Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

[3+2] versus [2+2] Addition of Metal Oxides Across CC Bonds. Reconciliation of Experiment and Theory

View Author Information
Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany, Swiss Center for Scientific Computing, CSCS, Swiss Federal Institute of Technology, ETH Zurich, CH-6928 Manno, Switzerland, and Academia Sinica, Taipei, Taiwan, Republic of China
Cite this: Acc. Chem. Res. 2003, 36, 9, 645–651
Publication Date (Web):May 21, 2003
https://doi.org/10.1021/ar020268q
Copyright © 2003 American Chemical Society

    Article Views

    2195

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The reaction of a metal oxide with a double bond is the initial step in the osmium-catalyzed cis-dihydroxylation of olefins. The mechanism of the addition of osmium tetraoxide and rhenium(VII) oxides across CC bonds was controversial. Early work indicated a [3+2] addition, and later kinetic studies suggested an initial [2+2] addition, whereas recent quantum-chemical calculations showed the [3+2] addition to be favored. Experiment and theory have now become reconciled. In this Account, we discuss recent contributions to the mechanistic debate as well as future challenges.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     E-mails:  [email protected] (D.V.D.) and [email protected] (G.F.).

    Cited By

    This article is cited by 87 publications.

    1. Aqeel A. Hussein, Nadhir N. A. Jafar, Yumiao Ma. Elucidating the Mechanism of Tetrahydrofuran-Diol Formation through Os(VI)-Catalyzed Oxidative Cyclization of 5,6-Dihydroxyalkenes Ligated by Citric Acid. The Journal of Organic Chemistry 2024, 89 (10) , 6892-6902. https://doi.org/10.1021/acs.joc.4c00268
    2. Sebastian Arndt, Philipp J. Kohlpaintner, Kai Donsbach, Siegfried R. Waldvogel. Synthesis and Applications of Periodate for Fine Chemicals and Important Pharmaceuticals. Organic Process Research & Development 2022, 26 (9) , 2564-2613. https://doi.org/10.1021/acs.oprd.2c00161
    3. Aqeel A. Hussein, Maximillian J. S. Phipps, Chris-Kriton Skylaris, Richard C. D. Brown. Mechanism of Os-Catalyzed Oxidative Cyclization of 1,5-Dienes. The Journal of Organic Chemistry 2019, 84 (23) , 15173-15183. https://doi.org/10.1021/acs.joc.9b02174
    4. Jamaladin Shakeri, Hassan Hadadzadeh, Hossein Farrokhpour, Mohammad Joshaghani, and Matthias Weil . Perrhenate-Catalyzed Deoxydehydration of a Vicinal Diol: A Comparative Density Functional Theory Study. The Journal of Physical Chemistry A 2017, 121 (45) , 8688-8696. https://doi.org/10.1021/acs.jpca.7b08884
    5. Gui-Juan Cheng, Xinhao Zhang, Lung Wa Chung, Liping Xu, and Yun-Dong Wu . Computational Organic Chemistry: Bridging Theory and Experiment in Establishing the Mechanisms of Chemical Reactions. Journal of the American Chemical Society 2015, 137 (5) , 1706-1725. https://doi.org/10.1021/ja5112749
    6. Peng Liu and Kenneth M. Nicholas . Mechanism of Sulfite-Driven, MeReO3-Catalyzed Deoxydehydration of Glycols. Organometallics 2013, 32 (6) , 1821-1831. https://doi.org/10.1021/om301251z
    7. Siwei Bi, Jiayong Wang, Lingjun Liu, Ping Li, and Zhenyang Lin . Mechanism of the MeReO3-Catalyzed Deoxygenation of Epoxides. Organometallics 2012, 31 (17) , 6139-6147. https://doi.org/10.1021/om300485w
