ACS Publications. Most Trusted. Most Cited. Most Read
Wet Chemical Functionalization of Graphene
My Activity
    Article

    Wet Chemical Functionalization of Graphene
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry and Pharmacy and Institute of Advanced Materials and Processes (ZMP), University of Erlangen-Nürnberg, Henkestrasse 42, 91054 Erlangen, Germany
    *To whom correspondence should be addressed. E-mail: [email protected]
    Other Access Options

    Accounts of Chemical Research

    Cite this: Acc. Chem. Res. 2013, 46, 1, 87–96
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ar300116q
    Published September 4, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The fullerenes, carbon nanotubes, and graphene have enriched the family of carbon allotropes over the last few decades. Synthetic carbon allotropes (SCAs) have attracted chemists, physicists, and materials scientists because of the sheer multitude of their aesthetically pleasing structures and, more so, because of their outstanding and often unprecedented properties. They consist of fully conjugated p-electron systems and are considered topologically confined objects in zero, one, or two dimensions.

    Among the SCAs, graphene shows the greatest potential for high-performance applications, in the field of nanoelectronics, for example. However, significant fundamental research is still required to develop graphene chemistry. Chemical functionalization of graphene will increase its dispersibility in solvents, improve its processing into new materials, and facilitate the combination of graphene’s unprecedented properties with those of other compound classes.

    On the basis of our experience with fullerenes and carbon nanotubes, we have described a series of covalent and noncovalent approaches to generate graphene derivatives. Using water-soluble perylene surfactants, we could efficiently exfoliate graphite in water and prepare substantial amounts of single-layer-graphene (SLG) and few-layer-graphene (FLG). At the same time, this approach leads to noncovalent graphene derivatives because it establishes efficient π–π-stacking interactions between graphene and the aromatic perylene chromophors supported by hydrophobic interactions.

    To gain efficient access to covalently functionalized graphene we employed graphite intercalation compounds (GICs), where positively charged metal cations are located between the negatively charged graphene sheets. The balanced combination of intercalation combined with repulsion driven by Coulombic interactions facilitated efficient exfoliation and wet chemical functionalization of the electronically activated graphene sheets via trapping with reactive electrophilic addends. For example, the treatment of reduced graphite with aryl diazonium salts with the elimination of N2 led to the formation of arylated graphene. We obtained alkylated graphene via related trapping reactions with alkyl iodides.

    These new developments have opened the door for combining the unprecedented properties of graphene with those of other compound classes. We expect that further studies of the principles of graphene reactivity, improved characterization methods, and better synthetic control over graphene derivatives will lead to a whole series of new materials with highly specific functionalities and enormous potential for attractive applications.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 201 publications.

    1. Roberto Muñoz, Laia León-Boigues, Elena López-Elvira, Carmen Munuera, Luis Vázquez, Federico Mompeán, José Ángel Martín-Gago, Irene Palacio, Mar García-Hernández. Acrylates Polymerization on Covalent Plasma-Assisted Functionalized Graphene: A Route to Synthesize Hybrid Functional Materials. ACS Applied Materials & Interfaces 2023, 15 (39) , 46171-46180. https://doi.org/10.1021/acsami.3c07200
    2. Seong Gi Lim, Sung Eun Seo, Seongjae Jo, Kyung Ho Kim, Lina Kim, Oh Seok Kwon. Highly Efficient Real-Time TRPV1 Screening Methodology for Effective Drug Candidates. ACS Omega 2022, 7 (41) , 36441-36447. https://doi.org/10.1021/acsomega.2c04202
