO2 Separation in Nanocomposite Membranes by the Addition of Amidine and Lactamide Functionalized POSS® Nanoparticles into a PVA Layer. Membranes 2018, 8 (2) , 28. https://doi.org/10.3390/membranes8020028
    38. Muntazim Khan, Karabi Halder, Sergey Shishatskiy, Volkan Filiz. Synthesis and Crosslinking of Polyether-Based Main Chain Benzoxazine Polymers and Their Gas Separation Performance. Polymers 2018, 10 (2) , 221. https://doi.org/10.3390/polym10020221
    39. Vakkoottil S. Abhisha, Valiya P. Swapna, Ranimol Stephen. Modern Trends and Applications of Gas Transport Through Various Polymers. 2018, 363-389. https://doi.org/10.1016/B978-0-12-809884-4.00018-5
    40. Junfeng Wang, Wenjuan Fang, Jianquan Luo, Ming Gao, Yinhua Wan, Suojiang Zhang, Xiangping Zhang, Ah-Hyung Alissa Park. Selective Separation of Co2 Using Novel Mixed Matrix Membranes Based on Pebax and Liquid-Like Nanoparticle Organic Hybrid Materials. SSRN Electronic Journal 2018, 46 https://doi.org/10.2139/ssrn.3263713
    41. Fynn Weigelt, Prokopios Georgopanos, Sergey Shishatskiy, Volkan Filiz, Torsten Brinkmann, Volker Abetz. Development and Characterization of Defect-Free Matrimid® Mixed-Matrix Membranes Containing Activated Carbon Particles for Gas Separation. Polymers 2018, 10 (1) , 51. https://doi.org/10.3390/polym10010051
    42. Gregory K. Kline, Jennifer R. Weidman, Qinnan Zhang, Ruilan Guo. Studies of the synergistic effects of crosslink density and crosslink inhomogeneity on crosslinked PEO membranes for CO2-selective separations. Journal of Membrane Science 2017, 544 , 25-34. https://doi.org/10.1016/j.memsci.2017.09.002
    43. Swapna Valiya Parambath, Deepalekshmi Ponnamma, Kishor Kumar Sadasivuni, Sabu Thomas, Ranimol Stephen. Effect of nanostructured polyhedral oligomeric silsesquioxane on the physical properties of poly(vinyl alcohol). Journal of Applied Polymer Science 2017, 134 (43) https://doi.org/10.1002/app.45447
    44. Xinda You, Tianyi Ma, Yanlei Su, Hong Wu, Mengyuan Wu, Hongwei Cai, Guoming Sun, Zhongyi Jiang. Enhancing the permeation flux and antifouling performance of polyamide nanofiltration membrane by incorporation of PEG-POSS nanoparticles. Journal of Membrane Science 2017, 540 , 454-463. https://doi.org/10.1016/j.memsci.2017.06.084
    45. Mahdieh Pazirofteh, Mostafa Dehghani, Saber Niazi, Amir H. Mohammadi, Morteza Asghari. Molecular dynamics simulation and Monte Carlo study of transport and structural properties of PEBA 1657 and 2533 membranes modified by functionalized POSS-PEG material. Journal of Molecular Liquids 2017, 241 , 646-653. https://doi.org/10.1016/j.molliq.2017.06.073
    46. Sofia Dami, Clarissa Abetz, Birgit Fischer, Maryam Radjabian, Prokopios Georgopanos, Volker Abetz. A correlation between structural features of an amphiphilic diblock copolymer in solution and the structure of the porous surface in an integral asymmetric membrane. Polymer 2017, 126 , 376-385. https://doi.org/10.1016/j.polymer.2017.05.024
    47. Ke Xie, Qiang Fu, Jinguk Kim, Hiep Lu, Yingdian He, Qinghu Zhao, Joel Scofield, Paul A. Webley, Greg G. Qiao. Increasing both selectivity and permeability of mixed-matrix membranes: Sealing the external surface of porous MOF nanoparticles. Journal of Membrane Science 2017, 535 , 350-356. https://doi.org/10.1016/j.memsci.2017.04.022
    48. Nora Konnertz, Yi Ding, Wayne J. Harrison, Peter M. Budd, Andreas Schönhals, Martin Böhning. Molecular mobility and gas transport properties of nanocomposites based on PIM-1 and polyhedral oligomeric phenethyl-silsesquioxanes (POSS). Journal of Membrane Science 2017, 529 , 274-285. https://doi.org/10.1016/j.memsci.2017.02.007
    49. Jinghui Li, Zhuo Chen, Ahmad Umar, Yang Liu, Ying Shang, Xiaokai Zhang, Yao Wang. Probe Into the Influence of Crosslinking on CO2 Permeation of Membranes. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/srep40082
    50. Lu Tang, Zhaobin Qiu. Effect of poly(ethylene glycol)-polyhedral oligomeric silsesquioxanes on the crystallization kinetics and morphology of biodegradable poly(ethylene succinate). Polymer Degradation and Stability 2016, 134 , 97-104. https://doi.org/10.1016/j.polymdegradstab.2016.10.002
    51. Prokopios Georgopanos, Ulrich A. Handge, Clarissa Abetz, Volker Abetz. Influence of block sequence and molecular weight on morphological, rheological and dielectric properties of weakly and strongly segregated styrene-isoprene triblock copolymers. Polymer 2016, 104 , 279-295. https://doi.org/10.1016/j.polymer.2016.02.039
    52. Md. Mushfequr Rahman, Jelena Lillepärg, Silvio Neumann, Sergey Shishatskiy, Volker Abetz. A thermodynamic study of CO2 sorption and thermal transition of PolyActive™ under elevated pressure. Polymer 2016, 93 , 132-141. https://doi.org/10.1016/j.polymer.2016.04.024
    53. Nora Konnertz, Martin Böhning, Andreas Schönhals. Dielectric investigations of nanocomposites based on Matrimid and polyhedral oligomeric phenethyl-silsesquioxanes (POSS). Polymer 2016, 90 , 89-101. https://doi.org/10.1016/j.polymer.2016.02.060
    54. Shaofei Wang, Jiangyan Feng, Yu Xie, Zhizhang Tian, Dongdong Peng, Hong Wu, Zhongyi Jiang. Constructing asymmetric membranes via surface segregation for efficient carbon capture. Journal of Membrane Science 2016, 500 , 25-32. https://doi.org/10.1016/j.memsci.2015.11.028
    55. Liangliang Dong, Mingqing Chen, Xiaohui Wu, Dongjian Shi, Weifu Dong, Hongji Zhang, Chunfang Zhang. Multi-functional polydopamine coating: simultaneous enhancement of interfacial adhesion and CO 2 separation performance of mixed matrix membranes. New Journal of Chemistry 2016, 40 (11) , 9148-9159. https://doi.org/10.1039/C6NJ02013E
    56. Muntazim Khan, Volkan Filiz, Thomas Emmler, Volker Abetz, Toenjes Koschine, Klaus Rätzke, Franz Faupel, Werner Egger, Luca Ravelli. Free Volume and Gas Permeation in Anthracene Maleimide-Based Polymers of Intrinsic Microporosity. Membranes 2015, 5 (2) , 214-227. https://doi.org/10.3390/membranes5020214
    57. Alberto Tena, Sergey Shishatskiy, Volkan Filiz. Poly(ether–amide) vs. poly(ether–imide) copolymers for post-combustion membrane separation processes. RSC Advances 2015, 5 (29) , 22310-22318. https://doi.org/10.1039/C5RA01328C

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect