ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Functionalized Carbon Nanotubes in Drug Design and Discovery

View Author Information
Dipartimento di Scienze Farmaceutiche, Università di Trieste, 34127 Trieste, Italy
Nanomedicine Laboratory, Centre for Drug Delivery Research, The School of Pharmacy, University of London, London WC1N 1AX, United Kingdom
§ CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d'Immunologie et Chimie Thérapeutiques, 67000 Strasbourg, France
* To whom correspondence should be addressed. E-mail: [email protected]; [email protected] and [email protected]
Cite this: Acc. Chem. Res. 2008, 41, 1, 60–68
Publication Date (Web):September 15, 2007
https://doi.org/10.1021/ar700089b
Copyright © 2008 American Chemical Society

    Article Views

    12502

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (524 KB)

    Abstract

    Carbon nanotubes (CNTs) have been proposed and actively explored as multipurpose innovative carriers for drug delivery and diagnostic applications. Their versatile physicochemical features enable the covalent and noncovalent introduction of several pharmaceutically relevant entities and allow for rational design of novel candidate nanoscale constructs for drug development. CNTs can be functionalized with different functional groups to carry simultaneously several moieties for targeting, imaging, and therapy. Among the most interesting examples of such multimodal CNT constructs described in this Account is one carrying a fluorescein probe together with the antifungal drug amphotericin B or fluorescein and the antitumor agent methotrexate. The biological action of the drug in these cases is retained or, as in the case of amphotericin B constructs, enhanced, while CNTs are able to reduce the unwanted toxicity of the drug administered alone. Ammonium-functionalized CNTs can also be considered very promising vectors for gene-encoding nucleic acids. Indeed, we have formed stable complexes between cationic CNTs and plasmid DNA and demonstrated the enhancement of the gene therapeutic capacity in comparison to DNA alone. On the other hand, CNTs conjugated with antigenic peptides can be developed as a new and effective system for synthetic vaccine applications. What makes CNTs quite unique is their ability, first shown by our groups in 2004, to passively cross membranes of many different types of cells following a translocation mechanism that has been termed the nanoneedle mechanism. In that way, CNTs open innumerable possibilities for future drug discovery based on intracellular targets that have been hard to reach until today. Moreover, adequately functionalized CNTs as those shown in this Account can be rapidly eliminated from the body following systemic administration offering further encouragment for their development. CNT excretion rates and accumulation in organs and any reactivity with the immune system will determine the CNT safety profile and, consequently, any further pharmaceutical development. Caution is advised about the need for systematic data on the long-term fate of these very interesting and versatile nano-objects in correlation with the type of CNT material used. CNTs are gradually plyaing a bigger and more important role in the emerging field of nanomedicine; however, we need to guarantee that the great opportunities they offer will be translated into feasible and safe constructs to be included in drug discovery and development pipelines.

    Cited By

    This article is cited by 883 publications.

    1. Domitille Baux, Patrick Hermet, Stéphane Campidelli, Jean-Louis Bantignies, Emmanuel Rousseau, Nicolas Izard. Insights into the Need for Ab Initio Calculations to Accurately Predict the Optical Properties of Metallic Carbon Nanotubes Based on Experimental Confrontation. The Journal of Physical Chemistry C 2023, 127 (38) , 19088-19096. https://doi.org/10.1021/acs.jpcc.3c02962
    2. Rui-an Huang, Yuzhong Guo, Zhengfu Zhang, Xingshuai Zhang, Bin Yang. Insight into the Self-Assembled Three-Dimensional Sandwich-Like Hollow Silicon Nanoarray/Graphene Lithium Storage Architecture by Sonication-Assisted Functionalization. Energy & Fuels 2022, 36 (6) , 3283-3292. https://doi.org/10.1021/acs.energyfuels.1c04334
    3. Kazufumi Kobashi, Yoko Iizumi, Kazutoshi Hirota, Naoki Shinomori, Kazuhiro Shimamoto, Yasumasa Koga, Takahiro Morimoto, Toshiya Okazaki. Quantitative Surface Characterization of As-Grown and Acid-Treated Single-Walled Carbon Nanotubes: Implications for Functional Materials. ACS Applied Nano Materials 2021, 4 (5) , 5273-5284. https://doi.org/10.1021/acsanm.1c00631
    4. Jin Wang, Xin Tian, Jie Zhang, Lirong Tan, Nan Ouyang, Beibei Jia, Chunying Chen, Cuicui Ge, Jianxiang Li. Postchronic Single-Walled Carbon Nanotube Exposure Causes Irreversible Malignant Transformation of Human Bronchial Epithelial Cells through DNA Methylation Changes. ACS Nano 2021, 15 (4) , 7094-7104. https://doi.org/10.1021/acsnano.1c00239
    5. Chaofeng Wang, Yi Hao, Yue Wang, Huijia Song, Sameer Hussain, Ruixia Gao, Luyao Gao, Yulian He, Guodong Zheng, Yuhai Tang. Multiwall Carbon Nanotubes Non-covalently Functionalized by Porphyrin–Sn Networks for Protein Adsorption. ACS Applied Nano Materials 2021, 4 (3) , 2345-2350. https://doi.org/10.1021/acsanm.0c03215
    6. Jordan A. Carver, Audrey L. Simpson, Ria P. Rathi, Nerica Normil, Amy G. Lee, Madison D. Force, Katherine A. Fiocca, Christopher E. Maley, Kara M. DiJoseph, Abigail L. Goldstein, Amin A. Attari, Haley L. O’Malley, Jaclyn G. Zaccaro, Noël M. McCampbell, Christina A. Wentz, Jessica E. Long, Lilly M. McQueen, Francis J. Sirch, Broderick K. Johnson, Molly E. Divis, Matthew L. Chorney, Steven L. DiStefano, Holly M. Yost, Brandon L. Greyson, Emily A. Cid, Kyumin Lee, Codi J. Yhap, Michelle Dong, Dayna L. Thomas, Brittany E. Banks, Regan B. Newman, Jailene Rodriguez, Alix T. Segil, Justin A. Siberski, Anthony L. Lobo, Mark D. Ellison. Functionalized Single-Walled Carbon Nanotubes and Nanographene Oxide to Overcome Antibiotic Resistance in Tetracycline-Resistant Escherichia coli. ACS Applied Nano Materials 2020, 3 (4) , 3910-3921. https://doi.org/10.1021/acsanm.0c00677
    7. Meshkat Dinarvand, Elsa Neubert, Daniel Meyer, Gabriele Selvaggio, Florian A. Mann, Luise Erpenbeck, Sebastian Kruss. Near-Infrared Imaging of Serotonin Release from Cells with Fluorescent Nanosensors. Nano Letters 2019, 19 (9) , 6604-6611. https://doi.org/10.1021/acs.nanolett.9b02865
    8. Junlang Chen, Dangxin Mao, Xiaogang Wang, Guoquan Zhou, Songwei Zeng, Liang Chen, Chaoqing Dai, Shangshen Feng. Encapsulation and Release of Drug Molecule Pregabalin Based on Ultrashort Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry C 2019, 123 (14) , 9567-9574. https://doi.org/10.1021/acs.jpcc.9b00675
    9. Hui Mao, Zhenqian Cao, Xi Guo, Dayin Sun, Daliang Liu, Shuyao Wu, Yu Zhang, Xi-Ming Song. Ultrathin NiS/Ni(OH)2 Nanosheets Filled within Ammonium Polyacrylate-Functionalized Polypyrrole Nanotubes as an Unique Nanoconfined System for Nonenzymatic Glucose Sensors. ACS Applied Materials & Interfaces 2019, 11 (10) , 10153-10162. https://doi.org/10.1021/acsami.8b20726