    3. Margot Jacquet, Silvio Osella, Ersan Harputlu, Barbara Pałys, Monika Kaczmarek, Ewa K. Nawrocka, Adam A. Rajkiewicz, Marcin Kalek, Paweł P. Michałowski, Bartosz Trzaskowski, C. Gokhan Unlu, Wojciech Lisowski, Marcin Pisarek, Krzysztof Kazimierczuk, Kasim Ocakoglu, Agnieszka Więckowska, Joanna Kargul. Diazonium-Based Covalent Molecular Wiring of Single-Layer Graphene Leads to Enhanced Unidirectional Photocurrent Generation through the p-doping Effect. Chemistry of Materials 2022, 34 (8) , 3744-3758. https://doi.org/10.1021/acs.chemmater.2c00088
    4. Tobias Dierke, Daniela Dasler, Tamara Nagel, Frank Hauke, Andreas Hirsch, Janina Maultzsch. Spatial Control of Graphene Functionalization by Patterning a 2D Substrate: Implications for Graphene Based van-der-Waals Heterostructures. ACS Applied Nano Materials 2022, 5 (4) , 4966-4971. https://doi.org/10.1021/acsanm.1c04559
    5. M. Eugenia Pérez-Ojeda, Edison Castro, Claudia Kröckel, Matteo Andrea Lucherelli, Ursula Ludacka, Jani Kotakoski, Katharina Werbach, Herwig Peterlik, Manuel Melle-Franco, Julio C. Chacón-Torres, Frank Hauke, Luis Echegoyen, Andreas Hirsch, Gonzalo Abellán. Carbon Nano-onions: Potassium Intercalation and Reductive Covalent Functionalization. Journal of the American Chemical Society 2021, 143 (45) , 18997-19007. https://doi.org/10.1021/jacs.1c07604
    6. Pei Lay Yap, Shervin Kabiri, Yow Loo Auyoong, Diana N. H. Tran, Dusan Losic. Tuning the Multifunctional Surface Chemistry of Reduced Graphene Oxide via Combined Elemental Doping and Chemical Modifications. ACS Omega 2019, 4 (22) , 19787-19798. https://doi.org/10.1021/acsomega.9b02642
    7. Gopal Avashthi, Shrikant S. Maktedar, Man Singh. Surface-Induced in Situ Sonothermodynamically Controlled Functionalized Graphene Oxide for in Vitro Cytotoxicity and Antioxidant Evaluations. ACS Omega 2019, 4 (15) , 16385-16401. https://doi.org/10.1021/acsomega.9b01939
    8. Vasileia Vogiazi, Armah de la Cruz, Siddharth Mishra, Vesselin Shanov, William R. Heineman, Dionysios D. Dionysiou. A Comprehensive Review: Development of Electrochemical Biosensors for Detection of Cyanotoxins in Freshwater. ACS Sensors 2019, 4 (5) , 1151-1173. https://doi.org/10.1021/acssensors.9b00376
    9. Qi Sun, Jianmei Li, Tao Le. Zinc Oxide Nanoparticle as a Novel Class of Antifungal Agents: Current Advances and Future Perspectives. Journal of Agricultural and Food Chemistry 2018, 66 (43) , 11209-11220. https://doi.org/10.1021/acs.jafc.8b03210
    10. Keith E. Whitener, Jr., Jeremy T. Robinson, and Paul E. Sheehan . Protection from Below: Stabilizing Hydrogenated Graphene Using Graphene Underlayers. Langmuir 2017, 33 (48) , 13749-13756. https://doi.org/10.1021/acs.langmuir.7b03596
    11. Gonzalo Abellán, Stefan Wild, Vicent Lloret, Nils Scheuschner, Roland Gillen, Udo Mundloch, Janina Maultzsch, Maria Varela, Frank Hauke, Andreas Hirsch. Fundamental Insights into the Degradation and Stabilization of Thin Layer Black Phosphorus. Journal of the American Chemical Society 2017, 139 (30) , 10432-10440. https://doi.org/10.1021/jacs.7b04971
    12. Balaraman Vedhanarayanan, Binson Babu, Manikoth M. Shaijumon, and Ayyappanpillai Ajayaghosh . Exfoliation of Reduced Graphene Oxide with Self-Assembled π-Gelators for Improved Electrochemical Performance. ACS Applied Materials & Interfaces 2017, 9 (23) , 19417-19426. https://doi.org/10.1021/acsami.6b09418
    13. Gonzalo Abellán, Milan Schirowski, Konstantin F. Edelthalhammer, Michael Fickert, Katharina Werbach, Herwig Peterlik, Frank Hauke, and Andreas Hirsch . Unifying Principles of the Reductive Covalent Graphene Functionalization. Journal of the American Chemical Society 2017, 139 (14) , 5175-5182. https://doi.org/10.1021/jacs.7b00704
    14. Kathrin C. Knirsch, Ferdinand Hof, Vicent Lloret, Udo Mundloch, Frank Hauke, Andreas Hirsch. Topology-Driven Reductive Silylation of Synthetic Carbon Allotropes. Journal of the American Chemical Society 2016, 138 (48) , 15642-15647. https://doi.org/10.1021/jacs.6b09487
    15. Zhenyuan Xia, Francesca Leonardi, Marco Gobbi, Yi Liu, Vittorio Bellani, Andrea Liscio, Alessandro Kovtun, Rongjin Li, Xinliang Feng, Emanuele Orgiu, Paolo Samorì, Emanuele Treossi, and Vincenzo Palermo . Electrochemical Functionalization of Graphene at the Nanoscale with Self-Assembling Diazonium Salts. ACS Nano 2016, 10 (7) , 7125-7134. https://doi.org/10.1021/acsnano.6b03278
    16. Hossein Ghafuri and Majid Talebi . Water-Soluble Phosphated Graphene: Preparation, Characterization, Catalytic Reactivity, and Adsorption Property. Industrial & Engineering Chemistry Research 2016, 55 (11) , 2970-2982. https://doi.org/10.1021/acs.iecr.5b02250
    17. Toby Sainsbury, Melissa Passarelli, Mira Naftaly, Sam Gnaniah, Steve J. Spencer, and Andrew J. Pollard . Covalent Carbene Functionalization of Graphene: Toward Chemical Band-Gap Manipulation. ACS Applied Materials & Interfaces 2016, 8 (7) , 4870-4877. https://doi.org/10.1021/acsami.5b10525
    18. Shiyu Gan, Lijie Zhong, Lifang Gao, Dongxue Han, and Li Niu . Electrochemically Driven Surface-Confined Acid/Base Reaction for an Ultrafast H+ Supercapacitor. Journal of the American Chemical Society 2016, 138 (5) , 1490-1493. https://doi.org/10.1021/jacs.5b12272
    19. Keith E. Whitener, Jr., Rory Stine, Jeremy T. Robinson, and Paul E. Sheehan . Graphene as Electrophile: Reactions of Graphene Fluoride. The Journal of Physical Chemistry C 2015, 119 (19) , 10507-10512. https://doi.org/10.1021/acs.jpcc.5b02730
    20. Laura Zuccaro, Klaus Kern, and Kannan Balasubramanian . Identifying Chemical Functionalization on Individual Carbon Nanotubes and Graphene by Local Vibrational Fingerprinting. ACS Nano 2015, 9 (3) , 3314-3323. https://doi.org/10.1021/acsnano.5b00479
    21. Yana Mulyana, Mutsunori Uenuma, Yasuaki Ishikawa, and Yukiharu Uraoka . Reversible Oxidation of Graphene Through Ultraviolet/Ozone Treatment and Its Nonthermal Reduction through Ultraviolet Irradiation. The Journal of Physical Chemistry C 2014, 118 (47) , 27372-27381. https://doi.org/10.1021/jp508026g
    22. Osvaldo N. Oliveira, Jr., Rodrigo M. Iost, José R. Siqueira, Jr., Frank N. Crespilho, and Luciano Caseli . Nanomaterials for Diagnosis: Challenges and Applications in Smart Devices Based on Molecular Recognition. ACS Applied Materials & Interfaces 2014, 6 (17) , 14745-14766. https://doi.org/10.1021/am5015056
    23. Maria-Eleni Ragoussi, Georgios Katsukis, Alexandra Roth, Jenny Malig, Gema de la Torre, Dirk M. Guldi, and Tomás Torres . Electron-Donating Behavior of Few-Layer Graphene in Covalent Ensembles with Electron-Accepting Phthalocyanines. Journal of the American Chemical Society 2014, 136 (12) , 4593-4598. https://doi.org/10.1021/ja411830x
    24. Theodosis Skaltsas, Xiaoxing Ke, Carla Bittencourt, and Nikos Tagmatarchis . Ultrasonication Induces Oxygenated Species and Defects onto Exfoliated Graphene. The Journal of Physical Chemistry C 2013, 117 (44) , 23272-23278. https://doi.org/10.1021/jp4057048
    25. Jason A. Mann and William R. Dichtel . Improving the Binding Characteristics of Tripodal Compounds on Single Layer Graphene. ACS Nano 2013, 7 (8) , 7193-7199. https://doi.org/10.1021/nn402599x
    26. Jan M. Englert, Philipp Vecera, Kathrin C. Knirsch, Ricarda A. Schäfer, Frank Hauke, and Andreas Hirsch . Scanning-Raman-Microscopy for the Statistical Analysis of Covalently Functionalized Graphene. ACS Nano 2013, 7 (6) , 5472-5482. https://doi.org/10.1021/nn401481h
    27. Burak Küçükelyas, İhsan Çaha, Cantekin Kaykılarlı, James Caleb Peters, Nuri Solak, Deniz Uzunsoy, Sebahattin Gürmen. Synergetic effect of functionalized few-layered graphene on structural, magnetic and electrical conductivity properties of CoCuFeNi high entropy alloys. Journal of Alloys and Compounds 2025, 1021 , 179594. https://doi.org/10.1016/j.jallcom.2025.179594
    28. Jasmin Eisenkolb, Vicent Lloret, Nathalie Zink‐Lorre, Sara Pla, Gonzalo Abellán, Ángela Sastre‐Santos, Frank Hauke, Fernando Fernández‐Lázaro, Andreas Hirsch. Investigations of Crucial Factors for the Non‐Covalent Functionalization of Black Phosphorus (BP) using Perylene Diimide Derivatives for the Passivation of BP Nanosheets. Chemistry – A European Journal 2024, 30 (67) https://doi.org/10.1002/chem.202402166
    29. Aminu Magaji, David P. Martin, Li-Shang Lin, Sergey A. Krasnikov, Alexander Kulak, Zabeada Aslam, Rik Drummond-Brydson, Natalia N. Sergeeva. Advanced one pot photochemical surface modification approach towards graphene materials and their application in dye removal. Journal of Photochemistry and Photobiology A: Chemistry 2024, 457 , 115884. https://doi.org/10.1016/j.jphotochem.2024.115884
    30. Sheetal Gulia, Md Moniruzzaman, Atanu Panda. Approaches in graphene-based nanocomposites: Synthesis, modification, and multifaceted applications. FlatChem 2024, 48 , 100761. https://doi.org/10.1016/j.flatc.2024.100761
    31. Saz Muhammad, Zeru Wang, Jieyan Li, Bing Guo, Ke Wang. Design of advanced composite battery materials based on nanoporous functional materials with different dimensionality. Nano Energy 2024, 130 , 110161. https://doi.org/10.1016/j.nanoen.2024.110161
    32. Mutawakkil Isah, Ridhwan Lawal, Sagheer A. Onaizi. CO2 capture and conversion using graphene-based materials: A review on recent progresses and future outlooks. Green Chemical Engineering 2024, 7 https://doi.org/10.1016/j.gce.2024.09.009
    33. Hongyu Sun, Qiongli Bao, Yutan Chu, Yan Li, Jiahao Shi, Yizong Huang. Iron-lanthanum supported on graphite sheets for As(III) removal from aqueous solution: kinetics, thermodynamic and ecotoxicity assessment. Environmental Science and Pollution Research 2024, 31 (18) , 27037-27051. https://doi.org/10.1007/s11356-024-32958-y
    34. Ning Sun, Chen Gu, Huachao Ji, Xianjun Zhu, Xinyi Liu, Yanling Zhuang, Longlu Wang. Structure engineering of MoS2 for desalination. Desalination 2024, 575 , 117270. https://doi.org/10.1016/j.desal.2023.117270
    35. Eva Marie Freiberger, Julien Steffen, Natalie J Waleska-Wellnhofer, Felix Hemauer, Valentin Schwaab, Andreas Görling, Hans-Peter Steinrück, Christian Papp. Bromination of 2D materials. Nanotechnology 2024, 35 (14) , 145703. https://doi.org/10.1088/1361-6528/ad1201
    36. Jia Cui, Ziyi Zhang, Han Zhong, Tao Zhang. Phosphorylcholine-grafted graphene oxide loaded with irinotecan for potential oncology therapy. RSC Advances 2023, 13 (41) , 28642-28651. https://doi.org/10.1039/D3RA04987F
    37. Annika C. Ackermann, Martin Demleitner, Jajnabalkya Guhathakurta, Stefan Carosella, Holger Ruckdäschel, Sven Simon, Bronwyn L. Fox, Peter Middendorf. Mechanical, thermal, and electrical properties of amine‐ and non‐functionalized reduced graphene oxide/epoxy carbon fiber‐reinforced polymers. Polymer Composites 2023, 44 (8) , 4937-4954. https://doi.org/10.1002/pc.27461
    38. Gopal Avashthi, Man Singh. Functionalization of Graphene and Factors Affecting Catalytic Performance. 2023, 154-207. https://doi.org/10.2174/9789815050899123010009
    39. E.M. Sadek, S.M. Ahmed, N.A. Mansour. Carbon nanotubes and other carbon nanomaterials: Prospects for functionalization. 2023, 107-147. https://doi.org/10.1016/B978-0-12-824366-4.00004-2
    40. Shiva Sharma, Ashish Kumar, Sudheesh K. Shukla, Subrata K. Das, Alpana Joshi. Biomass-based functionalized carbon dots: A promising shield with antimicrobial activities. 2023, 113-155. https://doi.org/10.1016/B978-0-323-91783-4.00003-6
    41. Lei Zhang, Zhe-Ji Wang, Bo Ma, Xiang-Yang Li, Yu-Chi Dai, Guowen Hu, Yong Peng, Qiang Wang, Hao-Li Zhang. Covalent carbene modification of 2D black phosphorus. Chinese Chemical Letters 2022, 33 (10) , 4640-4644. https://doi.org/10.1016/j.cclet.2021.12.046
    42. M. Białoruski, D. Kumar, M. Gołda-Cępa, W. Piskorz, A. Kotarba. Work function of the oxygen functionalized graphenic surfaces – Integral experimental and theoretical approach. Applied Surface Science 2022, 597 , 153671. https://doi.org/10.1016/j.apsusc.2022.153671
    43. Yuanyuan Cui, Guorui Wang, Wenxiang Wang, Xuwei Cui, Wenlong Dong, Congying Wang, Meihua Jin, Tao He, Zhong Zhang, Luqi Liu. Trade-off between interface stiffening and Young's modulus weakening in graphene/PMMA nanocomposites. Composites Science and Technology 2022, 225 , 109483. https://doi.org/10.1016/j.compscitech.2022.109483
    44. Pascal Martin, Bruno Dlubak, Pierre Seneor, Richard Mattana, Marie‐Blandine Martin, Philippe Lafarge, François Mallet, Maria Luisa Della Rocca, Simon M.‐M. Dubois, Jean‐Christophe Charlier, Clément Barraud. Organic–Inorganic Hybrid Interfaces for Spin Injection into Carbon Nanotubes and Graphene. Advanced Quantum Technologies 2022, 5 (6) https://doi.org/10.1002/qute.202100166
    45. Annika C. Ackermann, Michael Fischer, Alexander Wick, Stefan Carosella, Bronwyn L. Fox, Peter Middendorf. Mechanical, Thermal and Electrical Properties of Epoxy Nanocomposites with Amine-Functionalized Reduced Graphene Oxide via Plasma Treatment. Journal of Composites Science 2022, 6 (6) , 153. https://doi.org/10.3390/jcs6060153
    46. Oleg N. Chupakhin, Alexandra A. Musikhina, Irina A. Utepova, Valery N. Charushin, Andrey A. Rempel, Victoria I. Pryakhina, Svetlana V. Pershina, Liudmila A. Yolshina, Elena Yu. Zyryanova, Emma G. Vovkotrub. Synthesis and properties of azines functionalized graphene with extremely high adsorptive ability to Eu3+ ions. FlatChem 2022, 33 , 100348. https://doi.org/10.1016/j.flatc.2022.100348
