ACS Publications. Most Trusted. Most Cited. Most Read
Computational Studies of the Primary Phototransduction Event in Visual Rhodopsin
My Activity
    Article

    Computational Studies of the Primary Phototransduction Event in Visual Rhodopsin
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut 06520-8107
    Other Access OptionsSupporting Information (1)

    Accounts of Chemical Research

    Cite this: Acc. Chem. Res. 2006, 39, 3, 184–193
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ar050027t
    Published January 31, 2006
    Copyright © 2006 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    This Account addresses recent advances in the elucidation of the detailed molecular rearrangements due to the primary photochemical event in rhodopsin, a prototypical G-protein-coupled receptor (GPCR) responsible for the signal transmission cascade in the vertebrate vision process. The reviewed studies provide fundamental insight on long-standing problems regarding the assembly and function of the individual residues and bound water molecules that form the rhodopsin active site, a center that catalyzes the 11-cis/all-trans isomerization of the retinyl chromophore in the primary step of the phototransduction mechanism. Emphasis is placed on the authors' recent computational studies, based on state-of-the-art quantum mechanics/molecular mechanics (QM/MM) hybrid methods, addressing the structural refinement of the retinyl chromophore binding site in high-resolution X-ray structures of bovine visual rhodopsin, the energy storage mechanism, and the molecular origin of spectroscopic changes due to the primary photochemical event.

    Copyright © 2006 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     To whom correspondence should be addressed. E-mail:  [email protected].

    Supporting Information Available

    Click to copy section linkSection link copied!

    Descriptions of the structural models, the QM/MM method, and the finite temperature calculations. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 76 publications.

    1. Kithmini Wijesiri, José A. Gascón. Structural Models of the First Molecular Events in the Heliorhodopsin Photocycle. The Journal of Physical Chemistry B 2024, 128 (25) , 5966-5972. https://doi.org/10.1021/acs.jpcb.4c00804
    2. Kazuhiro J. Fujimoto, Fumika Minowa, Michiya Nishina, Shunta Nakamura, Sayaka Ohashi, Kota Katayama, Hideki Kandori, Takeshi Yanai. Molecular Mechanism of Spectral Tuning by Chloride Binding in Monkey Green Sensitive Visual Pigment. The Journal of Physical Chemistry Letters 2023, 14 (7) , 1784-1793. https://doi.org/10.1021/acs.jpclett.2c03619
    3. Kithmini Wijesiri, José A. Gascón. Microsolvation Effects in the Spectral Tuning of Heliorhodopsin. The Journal of Physical Chemistry B 2022, 126 (31) , 5803-5809. https://doi.org/10.1021/acs.jpcb.2c03672
    4. Wenjin Li. Residue–Residue Mutual Work Analysis of Retinal–Opsin Interaction in Rhodopsin: Implications for Protein–Ligand Binding. Journal of Chemical Theory and Computation 2020, 16 (3) , 1834-1842. https://doi.org/10.1021/acs.jctc.9b01035
    5. Pablo E. Videla, Andreas Markmann, Victor S. Batista. Floquet Study of Quantum Control of the Cis–Trans Photoisomerization of Rhodopsin. Journal of Chemical Theory and Computation 2018, 14 (3) , 1198-1205. https://doi.org/10.1021/acs.jctc.7b01217
    6. Eduardo M. Sproviero . Opsin Effect on the Electronic Structure of the Retinylidene Chromophore in Rhodopsin. Journal of Chemical Theory and Computation 2015, 11 (3) , 1206-1219. https://doi.org/10.1021/ct500612n
    7. Rosana Álvarez, Belén Vaz, Hinrich Gronemeyer, and Ángel R. de Lera . Functions, Therapeutic Applications, and Synthesis of Retinoids and Carotenoids. Chemical Reviews 2014, 114 (1) , 1-125. https://doi.org/10.1021/cr400126u
    8. Rhitankar Pal, Sivakumar Sekharan, and Victor S. Batista . Spectral Tuning in Halorhodopsin: The Chloride Pump Photoreceptor. Journal of the American Chemical Society 2013, 135 (26) , 9624-9627. https://doi.org/10.1021/ja404600z
    9. Sivakumar Sekharan, Jennifer N. Wei, and Victor S. Batista . The Active Site of Melanopsin: The Biological Clock Photoreceptor. Journal of the American Chemical Society 2012, 134 (48) , 19536-19539. https://doi.org/10.1021/ja308763b
    10. Ville R. I. Kaila, Robert Send, and Dage Sundholm . The Effect of Protein Environment on Photoexcitation Properties of Retinal. The Journal of Physical Chemistry B 2012, 116 (7) , 2249-2258. https://doi.org/10.1021/jp205918m
    11. Sivakumar Sekharan, Shozo Yokoyama, and Keiji Morokuma . Quantum Mechanical/Molecular Mechanical Structure, Enantioselectivity, and Spectroscopy of Hydroxyretinals and Insights into the Evolution of Color Vision in Small White Butterflies. The Journal of Physical Chemistry B 2011, 115 (51) , 15380-15388. https://doi.org/10.1021/jp208107r
    12. Manish K. Sharma and Parimal K. Bharadwaj . A Dynamic Open Framework Exhibiting Guest- and/or Temperature-Induced Bicycle-Pedal Motion in Single-Crystal to Single-Crystal Transformation. Inorganic Chemistry 2011, 50 (5) , 1889-1897. https://doi.org/10.1021/ic102305v
    13. Sivakumar Sekharan, Ahmet Altun, and Keiji Morokuma . QM/MM Study of Dehydro and Dihydro β-Ionone Retinal Analogues in Squid and Bovine Rhodopsins: Implications for Vision in Salamander Rhodopsin. Journal of the American Chemical Society 2010, 132 (45) , 15856-15859. https://doi.org/10.1021/ja105050p
    14. Andrew G. Tennyson, Brent Norris and Christopher W. Bielawski. Structurally Dynamic Conjugated Polymers. Macromolecules 2010, 43 (17) , 6923-6935. https://doi.org/10.1021/ma101198z
    15. Michael D. Kurland, Michael B. Newcomer, Zita Peterlin, Kevin Ryan, Stuart Firestein and Victor S. Batista . Discrimination of Saturated Aldehydes by the Rat I7 Olfactory Receptor. Biochemistry 2010, 49 (30) , 6302-6304. https://doi.org/10.1021/bi100976w
    16. Natsuko Nishizawa, Daisuke Furukawa, Seiya Kobatake and Akikazu Matsumoto. Crystal Phase Transition and Solid-State Photoisomerization of Benzyl (Z,Z)-Muconate Polymorphs Studied by Direct Observation of Crystal Structure Change. Crystal Growth & Design 2010, 10 (7) , 3203-3210. https://doi.org/10.1021/cg100341g
    17. Ivan V. Rostov, Roger D. Amos, Rika Kobayashi, Giovanni Scalmani and Michael J. Frisch . Studies of the Ground and Excited-State Surfaces of the Retinal Chromophore using CAM-B3LYP. The Journal of Physical Chemistry B 2010, 114 (16) , 5547-5555. https://doi.org/10.1021/jp911329g
    18. Qi Gao, Satoshi Yokojima, Dmitri G. Fedorov, Kazuo Kitaura, Minoru Sakurai and Shinichiro Nakamura. Fragment-Molecular-Orbital-Method-Based ab Initio NMR Chemical-Shift Calculations for Large Molecular Systems. Journal of Chemical Theory and Computation 2010, 6 (4) , 1428-1444. https://doi.org/10.1021/ct100006n
    19. Sivakumar Sekharan and Keiji Morokuma . Drawing the Retinal Out of Its Comfort Zone: An ONIOM(QM/MM) Study of Mutant Squid Rhodopsin. The Journal of Physical Chemistry Letters 2010, 1 (3) , 668-672. https://doi.org/10.1021/jz100026k
    20. Petra H. M. Bovee-Geurts, Isabelle Fernández Fernández, Robert S. H. Liu, Richard A. Mathies, Johan Lugtenburg and Willem J. DeGrip . Fluoro Derivatives of Retinal Illuminate the Decisive Role of the C12-H Element in Photoisomerization and Rhodopsin Activation. Journal of the American Chemical Society 2009, 131 (49) , 17933-17942. https://doi.org/10.1021/ja907577p
    21. Tarun K. Mandal, Swapan K. Pati, Ayan Datta. Degenerate Intermolecular and Intramolecular Proton-Transfer Reactions: Electronic Structure of the Transition States. The Journal of Physical Chemistry A 2009, 113 (29) , 8147-8151. https://doi.org/10.1021/jp9044513
    22. Carlos Silva López, Rosana Álvarez, Marta Domínguez, Olalla Nieto Faza and Ángel R. de Lera. Complex Thermal Behavior of 11-cis-Retinal, the Ligand of the Visual Pigments. The Journal of Organic Chemistry 2009, 74 (3) , 1007-1013. https://doi.org/10.1021/jo801899k
    23. Igor Schapiro, Oliver Weingart and Volker Buss. Bicycle-Pedal Isomerization in a Rhodopsin Chromophore Model. Journal of the American Chemical Society 2009, 131 (1) , 16-17. https://doi.org/10.1021/ja805586z
    24. Maria Concistrè, Axel Gansmüller, Neville McLean, Ole G. Johannessen, Ildefonso Marín Montesinos, Petra H. M. Bovee-Geurts, Peter Verdegem, Johan Lugtenburg, Richard C. D. Brown, Willem J. DeGrip and Malcolm H. Levitt. Double-Quantum 13C Nuclear Magnetic Resonance of Bathorhodopsin, the First Photointermediate in Mammalian Vision. Journal of the American Chemical Society 2008, 130 (32) , 10490-10491. https://doi.org/10.1021/ja803801u
    25. Ahmet Altun, Shozo Yokoyama and Keiji Morokuma . Spectral Tuning in Visual Pigments: An ONIOM(QM:MM) Study on Bovine Rhodopsin and its Mutants. The Journal of Physical Chemistry B 2008, 112 (22) , 6814-6827. https://doi.org/10.1021/jp709730b
    26. Ksenia Bravaya,, Anastasia Bochenkova,, Alexander Granovsky, and, Alexander Nemukhin. An Opsin Shift in Rhodopsin:  Retinal S0−S1 Excitation in Protein, in Solution, and in the Gas Phase. Journal of the American Chemical Society 2007, 129 (43) , 13035-13042. https://doi.org/10.1021/ja0732126
    27. George F. R. Ellis. Quantum Physics, Digital Computers, and Life from a Holistic Perspective. Foundations of Physics 2024, 54 (4) https://doi.org/10.1007/s10701-024-00792-4
    28. Xiang­-Yang Liu, Wei-Hai Fang, Ganglong Cui. Photochemistry of Biological Systems: Excited-State Electronic Structure Calculations and Nonadiabatic Dynamics Simulations with QM/MM Methods. 2024, 345-384. https://doi.org/10.1016/B978-0-12-821978-2.00047-7
    29. Kazuhiro J. Fujimoto. Electronic Couplings and Electrostatic Interactions Behind the Light Absorption of Retinal Proteins. Frontiers in Molecular Biosciences 2021, 8 https://doi.org/10.3389/fmolb.2021.752700
    30. Kevin Clark, Natalia B. Pigni, Kithmini Wijesiri, José A. Gascón. Spectral Features of Canthaxanthin in HCP2. A QM/MM Approach. Molecules 2021, 26 (9) , 2441. https://doi.org/10.3390/molecules26092441
    31. Alexey S. Shigaev, Tatiana B. Feldman, Victor A. Nadtochenko, Mikhail A. Ostrovsky, Victor D. Lakhno. Quantum-classical model of the rhodopsin retinal chromophore cis–trans photoisomerization with modified inter-subsystem coupling. Computational and Theoretical Chemistry 2020, 1181 , 112831. https://doi.org/10.1016/j.comptc.2020.112831
    32. Dorota Latek, Bartosz Trzaskowski, Szymon Niewieczerzał, Przemysław Miszta, Krzysztof Młynarczyk, Aleksander Dębiński, Wojciech Puławski, Shuguang Yuan, Agnieszka Sztyler, Urszula Orzeł, Jakub Jakowiecki, Sławomir Filipek. Modeling of Membrane Proteins. 2019, 371-451. https://doi.org/10.1007/978-3-319-95843-9_12
    33. Paweł Śliwa, Rafał Kurczab, Andrzej J. Bojarski. ONIOM and FMO‐EDA study of metabotropic glutamate receptor 1: Quantum insights into the allosteric binding site. International Journal of Quantum Chemistry 2018, 118 (15) https://doi.org/10.1002/qua.25617
    34. Daniele Varsano, Stefano Caprasecca, Emanuele Coccia. Theoretical description of protein field effects on electronic excitations of biological chromophores. Journal of Physics: Condensed Matter 2017, 29 (1) , 013002. https://doi.org/10.1088/0953-8984/29/1/013002
    35. Carl‐Mikael Suomivuori, Lucas Lang, Dage Sundholm, Ana P. Gamiz‐Hernandez, Ville R. I. Kaila. Tuning the Protein‐Induced Absorption Shifts of Retinal in Engineered Rhodopsin Mimics. Chemistry – A European Journal 2016, 22 (24) , 8254-8261. https://doi.org/10.1002/chem.201505126
    36. Durba Sengupta, Manali Joshi, Chaitanya A. Athale, Amitabha Chattopadhyay. What can simulations tell us about GPCRs. 2016, 429-452. https://doi.org/10.1016/bs.mcb.2015.11.007
    37. M. Askerka, J. Ho, E.R. Batista, J.A. Gascón, V.S. Batista. The MOD-QM/MM Method. 2016, 443-481. https://doi.org/10.1016/bs.mie.2016.05.021
    38. Carlos Kubli-Garfias, Ricardo Vázquez-Ramírez, Blanca M. Cabrera-Vivas, Baldomero Gómez-Reyes, Juan Carlos Ramírez. Atomic and molecular analysis highlights the biophysics of unprotonated and protonated retinal in UV and scotopic vision. Photochemical & Photobiological Sciences 2015, 14 (9) , 1660-1672. https://doi.org/10.1039/c5pp00091b