    8. Roderick W. Bates, K. Sivarajan, and Bernd F. Straub . A Synthesis of Pseudoconhydrine and Its Epimer via Hydroformylation and Dihydroxylation. The Journal of Organic Chemistry 2011, 76 (16) , 6844-6848. https://doi.org/10.1021/jo2008912
    9. Irshad Ahmad, Garry Chapman, and Kenneth M. Nicholas . Sulfite-Driven, Oxorhenium-Catalyzed Deoxydehydration of Glycols. Organometallics 2011, 30 (10) , 2810-2818. https://doi.org/10.1021/om2001662
    10. Bao-Zhen Sun, Wen-Kai Chen, and Yi-Jun Xu . Computational Investigation of Coverage-Dependent Behavior on Functionalization of the Semiconductor X (100)-2 × 1 Surface (X = C, Si, and Ge) by Cycloaddition of Transition Metal Oxides. The Journal of Physical Chemistry C 2011, 115 (13) , 5800-5808. https://doi.org/10.1021/jp111045t
    11. Alexander Dauth and Jennifer A. Love . Reactivity by Design—Metallaoxetanes as Centerpieces in Reaction Development. Chemical Reviews 2011, 111 (3) , 2010-2047. https://doi.org/10.1021/cr100388p
    12. Mehmet Ali Celik, Robin Haunschild and Gernot Frenking . Quantum Chemical Study on Ethylene Addition to (O═)2Os(═NH)2 and (O═)2Os(═NH)-cyclo-(−NHCH2CH2HN−) as Model Complexes for the Osmium-Catalyzed Aminohydroxylation of Olefins. Organometallics 2010, 29 (7) , 1560-1568. https://doi.org/10.1021/om900986b
    13. Alexander Poethig and Thomas Strassner. Stereoselective OsO4-Catalyzed Oxidative Cyclization of 1,5-Dienes. The Journal of Organic Chemistry 2010, 75 (6) , 1967-1973. https://doi.org/10.1021/jo100147e
    14. Yi-Jun Xu and Xianzhi Fu. Functionalization of the Semiconductor Surfaces of Diamond (100), Si (100), and Ge (100) by Cycloaddition of Transition Metal Oxides: A Theoretical Prediction. Langmuir 2009, 25 (17) , 9840-9846. https://doi.org/10.1021/la900942e
    15. Daniel H. Ess. Distortion, Interaction, and Conceptual DFT Perspectives of MO4−Alkene (M = Os, Re, Tc, Mn) Cycloadditions. The Journal of Organic Chemistry 2009, 74 (4) , 1498-1508. https://doi.org/10.1021/jo802189w
    16. Wing-Ping Yip,, Wing-Yiu Yu,, Nianyong Zhu, and, Chi-Ming Che. Alkene cis-Dihydroxylation by [(Me3tacn)(CF3CO2)RuVIO2]ClO4 (Me3tacn = 1,4,7-Trimethyl-1,4,7-triazacyclononane):  Structural Characterization of [3 + 2] Cycloadducts and Kinetic Studies. Journal of the American Chemical Society 2005, 127 (41) , 14239-14249. https://doi.org/10.1021/ja0528230
    17. Sanja Narancic and, Peter Chen. Computational Study of Low-Coordinate Rhenium Diolates, Metallaoxetanes, Oxo Complexes, and Carbenes. Organometallics 2005, 24 (1) , 10-12. https://doi.org/10.1021/om0491241
    18. Xiangyang Zhang,, Xueyi Chen, and, Peter Chen. Mass Spectrometric Study of the Conversion of Rhenium Diolates to Metallaoxetanes and Carbenes. Coordination Number, Polar, and Steric Effects. Organometallics 2004, 23 (14) , 3437-3447. https://doi.org/10.1021/om049737d
    19. Dirk V. Deubel. Factors Governing the Kinetic Competition of Nitrogen and Sulfur Ligands in Cisplatin Binding to Biological Targets. Journal of the American Chemical Society 2004, 126 (19) , 5999-6004. https://doi.org/10.1021/ja0499602
    20. Jan Frunzke,, Christoph Loschen, and, Gernot Frenking. Why Are Olefins Oxidized by RuO4 under Cleavage of the Carbon−Carbon Bond whereas Oxidation by OsO4 Yields cis-Diols?. Journal of the American Chemical Society 2004, 126 (11) , 3642-3652. https://doi.org/10.1021/ja039921a