    47. Annika C. Ackermann, Stefan Carosella, Markus Rettenmayr, Bronwyn L. Fox, Peter Middendorf. Rheology, dispersion, and cure kinetics of epoxy filled with amine‐ and non‐functionalized reduced graphene oxide for composite manufacturing. Journal of Applied Polymer Science 2022, 139 (8) https://doi.org/10.1002/app.51664
    48. Jean Pinson, Fetah I. Podvorica. Principle, General Features and Scope of the Reaction, Recent Advances, Future Prospects. 2022, 1-34. https://doi.org/10.1007/978-3-031-04398-7_1
    49. Aidar M. Kuchkaev, Sneha Lavate, Airat M. Kuchkaev, Aleksandr V. Sukhov, Rohit Srivastava, Dmitry G. Yakhvarov. Chemical Functionalization of 2D Black Phosphorus toward Its Applications in Energy Devices and Catalysis: A Review. Energy Technology 2021, 9 (12) https://doi.org/10.1002/ente.202100581
    50. Tao Wei, Frank Hauke, Andreas Hirsch. Evolution of Graphene Patterning: From Dimension Regulation to Molecular Engineering. Advanced Materials 2021, 33 (45) https://doi.org/10.1002/adma.202104060
    51. Sebastiano Bellani, Antonino Bartolotta, Antonio Agresti, Giuseppe Calogero, Giulia Grancini, Aldo Di Carlo, Emmanuel Kymakis, Francesco Bonaccorso. Solution-processed two-dimensional materials for next-generation photovoltaics. Chemical Society Reviews 2021, 50 (21) , 11870-11965. https://doi.org/10.1039/D1CS00106J
    52. Luca Basta, Aldo Moscardini, Filippo Fabbri, Luca Bellucci, Valentina Tozzini, Silvia Rubini, Andrea Griesi, Mauro Gemmi, Stefan Heun, Stefano Veronesi. Covalent organic functionalization of graphene nanosheets and reduced graphene oxide via 1,3-dipolar cycloaddition of azomethine ylide. Nanoscale Advances 2021, 3 (20) , 5841-5852. https://doi.org/10.1039/D1NA00335F
    53. Agnivo Gosai, Kamil Khondakar, Xiao Ma, Md. Ali. Application of Functionalized Graphene Oxide Based Biosensors for Health Monitoring: Simple Graphene Derivatives to 3D Printed Platforms. Biosensors 2021, 11 (10) , 384. https://doi.org/10.3390/bios11100384
    54. Kam Ka Wei, Teh Pei Leng, Yeoh Cheow Keat, Hakimah Osman, Martin Sullivan, Voon Chun Hong, Lim Bee Ying, Mohamad Syahmie Mohamad Rasidi. Comparison study: The effect of unmodified and modified graphene nano‐platelets ( GNP ) on the mechanical, thermal, and electrical performance of different types of GNP‐ filled materials. Polymers for Advanced Technologies 2021, 32 (9) , 3588-3608. https://doi.org/10.1002/pat.5368
    55. Mingyue Wang, Ming Zhou, Xiao Li, Chaogui Luo, Shengli You, Xin Chen, Youtang Mo, Hongwei Zhu. Research progress of surface-modified graphene-based materials for tribological applications. Materials Research Express 2021, 8 (4) , 042002. https://doi.org/10.1088/2053-1591/abf1a3
    56. Simon Gravelle, Catherine Kamal, Lorenzo Botto. Violations of Jeffery's theory in the dynamics of nanographene in shear flow. Physical Review Fluids 2021, 6 (3) https://doi.org/10.1103/PhysRevFluids.6.034303
    57. Xia Ran, Yanqiu Li, Zhongran Wei, Xiangyu Huo, Yulu He, Xiaojuan Wang, Yanmin Kuang, Lijun Guo. Highly enhanced nonlinear optical absorption with ultrafast charge transfer of reduced graphene oxide hybridized by an azobenzene derivative. Optics Express 2021, 29 (4) , 5213. https://doi.org/10.1364/OE.416079
    58. Chen-Xia Hu, Yuyoung Shin, Oliver Read, Cinzia Casiraghi. Dispersant-assisted liquid-phase exfoliation of 2D materials beyond graphene. Nanoscale 2021, 13 (2) , 460-484. https://doi.org/10.1039/D0NR05514J
    59. Luisa Pilan, Matei Raicopol. Electrochemical DNA Biosensors Based on Carbon Nanomaterials. 2021, 209-247. https://doi.org/10.1007/978-981-15-7610-2_10
    60. Konstantin Felix Edelthalhammer, Daniela Dasler, Lisa Jurkiewicz, Tamara Nagel, Sabrin Al‐Fogra, Frank Hauke, Andreas Hirsch. Kovalente 2D‐Strukturierung von Graphen durch räumlich aufgelöstes Laserschreiben/Lesen/Löschen. Angewandte Chemie 2020, 132 (51) , 23529-23534. https://doi.org/10.1002/ange.202006874
    61. Konstantin Felix Edelthalhammer, Daniela Dasler, Lisa Jurkiewicz, Tamara Nagel, Sabrin Al‐Fogra, Frank Hauke, Andreas Hirsch. Covalent 2D‐Engineering of Graphene by Spatially Resolved Laser Writing/Reading/Erasing. Angewandte Chemie International Edition 2020, 59 (51) , 23329-23334. https://doi.org/10.1002/anie.202006874