    39. Carlos Kubli-Garfias, Ricardo Vázquez-Ramírez, Blanca M. Cabrera-Vivas, Baldomero Gómez-Reyes, Juan Carlos Ramírez. Atomic and molecular analysis highlights the biophysics of unprotonated and protonated retinal in UV and scotopic vision. Photochemical & Photobiological Sciences 2015, 14 (9) , 1660-1672. https://doi.org/10.1039/C5PP00091B
    40. Daniele Varsano, Emanuele Coccia, Olivia Pulci, Adriano Mosca Conte, Leonardo Guidoni. Ground state structures and electronic excitations of biological chromophores at Quantum Monte Carlo/Many Body Green’s Function Theory level. Computational and Theoretical Chemistry 2014, 1040-1041 , 338-346. https://doi.org/10.1016/j.comptc.2014.03.011
    41. Dorota Latek, Bartosz Trzaskowski, Szymon Niewieczerzał, Przemysław Miszta, Krzysztof Młynarczyk, Aleksander Debinski, Wojciech Puławski, Shuguang Yuan, Sławomir Filipek. Modeling of Membrane Proteins. 2014, 357-431. https://doi.org/10.1007/978-3-642-28554-7_12
    42. Emanuele Coccia, Leonardo Guidoni. Quantum monte carlo study of the retinal minimal model C 5 H 6 NH 2 +. Journal of Computational Chemistry 2012, 33 (29) , 2332-2339. https://doi.org/10.1002/jcc.23071
    43. ANJAN CHATTOPADHYAY. Comparative study of spectroscopic properties of the low-lying electronic states of 2,4-pentadien-1-iminium cation and its N-substituted analogues. Journal of Chemical Sciences 2012, 124 (5) , 985-994. https://doi.org/10.1007/s12039-012-0311-8
    44. Yufang Tang, Zhilin Liu, Xuewen Wu, Guhuan Liu, Ke Yang, Yaohua Li, Lican Lu, Yuanli Cai. Modulating structural stability and acid sensitivity of photosensitive polymer micelles simply via one‐batch UV irradiation. Journal of Polymer Science Part A: Polymer Chemistry 2012, 50 (14) , 2878-2888. https://doi.org/10.1002/pola.26065
    45. Maria Concistrè, Ole G. Johannessen, Neville McLean, Petra H. M. Bovee-Geurts, Richard C. D. Brown, Willem J. DeGrip, Malcolm H. Levitt. A large geometric distortion in the first photointermediate of rhodopsin, determined by double-quantum solid-state NMR. Journal of Biomolecular NMR 2012, 53 (3) , 247-256. https://doi.org/10.1007/s10858-012-9635-4
    46. Lung Wa Chung, Hajime Hirao, Xin Li, Keiji Morokuma. The ONIOM method: its foundation and applications to metalloenzymes and photobiology. Wiley Interdisciplinary Reviews: Computational Molecular Science 2012, 2 (2) , 327-350. https://doi.org/10.1002/wcms.85
    47. Zhilin Liu, Yufang Tang, Nan Li, Lican Lu, Junjie Deng, Yuanli Cai. Modulating light‐tunable acid sensitivity of a bioinspired polymer simply by adjusting the position of a single methoxy substituent. Journal of Polymer Science Part A: Polymer Chemistry 2012, 50 (3) , 495-508. https://doi.org/10.1002/pola.25057
    48. D.J. Sandberg, N.L. Wagner, M.N. Sandberg, J.M. Crowley, R.R. Birge. 9.10 MNDO-PSDCI and the Analysis of the Photophysical Properties of Visual Chromophores and Retinal Proteins. 2012, 162-189. https://doi.org/10.1016/B978-0-12-374920-8.00913-9
    49. Ah-Young Jee, Minyung Lee. Elasticity-controlled molecular dynamics of 9,9′-bifluorenyldene as a function of temperature and force. New Journal of Chemistry 2012, 36 (6) , 1308. https://doi.org/10.1039/c2nj40092h
    50. Jun-ya Hasegawa, Kazuhiro J. Fujimoto, Hiroshi Nakatsuji. Color Tuning in Photofunctional Proteins. ChemPhysChem 2011, 12 (17) , 3106-3115. https://doi.org/10.1002/cphc.201100452