    21. Nouhaila Bahyoune, Luis R. Domingo, Latifa Bouissane. Theoretical studies of cycloaddition reactions involving C − C triple bonds. International Reviews in Physical Chemistry 2023, 42 (1-4) , 1-27. https://doi.org/10.1080/0144235X.2024.2313879
    22. Emmanuel Adu Fosu, Collins Obuah, Louis Hamenu, Albert Aniagyei, Anita Oppong, Michael Kojo Ainooson, Alfred Muller. Theoretical studies on the reaction mechanisms of the oxidation of tetramethylethylene using MO3Cl (M=Mn, Tc and Re). Journal of Molecular Graphics and Modelling 2023, 120 , 108419. https://doi.org/10.1016/j.jmgm.2023.108419
    23. Emmanuel Adu Fosu, Collins Obuah, Louis Hamenu, Albert Aniagyei, Anita Oppong, Michael Kojo Ainooson, Alfred Muller. A DFT study on the reaction mechanisms of the oxidation of ethylene mediated by technetium and manganese oxo complexes. Journal of Molecular Modeling 2022, 28 (4) https://doi.org/10.1007/s00894-022-05092-0
    24. Aqeel A. Hussein, Yumiao Ma, Gamal A. I. Moustafa. Predominance of the second cycle in homogeneous Os-catalyzed dihydroxylation: the nature of Os( vi ) → Os( viii ) reoxidation and unprecedented roles of amine- N -oxides. Catalysis Science & Technology 2022, 12 (3) , 880-893. https://doi.org/10.1039/D1CY02107A
    25. Emmanuel Adu Fosu, Collins Obuah, Louis Hamenu, Albert Aniagyei, Michael Kojo Ainooson, Krishna K. Govender, . Quantum Mechanistic Studies of the Oxidation of Ethylene by Rhenium Oxo Complexes. Journal of Chemistry 2021, 2021 , 1-11. https://doi.org/10.1155/2021/7931956
    26. Youssef Nassar, Olivier Piva. Design, Synthesis, and Evaluation of α‐(Hydroxymethyl)cycloalkanols. European Journal of Organic Chemistry 2021, 2021 (7) , 1037-1054. https://doi.org/10.1002/ejoc.202001297
    27. Dipak K. Mandal. Ionic reactions 1: Fundamental stereochemistry. 2021, 269-302. https://doi.org/10.1016/B978-0-12-824092-2.00006-X
    28. Aikaterini Diamanti, Zara Ganase, Eliana Grant, Alan Armstrong, Patrick M. Piccione, Anita M. Rea, Jeffery Richardson, Amparo Galindo, Claire S. Adjiman. Mechanism, kinetics and selectivity of a Williamson ether synthesis: elucidation under different reaction conditions. Reaction Chemistry & Engineering 2021, 137 https://doi.org/10.1039/D0RE00437E
    29. An-Zhu Cao, Yu-Ting Xiao, Yan-Chen Wu, Ren-Jie Song, Ye-Xiang Xie, Jin-Heng Li. Copper-catalyzed C–H [3 + 2] annulation of N -substituted anilines with α-carbonyl alkyl bromides via C(sp 3 )–Br/C(sp 2 )–H functionalization. Organic & Biomolecular Chemistry 2020, 18 (11) , 2170-2174. https://doi.org/10.1039/D0OB00399A
    30. Yun-Jie Chu, Xue-Mei Chen, Chun-Guang Liu. Computational study on epoxidation of propylene by dioxygen using the silanol-functionalized polyoxometalate-supported osmium oxide catalyst. Inorganic Chemistry Frontiers 2019, 6 (12) , 3482-3492. https://doi.org/10.1039/C9QI00900K
    31. Jamaladin Shakeri, Hassan Hadadzadeh, Hossein Farrokhpour, Matthias Weil. A comparative study of the counterion effect on the perrhenate-catalyzed deoxydehydration reaction. Molecular Catalysis 2019, 471 , 27-37. https://doi.org/10.1016/j.mcat.2019.04.014
    32. Jie Liu, Miao-Miao Li, Bao-Le Qu, Liang-Qiu Lu, Wen-Jing Xiao. A photoinduced Wolff rearrangement/Pd-catalyzed [3+2] cycloaddition sequence: an unexpected route to tetrahydrofurans. Chemical Communications 2019, 55 (14) , 2031-2034. https://doi.org/10.1039/C8CC10157D