    62. Vicent Lloret, Edurne Nuin, Malte Kohring, Stefan Wild, Mario Löffler, Christian Neiss, Michael Krieger, Frank Hauke, Andreas Görling, Heiko B. Weber, Gonzalo Abellán, Andreas Hirsch. Noncovalent Functionalization and Passivation of Black Phosphorus with Optimized Perylene Diimides for Hybrid Field Effect Transistors. Advanced Materials Interfaces 2020, 7 (23) https://doi.org/10.1002/admi.202001290
    63. Maryam Razaghi, Ali Ramazani, Mehdi Khoobi, Tohid Mortezazadeh, Eda Ayşe Aksoy, Tuba Tüylü Küçükkılınç. Highly fluorinated graphene oxide nanosheets for anticancer linoleic-curcumin conjugate delivery and T2-Weighted magnetic resonance imaging: In vitro and in vivo studies. Journal of Drug Delivery Science and Technology 2020, 60 , 101967. https://doi.org/10.1016/j.jddst.2020.101967
    64. Abdellatif Ait Lahcen, Sakandar Rauf, Tutku Beduk, Ceren Durmus, Abdulrahman Aljedaibi, Suna Timur, Husam N. Alshareef, Aziz Amine, Otto S. Wolfbeis, Khaled N. Salama. Electrochemical sensors and biosensors using laser-derived graphene: A comprehensive review. Biosensors and Bioelectronics 2020, 168 , 112565. https://doi.org/10.1016/j.bios.2020.112565
    65. Claudia Backes, Amr M Abdelkader, Concepción Alonso, Amandine Andrieux-Ledier, Raul Arenal, Jon Azpeitia, Nilanthy Balakrishnan, Luca Banszerus, Julien Barjon, Ruben Bartali, Sebastiano Bellani, Claire Berger, Reinhard Berger, M M Bernal Ortega, Carlo Bernard, Peter H Beton, André Beyer, Alberto Bianco, Peter Bøggild, Francesco Bonaccorso, Gabriela Borin Barin, Cristina Botas, Rebeca A Bueno, Daniel Carriazo, Andres Castellanos-Gomez, Meganne Christian, Artur Ciesielski, Tymoteusz Ciuk, Matthew T Cole, Jonathan Coleman, Camilla Coletti, Luigi Crema, Huanyao Cun, Daniela Dasler, Domenico De Fazio, Noel Díez, Simon Drieschner, Georg S Duesberg, Roman Fasel, Xinliang Feng, Alberto Fina, Stiven Forti, Costas Galiotis, Giovanni Garberoglio, Jorge M García, Jose Antonio Garrido, Marco Gibertini, Armin Gölzhäuser, Julio Gómez, Thomas Greber, Frank Hauke, Adrian Hemmi, Irene Hernandez-Rodriguez, Andreas Hirsch, Stephen A Hodge, Yves Huttel, Peter U Jepsen, Ignacio Jimenez, Ute Kaiser, Tommi Kaplas, HoKwon Kim, Andras Kis, Konstantinos Papagelis, Kostas Kostarelos, Aleksandra Krajewska, Kangho Lee, Changfeng Li, Harri Lipsanen, Andrea Liscio, Martin R Lohe, Annick Loiseau, Lucia Lombardi, Maria Francisca López, Oliver Martin, Cristina Martín, Lidia Martínez, Jose Angel Martin-Gago, José Ignacio Martínez, Nicola Marzari, Álvaro Mayoral, John McManus, Manuela Melucci, Javier Méndez, Cesar Merino, Pablo Merino, Andreas P Meyer, Elisa Miniussi, Vaidotas Miseikis, Neeraj Mishra, Vittorio Morandi, Carmen Munuera, Roberto Muñoz, Hugo Nolan, Luca Ortolani, Anna K Ott, Irene Palacio, Vincenzo Palermo, John Parthenios, Iwona Pasternak, Amalia Patane, Maurizio Prato, Henri Prevost, Vladimir Prudkovskiy, Nicola Pugno, Teófilo Rojo, Antonio Rossi, Pascal Ruffieux, Paolo Samorì, Léonard Schué, Eki Setijadi, Thomas Seyller, Giorgio Speranza, Christoph Stampfer, Ingrid Stenger, Wlodek Strupinski, Yuri Svirko, Simone Taioli, Kenneth B K Teo, Matteo Testi, Flavia Tomarchio, Mauro Tortello, Emanuele Treossi, Andrey Turchanin, Ester Vazquez, Elvira Villaro, Patrick R Whelan, Zhenyuan Xia, Rositza Yakimova, Sheng Yang, G Reza Yazdi, Chanyoung Yim, Duhee Yoon, Xianghui Zhang, Xiaodong Zhuang, Luigi Colombo, Andrea C Ferrari, Mar Garcia-Hernandez. Production and processing of graphene and related materials. 2D Materials 2020, 7 (2) , 022001. https://doi.org/10.1088/2053-1583/ab1e0a
    66. Konstantin Amsharov, Dmitry I. Sharapa, Oleg A. Vasilyev, Martin Oliver, Frank Hauke, Andreas Goerling, Himadriben Soni, Andreas Hirsch. Fractal-seaweeds type functionalization of graphene. Carbon 2020, 158 , 435-448. https://doi.org/10.1016/j.carbon.2019.11.008
    67. Romakanta Bhattarai, Xiao Shen. Ultra-high mechanical flexibility of 2D silicon telluride. Applied Physics Letters 2020, 116 (2) https://doi.org/10.1063/1.5120533
    68. Gonzalo Abellán, Jose A. Carrasco, Eugenio Coronado. Layered double hydroxide nanocomposites based on carbon nanoforms. 2020, 411-460. https://doi.org/10.1016/B978-0-08-101903-0.00010-6