    51. Carlos Kubli-Garfias, Karim Salazar-Salinas, Emily C. Perez-Angel, Jorge M. Seminario. Light activation of the isomerization and deprotonation of the protonated Schiff base retinal. Journal of Molecular Modeling 2011, 17 (10) , 2539-2547. https://doi.org/10.1007/s00894-010-0927-x
    52. Jennifer M Johnston, Marta Filizola. Showcasing modern molecular dynamics simulations of membrane proteins through G protein-coupled receptors. Current Opinion in Structural Biology 2011, 21 (4) , 552-558. https://doi.org/10.1016/j.sbi.2011.06.008
    53. Ramkumar Rajamani, Yen‐Lin Lin, Jiali Gao. The opsin shift and mechanism of spectral tuning in rhodopsin. Journal of Computational Chemistry 2011, 32 (5) , 854-865. https://doi.org/10.1002/jcc.21663
    54. Ah-Young Jee, Seohyun Park, Minyung Lee. Light-induced isomerization dynamics of a cyanine dye in the modulus-controlled regime. Physical Chemistry Chemical Physics 2011, 13 (33) , 15227. https://doi.org/10.1039/c1cp20835g
    55. M. G. Khrenova, A. V. Bochenkova, A. V. Nemukhin. Modeling reaction routes from rhodopsin to bathorhodopsin. Proteins: Structure, Function, and Bioinformatics 2010, 78 (3) , 614-622. https://doi.org/10.1002/prot.22590
    56. Lung Wa Chung, Xin Li, Keiji Morokuma. Modeling Enzymatic Reactions in Metalloenzymes and Photobiology by Quantum Mechanics (QM) and Quantum Mechanics/Molecular Mechanics (QM/MM) Calculations. 2010, 85-130. https://doi.org/10.1002/9783527629213.ch3
    57. Sivakumar Sekharan, Ahmet Altun, Keiji Morokuma. Photochemistry of Visual Pigment in a G q  Protein‐Coupled Receptor (GPCR)—Insights from Structural and Spectral Tuning Studies on Squid Rhodopsin. Chemistry – A European Journal 2010, 16 (6) , 1744-1749. https://doi.org/10.1002/chem.200903194
    58. Viktor Hornak, Shivani Ahuja, Markus Eilers, Joseph A. Goncalves, Mordechai Sheves, Philip J. Reeves, Steven O. Smith. Light Activation of Rhodopsin: Insights from Molecular Dynamics Simulations Guided by Solid-State NMR Distance Restraints. Journal of Molecular Biology 2010, 396 (3) , 510-527. https://doi.org/10.1016/j.jmb.2009.12.003
    59. Johannes Neugebauer. Subsystem‐Based Theoretical Spectroscopy of Biomolecules and Biomolecular Assemblies. ChemPhysChem 2009, 10 (18) , 3148-3173. https://doi.org/10.1002/cphc.200900538
    60. Eduardo M. Sproviero, Michael B. Newcomer, José A. Gascón, Enrique R. Batista, Gary W. Brudvig, Victor S. Batista. The MoD-QM/MM methodology for structural refinement of photosystem II and other biological macromolecules. Photosynthesis Research 2009, 102 (2-3) , 455-470. https://doi.org/10.1007/s11120-009-9467-6
    61. Qing Luo, Haimei Zheng, Ye Peng, Huan Gao, Lican Lu, Yuanli Cai. Facile synthesis of well‐defined pH‐liable Schiff‐base‐type photosensitive polymers via visible‐light‐activated ambient temperature RAFT polymerization. Journal of Polymer Science Part A: Polymer Chemistry 2009, 47 (23) , 6668-6681. https://doi.org/10.1002/pola.23708
    62. Axel Gansmüller, Maria Concistrè, Neville McLean, Ole G. Johannessen, Ildefonso Marín-Montesinos, Petra H.M. Bovee-Geurts, Peter Verdegem, Johan Lugtenburg, Richard C.D. Brown, Willem J. DeGrip, Malcolm H. Levitt. Towards an interpretation of 13C chemical shifts in bathorhodopsin, a functional intermediate of a G-protein coupled receptor. Biochimica et Biophysica Acta (BBA) - Biomembranes 2009, 1788 (6) , 1350-1357. https://doi.org/10.1016/j.bbamem.2009.02.018