    33. Andrés G. Algarra, Manuel G. Basallote. Computational Insights Into the Reactivity at the Sulfur Atoms of M 3 S 4 (M = Mo, W) Clusters: The Mechanism of [3 + 2] Cycloaddition With Alkynes. 2017, 311-342. https://doi.org/10.1016/bs.adioch.2017.01.003
    34. Reentje G. Harms, Wolfgang A. Herrmann, Fritz E. Kühn. Organorhenium dioxides as oxygen transfer systems: Synthesis, reactivity, and applications. Coordination Chemistry Reviews 2015, 296 , 1-23. https://doi.org/10.1016/j.ccr.2015.03.015
    35. Daniel Lupp, Niels Johan Christensen, Johannes R. Dethlefsen, Peter Fristrup. DFT Study of the Molybdenum‐Catalyzed Deoxydehydration of Vicinal Diols. Chemistry – A European Journal 2015, 21 (8) , 3435-3442. https://doi.org/10.1002/chem.201405473
    36. Kilian Muñiz, Claudio Martínez. Oxidative Functionalization of Alkenes. 2014, 1259-1314. https://doi.org/10.1002/9783527655588.ch16
    37. K. Muñiz. 7.16 Addition Reactions with Formation of Carbon-Heteroatom Bonds: (III) Asymmetric Methods of Dihydroxylation, Aminohydroxylation, and Diamination. 2014, 411-430. https://doi.org/10.1016/B978-0-08-097742-3.00720-5
    38. Alexander Dauth, Carla Rigling, Jennifer Tsoung, Jennifer A. Love. Formation of Substituted Oxa‐ and Azarhodacyclobutanes. Chemistry – A European Journal 2013, 19 (50) , 17180-17191. https://doi.org/10.1002/chem.201302421
    39. Albert Aniagyei, Richard Tia, Evans Adei. A density functional theory study of the mechanisms of oxidation of ethylene by rhenium oxide complexes. Dalton Transactions 2013, 42 (30) , 10885. https://doi.org/10.1039/c3dt50539a
    40. Claudio Martínez, Kilian Muñiz. Palladium‐Catalyzed Vicinal Difunctionalization of Internal Alkenes: Diastereoselective Synthesis of Diamines. Angewandte Chemie International Edition 2012, 51 (28) , 7031-7034. https://doi.org/10.1002/anie.201201719
    41. Claudio Martínez, Kilian Muñiz. Palladium‐katalysierte vicinale Difunktionalisierung von internen Alkenen zur diastereoselektiven Diaminsynthese. Angewandte Chemie 2012, 124 (28) , 7138-7141. https://doi.org/10.1002/ange.201201719
    42. Wenzhen Lai, Chunsen Li, Hui Chen, Sason Shaik. Hydrogen‐Abstraction Reactivity Patterns from A to Y: The Valence Bond Way. Angewandte Chemie International Edition 2012, 51 (23) , 5556-5578. https://doi.org/10.1002/anie.201108398
    43. Wenzhen Lai, Chunsen Li, Hui Chen, Sason Shaik. Wasserstoffatomabstraktion von A bis Y: Reaktionsmuster nach der Valenzstrukturtheorie. Angewandte Chemie 2012, 124 (23) , 5652-5676. https://doi.org/10.1002/ange.201108398
    44. Dominik Munz, Alexander Poethig, Thomas Strassner. Computational Studies on Osmium-Catalyzed Olefin Oxidation Reactions. 2012, 143-168. https://doi.org/10.1007/978-3-642-25258-7_6
    45. Richard Tia, Evans Adei. [3+2] Versus [2+2] addition of metal oxides across CC bonds: A theoretical study of the mechanisms of oxidation of ethylene by osmium oxide complexes. Computational and Theoretical Chemistry 2011, 977 (1-3) , 140-147. https://doi.org/10.1016/j.comptc.2011.09.027
    46. Dirk Steinborn. Stickstofffixierung. 2010, 314-346. https://doi.org/10.1007/978-3-8348-9375-8_14
    47. Robin Haunschild, Gernot Frenking. Comparative theoretical study of [3+2] and [2+2] cycloadditions of ethylene and WXYMe2; X, Y=(O), (NH), (CH2). Journal of Organometallic Chemistry 2009, 694 (25) , 4090-4093. https://doi.org/10.1016/j.jorganchem.2009.08.022