    69. Koteeswara Reddy Nandanapalli, Devika Mudusu, Sungwon Lee. Functionalization of graphene layers and advancements in device applications. Carbon 2019, 152 , 954-985. https://doi.org/10.1016/j.carbon.2019.06.081
    70. Gopal Avashthi, Shrikant S. Maktedar, Man Singh. Sonochemically N-functionalized graphene oxide towards optically active photoluminescent bioscaffold. Ultrasonics Sonochemistry 2019, 58 , 104651. https://doi.org/10.1016/j.ultsonch.2019.104651
    71. Matteo Andrea Lucherelli, Jésus Raya, Konstantin F. Edelthalhammer, Frank Hauke, Andreas Hirsch, Gonzalo Abellán, Alberto Bianco. A Straightforward Approach to Multifunctional Graphene. Chemistry – A European Journal 2019, 25 (57) , 13218-13223. https://doi.org/10.1002/chem.201903165
    72. Lang Ma, Mi Zhou, Chao He, Shuang Li, Xin Fan, Chuanxiong Nie, Hongrong Luo, Li Qiu, Chong Cheng. Graphene-based advanced nanoplatforms and biocomposites from environmentally friendly and biomimetic approaches. Green Chemistry 2019, 21 (18) , 4887-4918. https://doi.org/10.1039/C9GC02266J
    73. Ahmed Khalid Hussain, Izman Sudin, Uday M. Basheer, Mohd Zamri Mohd Yusop. A review on graphene-based polymer composite coatings for the corrosion protection of metals. Corrosion Reviews 2019, 37 (4) , 343-363. https://doi.org/10.1515/corrrev-2018-0097
    74. Randhir Bhoria. Enhancing Liquid Phase Exfoliation of Graphene in Organic Solvents with Additives. 2019https://doi.org/10.5772/intechopen.81462
    75. O. Yu. Posudievsky, A. S. Kondratyuk, V. V. Cherepanov, G. I. Dovbeshko, V. G. Koshechko, V. D. Pokhodenko. Modified Graphenes Prepared by the Interaction of Mechanochemically Nanostructured Graphite with Water and Aliphatic Alcohols. Theoretical and Experimental Chemistry 2019, 55 (2) , 96-102. https://doi.org/10.1007/s11237-019-09599-1
    76. Isabell Wabra, Johannes Holzwarth, Frank Hauke, Andreas Hirsch. Exohedral Addition Chemistry of the Fullerenide Anions C 60 2− and C 60 ⋅−. Chemistry – A European Journal 2019, 25 (20) , 5186-5201. https://doi.org/10.1002/chem.201805777
    77. Hui-Lei Hou, Juan Pedro Merino, Alejandro Criado, Andreas Hirsch, Maurizio Prato. The reactivity of reduced graphene depends on solvation. 2D Materials 2019, 6 (2) , 025009. https://doi.org/10.1088/2053-1583/aafd9b
    78. Matteo Eleuteri, Mar Bernal, Marco Milanesio, Orietta Monticelli, Alberto Fina. Stereocomplexation of Poly(Lactic Acid)s on Graphite Nanoplatelets: From Functionalized Nanoparticles to Self-assembled Nanostructures. Frontiers in Chemistry 2019, 7 https://doi.org/10.3389/fchem.2019.00176
    79. Pacharapon Kankla, Jumras Limtrakul, Malcolm L.H. Green, Narong Chanlek, Patraporn Luksirikul. Electrooxidation of formic acid enhanced by surfactant-free palladium nanocubes on surface modified graphene catalyst. Applied Surface Science 2019, 471 , 176-184. https://doi.org/10.1016/j.apsusc.2018.12.001
    80. Anitha Devadoss, Rhiannan Forsyth, Ryan Bigham, Hina Abbasi, Muhammad Ali, Zari Tehrani, Yufei Liu, Owen. J. Guy. Ultrathin Functional Polymer Modified Graphene for Enhanced Enzymatic Electrochemical Sensing. Biosensors 2019, 9 (1) , 16. https://doi.org/10.3390/bios9010016
    81. Anur Yadav, Rodrigo M. Iost, Tilmann J. Neubert, Sema Baylan, Thomas Schmid, Kannan Balasubramanian. Selective electrochemical functionalization of the graphene edge. Chemical Science 2019, 10 (3) , 936-942. https://doi.org/10.1039/C8SC04083D
    82. Gopal Avashthi, Shrikant S. Maktedar, Man Singh. Sonochemically Covalent Functionalized Graphene Oxide Towards Photoluminescence and Nanocytotoxicity Activities. 2019, 105-126. https://doi.org/10.1007/978-981-32-9057-0_4
    83. Christian D. Methfessel, Michel Volland, Kristin Brunner, Leonie Wibmer, Uwe Hahn, Gema de la Torre, Tomás Torres, Andreas Hirsch, Dirk M. Guldi. Exfoliation of Graphene by Dendritic Water‐Soluble Zinc Phthalocyanine Amphiphiles in Polar Media. Chemistry – A European Journal 2018, 24 (70) , 18696-18704. https://doi.org/10.1002/chem.201803596
    84. Yu-Min Liu, Hao Hou, Yan-Zhen Zhou, Xin-Jing Zhao, Chun Tang, Yuan-Zhi Tan, Klaus Müllen. Nanographenes as electron-deficient cores of donor-acceptor systems. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-04321-6