    63. Hans Martin Senn, Walter Thiel. QM/MM Methods for Biomolecular Systems. Angewandte Chemie International Edition 2009, 48 (7) , 1198-1229. https://doi.org/10.1002/anie.200802019
    64. Hans Martin Senn, Walter Thiel. QM/MM‐Methoden für biomolekulare Systeme. Angewandte Chemie 2009, 121 (7) , 1220-1254. https://doi.org/10.1002/ange.200802019
    65. Jun Harada, Keiichiro Ogawa. Pedal motion in crystals. Chemical Society Reviews 2009, 38 (8) , 2244. https://doi.org/10.1039/b813850h
    66. Katherine F. Hall, Thom Vreven, Michael J. Frisch, Michael J. Bearpark. Three-Layer ONIOM Studies of the Dark State of Rhodopsin: The Protonation State of Glu181. Journal of Molecular Biology 2008, 383 (1) , 106-121. https://doi.org/10.1016/j.jmb.2008.08.007
    67. Yuan Zhang, José A. Gascón. QM/MM investigation of structure and spectroscopic properties of a vanadium-containing peroxidase. Journal of Inorganic Biochemistry 2008, 102 (8) , 1684-1690. https://doi.org/10.1016/j.jinorgbio.2008.04.006
    68. Ahmet Altun, Shozo Yokoyama, Keiji Morokuma. Quantum Mechanical/Molecular Mechanical Studies on Spectral Tuning Mechanisms of Visual Pigments and Other Photoactive Proteins †. Photochemistry and Photobiology 2008, 84 (4) , 845-854. https://doi.org/10.1111/j.1751-1097.2008.00308.x
    69. P.B. Coto, A. Strambi, M. Olivucci. Effect of opsin on the shape of the potential energy surfaces at the conical intersection of the Rhodopsin chromophore. Chemical Physics 2008, 347 (1-3) , 483-491. https://doi.org/10.1016/j.chemphys.2008.03.035
    70. Ute F. Röhrig, Daniel Sebastiani. NMR Chemical Shifts of the Rhodopsin Chromophore in the Dark State and in Bathorhodopsin:  A Hybrid QM/MM Molecular Dynamics Study. The Journal of Physical Chemistry B 2008, 112 (4) , 1267-1274. https://doi.org/10.1021/jp075662q
    71. Robert Send, Dage Sundholm. Stairway to the Conical Intersection:  A Computational Study of the Retinal Isomerization. The Journal of Physical Chemistry A 2007, 111 (36) , 8766-8773. https://doi.org/10.1021/jp073908l
    72. Xin Chen, Victor S. Batista. The MP/SOFT methodology for simulations of quantum dynamics: Model study of the photoisomerization of the retinyl chromophore in visual rhodopsin. Journal of Photochemistry and Photobiology A: Chemistry 2007, 190 (2-3) , 274-282. https://doi.org/10.1016/j.jphotochem.2007.05.015
    73. Hans Martin Senn, Walter Thiel. QM/MM studies of enzymes. Current Opinion in Chemical Biology 2007, 11 (2) , 182-187. https://doi.org/10.1016/j.cbpa.2007.01.684
    74. Eduardo M. Sproviero, José A. Gascón, James P. McEvoy, Gary W. Brudvig, Victor S. Batista. QM/MM Models of the O 2 -Evolving Complex of Photosystem II. Journal of Chemical Theory and Computation 2006, 2 (4) , 1119-1134. https://doi.org/10.1021/ct060018l
    75. Jose A. Gascon, Eduardo M. Sproviero, Victor S. Batista. Computational Studies of the Primary Phototransduction Event in Visual Rhodopsin. ChemInform 2006, 37 (25) https://doi.org/10.1002/chin.200625268
    76. Hans Martin Senn, Walter Thiel. QM/MM Methods for Biological Systems. , 173-290. https://doi.org/10.1007/128_2006_084

    Accounts of Chemical Research

    Cite this: Acc. Chem. Res. 2006, 39, 3, 184–193
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ar050027t
    Published January 31, 2006
    Copyright © 2006 American Chemical Society

    Article Views

    717

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.