    48. David J. Ager. Cinchona Alkaloids as Chiral Ligands in Asymmetric Oxidations. 2009, 29-71. https://doi.org/10.1002/9783527628179.ch3
    49. Ahmad Dehestani, Adam Wu, Rebecca Hayoun, Werner Kaminsky, James M. Mayer. Dihydroxylation of alkenes using a Tp–osmium complex. Inorganica Chimica Acta 2009, 362 (12) , 4534-4538. https://doi.org/10.1016/j.ica.2009.05.004
    50. Robin Haunschild, Sandor Tüllmann, Gernot Frenking, Max C. Holthausen. Ethylene addition to Ru(CH2)(O)3 – A theoretical study. Journal of Organometallic Chemistry 2009, 694 (7-8) , 1081-1090. https://doi.org/10.1016/j.jorganchem.2008.10.017
    51. M. L. Kuznetsov, V. Yu. Kukushkin. Theoretical investigation of cycloaddition reactions with Lewis acid mediation. Russian Journal of Inorganic Chemistry 2008, 53 (13) , 1997-2018. https://doi.org/10.1134/S0036023608130020
    52. Robin Haunschild, Gernot Frenking. Quantum chemical study of ethylene addition to group-7 oxo complexes MO2(CH3)(CH2) (M=Mn, Tc, Re). Journal of Organometallic Chemistry 2008, 693 (24) , 3627-3637. https://doi.org/10.1016/j.jorganchem.2008.09.007
    53. Robin Haunschild, Gernot Frenking. Ethylene Addition to Group‐9 Transition Metal Dioxo Compounds – A Quantum Chemical Study. Zeitschrift für anorganische und allgemeine Chemie 2008, 634 (12-13) , 2145-2155. https://doi.org/10.1002/zaac.200800243
    54. Mariappan Periasamy, Sakilam Satish Kumar, N. Sampath Kumar. Catalytic asymmetric dihydroxylation of substituted trans-stilbene derivatives: implications of the variation of enantioselectivities on the mechanism of OsO4 addition to olefins. Tetrahedron Letters 2008, 49 (28) , 4416-4419. https://doi.org/10.1016/j.tetlet.2008.05.016
    55. Ankush V. Biradar, Bhaskar R. Sathe, Shubhangi B. Umbarkar, Mohan K. Dongare. Selective cis-dihydroxylation of olefins using recyclable homogeneous molybdenum acetylide catalyst. Journal of Molecular Catalysis A: Chemical 2008, 285 (1-2) , 111-119. https://doi.org/10.1016/j.molcata.2008.01.034
    56. Robin Haunschild, Gernot Frenking. Ethylene addition to group-6 transition metal oxo complexes – A theoretical study. Journal of Organometallic Chemistry 2008, 693 (4) , 737-749. https://doi.org/10.1016/j.jorganchem.2007.12.008
    57. Karine Valliant-Saunders, Erica Gunn, G. Robert Shelton, David A. Hrovat, Weston Thatcher Borden, James M. Mayer. Oxidation of Tertiary Silanes by Osmium Tetroxide. Inorganic Chemistry 2007, 46 (13) , 5212-5219. https://doi.org/10.1021/ic062468u
    58. David Balcells, Feliu Maseras. Computational approaches to asymmetric synthesis. New Journal of Chemistry 2007, 31 (3) , 333. https://doi.org/10.1039/b615528f
    59. Alexander Poethig, Thomas Strassner. The Mechanism of the Permanganate-Promoted Oxidative Cyclization of 1,5-Dienes - a DFT Study. Collection of Czechoslovak Chemical Communications 2007, 72 (5-6) , 715-727. https://doi.org/10.1135/cccc20070715
    60. Robin Haunschild, Christoph Loschen, Sandor Tüllmann, Daniel Cappel, Markus Hölscher, Max C. Holthausen, Gernot Frenking. Theoretical studies of ethylene addition to transition metal compounds with carbene and oxo groups L n M(CH 2 )(O). Journal of Physical Organic Chemistry 2007, 20 (1) , 11-18. https://doi.org/10.1002/poc.1095