    85. Yuki Hashima, Yasuaki Ishikawa, Itaru Raifuku, Ippei Inoue, Naofumi Okamoto, Ichiro Yamashita, Tsuyoshi Minami, Yukiharu Uraoka. Easy and green preparation of a graphene–TiO 2 nanohybrid using a supramolecular biomaterial consisting of artificially bifunctionalized proteins and its application for a perovskite solar cell. Nanoscale 2018, 10 (41) , 19249-19253. https://doi.org/10.1039/C8NR04441D
    86. M. Eugenia Pérez‐Ojeda, Isabell Wabra, Christoph Böttcher, Andreas Hirsch. Fullerene Building Blocks with Tailor‐Made Solubility and New Insights into Their Hierarchical Self‐Assembly. Chemistry – A European Journal 2018, 24 (53) , 14088-14100. https://doi.org/10.1002/chem.201803036
    87. Christian E. Halbig, Oliver Martin, Frank Hauke, Siegfried Eigler, Andreas Hirsch. Oxo‐Functionalized Graphene: A Versatile Precursor for Alkylated Graphene Sheets by Reductive Functionalization. Chemistry – A European Journal 2018, 24 (50) , 13348-13354. https://doi.org/10.1002/chem.201802500
    88. Xiaolong Liu, Mark C. Hersam. Interface Characterization and Control of 2D Materials and Heterostructures. Advanced Materials 2018, 30 (39) https://doi.org/10.1002/adma.201801586
    89. Keith E. Whitener. Review Article: Hydrogenated graphene: A user’s guide. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2018, 36 (5) https://doi.org/10.1116/1.5034433
    90. Keith Whitener, Woo-Kyung Lee, Thomas O'Shaughnessy, Jeremy T. Robinson, Paul E. Sheehan, . Hydrogen-assisted graphene transfer: surface engineering for chemical, electronic, and biological applications. 2018, 15. https://doi.org/10.1117/12.2304366
    91. Jiri Sturala, Jan Luxa, Martin Pumera, Zdeněk Sofer. Chemistry of Graphene Derivatives: Synthesis, Applications, and Perspectives. Chemistry – A European Journal 2018, 24 (23) , 5992-6006. https://doi.org/10.1002/chem.201704192
    92. Andreas Hirsch, Frank Hauke. Zweidimensionale Chemie jenseits von Graphen: das aufstrebende Gebiet der Funktionalisierung von Molybdändisulfid und schwarzem Phosphor. Angewandte Chemie 2018, 130 (16) , 4421-4437. https://doi.org/10.1002/ange.201708211
    93. Andreas Hirsch, Frank Hauke. Post‐Graphene 2D Chemistry: The Emerging Field of Molybdenum Disulfide and Black Phosphorus Functionalization. Angewandte Chemie International Edition 2018, 57 (16) , 4338-4354. https://doi.org/10.1002/anie.201708211
    94. Edurne Nuin, Vicent Lloret, Konstantin Amsharov, Frank Hauke, Gonzalo Abellán, Andreas Hirsch. Isomerically Pure Star‐Shaped Triphenylene–Perylene Hybrids Involving Highly Extended π‐Conjugation. Chemistry – A European Journal 2018, 24 (18) , 4671-4679. https://doi.org/10.1002/chem.201705872
    95. Randhir Singh, Chandra Charu Tripathi. Enhancing Graphene Concentration in Organic Solvents with Salts and Additives. Materials Today: Proceedings 2018, 5 (1) , 1455-1461. https://doi.org/10.1016/j.matpr.2017.11.233
    96. Xianglong Li, Linjie Zhi. Graphene hybridization for energy storage applications. Chemical Society Reviews 2018, 47 (9) , 3189-3216. https://doi.org/10.1039/C7CS00871F
    97. Artur Kasprzak, Anna M. Nowicka, Jakub P. Sek, Maciej Fronczak, Michał Bystrzejewski, Mariola Koszytkowska-Stawinska, Magdalena Poplawska. Addition of azomethine ylides to carbon-encapsulated iron nanoparticles. Dalton Transactions 2018, 47 (1) , 30-34. https://doi.org/10.1039/C7DT03689B
    98. Hui‐Lei Hou, Daniela Dasler, Frank Hauke, Andreas Hirsch. Reductive Functionalization of Graphenides With Nickel(II) Porphyrin Diazonium Compounds. physica status solidi (RRL) – Rapid Research Letters 2017, 11 (11) https://doi.org/10.1002/pssr.201700306
    99. Daniel Lang, Anke Krueger. Functionalizing nanodiamond particles with N-heterocyclic iminium bromides and dicyano methanides. Diamond and Related Materials 2017, 79 , 102-107. https://doi.org/10.1016/j.diamond.2017.09.003
    100. Daniel Iglesias, Pedro Atienzar, Ester Vázquez, María Herrero, Hermenegildo García. Carbon Nanohorns Modified with Conjugated Terthienyl/Terthiophene Structures: Additives to Enhance the Performance of Dye-Sensitized Solar Cells. Nanomaterials 2017, 7 (10) , 294. https://doi.org/10.3390/nano7100294
    Load more citations

    Accounts of Chemical Research

    Cite this: Acc. Chem. Res. 2013, 46, 1, 87–96
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ar300116q
    Published September 4, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    8423

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.