    10. Xubin Suo, Brittany N. Eldridge, Han Zhang, Chengqiong Mao, Yuanzeng Min, Yao Sun, Ravi Singh, Xin Ming. P-Glycoprotein-Targeted Photothermal Therapy of Drug-Resistant Cancer Cells Using Antibody-Conjugated Carbon Nanotubes. ACS Applied Materials & Interfaces 2018, 10 (39) , 33464-33473. https://doi.org/10.1021/acsami.8b11974
    11. Huan Wang, Penghui Li, Dongqin Yu, Yan Zhang, Zhenzhen Wang, Chaoqun Liu, Hao Qiu, Zhen Liu, Jinsong Ren, Xiaogang Qu. Unraveling the Enzymatic Activity of Oxygenated Carbon Nanotubes and Their Application in the Treatment of Bacterial Infections. Nano Letters 2018, 18 (6) , 3344-3351. https://doi.org/10.1021/acs.nanolett.7b05095
    12. Jie Wang, Dajun Xu, Tao Deng, Yunyan Li, Le Xue, Tong Yan, Dechun Huang, Dawei Deng. Self-Decomposable Mesoporous Doxorubicin@Silica Nanocomposites for Nuclear Targeted Chemo-Photodynamic Combination Therapy. ACS Applied Nano Materials 2018, 1 (4) , 1976-1984. https://doi.org/10.1021/acsanm.8b00486
    13. Tyler A. Davis, Lisa A. Holland. Peptide Probe for Multiwalled Carbon Nanotubes: Electrophoretic Assessment of the Binding Interface and Evaluation of Surface Functionalization. ACS Applied Materials & Interfaces 2018, 10 (13) , 11311-11318. https://doi.org/10.1021/acsami.8b00022
    14. Pawel Wolski, Krzysztof Nieszporek, and Tomasz Panczyk . Multimodal, pH Sensitive, and Magnetically Assisted Carrier of Doxorubicin Designed and Analyzed by Means of Computer Simulations. Langmuir 2018, 34 (7) , 2543-2550. https://doi.org/10.1021/acs.langmuir.7b04211
    15. Van Dong Pham, Vincent Repain, Cyril Chacon, Amandine Bellec, Yann Girard, Sylvie Rousset, Stephane Campidelli, Jean-Sébastien Lauret, Christophe Voisin, Mauricio Terrones, Maria Cristina dos Santos, and Jérôme Lagoute . Properties of Functionalized Carbon Nanotubes and Their Interaction with a Metallic Substrate Investigated by Scanning Tunneling Microscopy. The Journal of Physical Chemistry C 2017, 121 (43) , 24264-24271. https://doi.org/10.1021/acs.jpcc.7b06890
    16. Pawel Wolski, Jolanta Narkiewicz-Michalek, Monika Panczyk, Giorgia Pastorin, and Tomasz Panczyk . Molecular Dynamics Modeling of the Encapsulation and De-encapsulation of the Carmustine Anticancer Drug in the Inner Volume of a Carbon Nanotube. The Journal of Physical Chemistry C 2017, 121 (34) , 18922-18934. https://doi.org/10.1021/acs.jpcc.7b05229
    17. Lisha Jiang, Chang Zhu, Yujie Fu, and Gang Yang . Amino Acid Functionalization of Doped Single-Walled Carbon Nanotubes: Effects of Dopants and Side Chains as Well as Zwitterionic Stabilizations. The Journal of Physical Chemistry B 2017, 121 (13) , 2721-2730. https://doi.org/10.1021/acs.jpcb.6b12199
    18. Anna Cifuentes-Rius, Nathan R. B. Boase, Ines Font, Nuria Coronas, Victor Ramos-Perez, Kristofer J. Thurecht, and Salvador Borrós . In Vivo Fate of Carbon Nanotubes with Different Physicochemical Properties for Gene Delivery Applications. ACS Applied Materials & Interfaces 2017, 9 (13) , 11461-11471. https://doi.org/10.1021/acsami.7b00677
    19. Suad Aljohani, Ahmad I. Alrawashdeh, Mohammad Zahidul H. Khan, Yuming Zhao, and Jolanta B. Lagowski . Dispersion of Single-Walled Carbon Nanotubes with Oligo(p-phenylene ethynylene)s: A DFT Study. The Journal of Physical Chemistry C 2017, 121 (8) , 4692-4702. https://doi.org/10.1021/acs.jpcc.6b12747
    20. Yang Yang, Ying-Ming Zhang, Dizao Li, He-Lue Sun, Hong-Xian Fan, and Yu Liu . Camptothecin–Polysaccharide Co-assembly and Its Controlled Release. Bioconjugate Chemistry 2016, 27 (12) , 2834-2838. https://doi.org/10.1021/acs.bioconjchem.6b00606
    21. Santanu Bhattacharya and Suman K. Samanta . Soft-Nanocomposites of Nanoparticles and Nanocarbons with Supramolecular and Polymer Gels and Their Applications. Chemical Reviews 2016, 116 (19) , 11967-12028. https://doi.org/10.1021/acs.chemrev.6b00221