    61. Daniel Cappel, Sandor Tüllmann, Christoph Loschen, Max C. Holthausen, Gernot Frenking. Ethylene addition to OsO3(CH2) – A theoretical study. Journal of Organometallic Chemistry 2006, 691 (21) , 4467-4473. https://doi.org/10.1016/j.jorganchem.2006.03.010
    62. Stefanie Roth, Christian B. W. Stark. Efficient Oxidative Cyclization of 1,6‐Dienes: A Highly Diastereoselective Entry to Substituted Tetrahydropyrans. Angewandte Chemie International Edition 2006, 45 (37) , 6218-6221. https://doi.org/10.1002/anie.200504572
    63. Stefanie Roth, Christian B. W. Stark. Effiziente oxidative Cyclisierung von 1,6‐Dienen: ein hoch diastereoselektiver Zugang zu Tetrahydropyranen. Angewandte Chemie 2006, 118 (37) , 6364-6367. https://doi.org/10.1002/ange.200504572
    64. James M. Mayer, Elizabeth A. Mader, Justine P. Roth, Jasmine R. Bryant, Takashi Matsuo, Ahmad Dehestani, Brian C. Bales, Eric J. Watson, Takao Osako, Karine Valliant-Saunders, Wai Han Lam, David A. Hrovat, Weston Thatcher Borden, Ernest R. Davidson. Stoichiometric oxidations of σ-bonds: Radical and possible non-radical pathways. Journal of Molecular Catalysis A: Chemical 2006, 251 (1-2) , 24-33. https://doi.org/10.1016/j.molcata.2006.02.010
    65. L. James Wright. Metallabenzenes and metallabenzenoids. Dalton Transactions 2006, 115 (15) , 1821. https://doi.org/10.1039/b517928a
    66. Stefanie Roth, Sabrina Göhler, Huan Cheng, Christian B. W. Stark. A Highly Efficient Procedure for Ruthenium Tetroxide Catalyzed Oxidative Cyclizations of 1,5‐Dienes. European Journal of Organic Chemistry 2005, 2005 (19) , 4109-4118. https://doi.org/10.1002/ejoc.200500052
    67. Markus Hölscher, Walter Leitner, Max C. Holthausen, Gernot Frenking. Chemo- and Periselectivity in the Addition of [OsO2(CH2)2] to Ethylene: A Theoretical Study. Chemistry - A European Journal 2005, 11 (16) , 4700-4708. https://doi.org/10.1002/chem.200500217
    68. Xiangyang Zhang, Sanja Narancic, Peter Chen. Experimental and Computational Study of the [2 + 2] Dissociation of Rhenaoxetanes in the Gas Phase. Organometallics 2005, 24 (13) , 3040-3042. https://doi.org/10.1021/om0502842
    69. Claas H. Hövelmann, Kilian Muñiz. An Electrophilic Cleavage Procedure for the Asymmetric Dihydroxylation: Direct Enantioselective Synthesis of Cyclic Boronic Esters from Olefins. Chemistry – A European Journal 2005, 11 (13) , 3951-3958. https://doi.org/10.1002/chem.200500095
    70. Xian‐Zheng Zhang, Chih‐Chang Chu. Fabrication of Poly(lactic acid) Diacrylate Nanospheres with Double Bonds. Macromolecular Rapid Communications 2005, 26 (10) , 840-844. https://doi.org/10.1002/marc.200400666
    71. Arianna Bassan, Margareta R. A. Blomberg, Per E. M. Siegbahn, Lawrence Que. Two Faces of a Biomimetic Non‐Heme HOFe V O Oxidant: Olefin Epoxidation versus cis ‐Dihydroxylation. Angewandte Chemie 2005, 117 (19) , 2999-3001. https://doi.org/10.1002/ange.200463072
    72. Arianna Bassan, Margareta R. A. Blomberg, Per E. M. Siegbahn, Lawrence Que. Two Faces of a Biomimetic Non-Heme HOFeVO Oxidant: Olefin Epoxidation versuscis-Dihydroxylation. Angewandte Chemie International Edition 2005, 44 (19) , 2939-2941. https://doi.org/10.1002/anie.200463072
    73. Justin Kai‐Chi Lau, Dirk V. Deubel. Loss of Ammine from Platinum( II ) Complexes: Implications for Cisplatin Inactivation, Storage, and Resistance. Chemistry – A European Journal 2005, 11 (9) , 2849-2855. https://doi.org/10.1002/chem.200401053
    74. Galí Drudis‐Solé, Gregori Ujaque, Feliu Maseras, Agustí Lledós. A QM/MM Study of the Asymmetric Dihydroxylation of Terminal Aliphatic n ‐Alkenes with OsO 4 ⋅(DHQD) 2 PYDZ: Enantioselectivity as a Function of Chain Length. Chemistry – A European Journal 2005, 11 (3) , 1017-1029. https://doi.org/10.1002/chem.200400201
    75. Kilian Muñiz. The development of asymmetric diamination of alkenes with imido-osmium reagents. New Journal of Chemistry 2005, 29 (11) , 1371. https://doi.org/10.1039/b506221g
    76. Donna J. Nelson, Ruibo Li, Christopher Brammer. Correlation of relative rates of chromyl chloride oxidation and chromic acid oxidation of acyclic alkenes versus alkene IPs and HOMOs. Journal of Physical Organic Chemistry 2004, 17 (11) , 1033-1038. https://doi.org/10.1002/poc.823
    77. Dirk V. Deubel, Gernot Frenking, Philip Gisdakis, Wolfgang A. Herrmann, Notker Rösch, Jörg Sundermeyer. Olefin Epoxidation with Inorganic Peroxides. Solutions to Four Long-Standing Controversies on the Mechanism of Oxygen Transfer. Accounts of Chemical Research 2004, 37 (9) , 645-652. https://doi.org/10.1021/ar0400140
    78. Dirk V. Deubel, Kilian Muñiz. Road Maps for Nitrogen-Transfer Catalysis: The Challenge of the Osmium(VIII)-Catalyzed Diamination. Chemistry - A European Journal 2004, 10 (10) , 2475-2486. https://doi.org/10.1002/chem.200305467
    79. Kilian Muñiz. Electronic Effects in Olefin Oxidation by Imidoosmium( VIII ) Compounds. European Journal of Organic Chemistry 2004, 2004 (10) , 2243-2252. https://doi.org/10.1002/ejoc.200300774
    80. . Epoxidation. 2004, 299-318. https://doi.org/10.1007/1-4020-2000-7_14
    81. Gregori Ujaque, Feliu Maseras. Applications of Hybrid DFT/Molecular Mechanics to Homogeneous Catalysis. 2004, 117-150. https://doi.org/10.1007/b97938
    82. Kathleen M. Morgan. 12  Reaction mechanisms : Part (iii) Pericyclic reactions. Annu. Rep. Prog. Chem., Sect. B: Org. Chem. 2004, 100 , 335-350. https://doi.org/10.1039/B402173H
    83. Kilian Muñiz, Martin Nieger, Heidi Mansikkamäki. Stereochemically Defined Osmium Centers from Asymmetric Diamination of Olefins: Mechanistic Implications for Osmium‐Mediated Acrylate Functionalization. Angewandte Chemie International Edition 2003, 42 (48) , 5958-5961. https://doi.org/10.1002/anie.200352244
    84. Kilian Muñiz, Martin Nieger, Heidi Mansikkamäki. Stereochemisch definierte Osmium‐Zentren durch asymmetrische Diaminierung von Olefinen: Konsequenzen für den Mechanismus Osmium‐vermittelter Acrylester‐Oxidationen. Angewandte Chemie 2003, 115 (48) , 6140-6143. https://doi.org/10.1002/ange.200352244
    85. Dirk V. Deubel, Gernot Frenking. [3 + 2] versus [2 + 2] Addition of Metal Oxides Across C=C Bonds. Reconciliation of Experiment and Theory. ChemInform 2003, 34 (48) https://doi.org/10.1002/chin.200348233
    86. Dirk V. Deubel. Reaktivität von Osmiumtetroxid gegen Stickstoffheterocyclen: Bedeutung für die chemische Erkennung von DNA‐Fehlpaarung. Angewandte Chemie 2003, 115 (17) , 2019-2022. https://doi.org/10.1002/ange.200250462
    87. Dirk V. Deubel. Reactivity of Osmium Tetraoxide Towards Nitrogen Heterocycles: Implications for the Molecular Recognition of DNA Mismatch. Angewandte Chemie International Edition 2003, 42 (17) , 1974-1977. https://doi.org/10.1002/anie.200250462