    22. Gaixia Xu, Shuwen Zeng, Butian Zhang, Mark T. Swihart, Ken-Tye Yong, and Paras N. Prasad . New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine. Chemical Reviews 2016, 116 (19) , 12234-12327. https://doi.org/10.1021/acs.chemrev.6b00290
    23. Ich C. Tran, Ramya H. Tunuguntla, Kyunghoon Kim, Jonathan R. I. Lee, Trevor M. Willey, Thomas M. Weiss, Aleksandr Noy, and Tony van Buuren . Structure of Carbon Nanotube Porins in Lipid Bilayers: An in Situ Small-Angle X-ray Scattering (SAXS) Study. Nano Letters 2016, 16 (7) , 4019-4024. https://doi.org/10.1021/acs.nanolett.6b00466
    24. Tomasz Panczyk, Pawel Wolski, and Leszek Lajtar . Coadsorption of Doxorubicin and Selected Dyes on Carbon Nanotubes. Theoretical Investigation of Potential Application as a pH-Controlled Drug Delivery System. Langmuir 2016, 32 (19) , 4719-4728. https://doi.org/10.1021/acs.langmuir.6b00296
    25. Christopher J. Serpell, Kostas Kostarelos, and Benjamin G. Davis . Can Carbon Nanotubes Deliver on Their Promise in Biology? Harnessing Unique Properties for Unparalleled Applications. ACS Central Science 2016, 2 (4) , 190-200. https://doi.org/10.1021/acscentsci.6b00005
    26. Yang Song, Gang Ye, Yuexiang Lu, Jing Chen, Jianchen Wang, and Krzysztof Matyjaszewski . Surface-Initiated ARGET ATRP of Poly(Glycidyl Methacrylate) from Carbon Nanotubes via Bioinspired Catechol Chemistry for Efficient Adsorption of Uranium Ions. ACS Macro Letters 2016, 5 (3) , 382-386. https://doi.org/10.1021/acsmacrolett.6b00099
    27. Juan Pablo Martínez, Fernando Langa, F. Matthias Bickelhaupt, Sílvia Osuna, and Miquel Solà . (4 + 2) and (2 + 2) Cycloadditions of Benzyne to C60 and Zig-Zag Single-Walled Carbon Nanotubes: The Effect of the Curvature. The Journal of Physical Chemistry C 2016, 120 (3) , 1716-1726. https://doi.org/10.1021/acs.jpcc.5b11499
    28. Simeon K. Adesina and Emmanuel O. Akala . Nanotechnology Approaches for the Delivery of Exogenous siRNA for HIV Therapy. Molecular Pharmaceutics 2015, 12 (12) , 4175-4187. https://doi.org/10.1021/acs.molpharmaceut.5b00335
    29. Xu Jia, Xubo Zhao, Kun Tian, Tingting Zhou, Jiagen Li, Ruinian Zhang, and Peng Liu . Fluorescent Copolymer-Based Prodrug for pH-Triggered Intracellular Release of DOX. Biomacromolecules 2015, 16 (11) , 3624-3631. https://doi.org/10.1021/acs.biomac.5b01070
    30. Mahmoud Elsabahy, Gyu Seong Heo, Soon-Mi Lim, Guorong Sun, and Karen L. Wooley . Polymeric Nanostructures for Imaging and Therapy. Chemical Reviews 2015, 115 (19) , 10967-11011. https://doi.org/10.1021/acs.chemrev.5b00135
    31. Cyrill Bussy, Khuloud T. Al-Jamal, Jorge Boczkowski, Sophie Lanone, Maurizio Prato, Alberto Bianco, and Kostas Kostarelos . Microglia Determine Brain Region-Specific Neurotoxic Responses to Chemically Functionalized Carbon Nanotubes. ACS Nano 2015, 9 (8) , 7815-7830. https://doi.org/10.1021/acsnano.5b02358
    32. Michael Thomas, Marta Enciso, and Tamsyn A. Hilder . Insertion Mechanism and Stability of Boron Nitride Nanotubes in Lipid Bilayers. The Journal of Physical Chemistry B 2015, 119 (15) , 4929-4936. https://doi.org/10.1021/acs.jpcb.5b00102
    33. Tomasz Panczyk, Pawel Wolski, Lukasz Konczak, and Jolanta Narkiewicz-Michalek . Sidewall Functionalization of Carbon Nanotubes as a Method of Controlling Structural Transformations of the Magnetically Triggered Nanocontainer: A Molecular Dynamics Study. The Journal of Physical Chemistry C 2015, 119 (15) , 8373-8381. https://doi.org/10.1021/acs.jpcc.5b01155
    34. Alia Mejri, Delphine Vardanega, Bahoueddine Tangour, Tijani Gharbi, and Fabien Picaud . Encapsulation into Carbon Nanotubes and Release of Anticancer Cisplatin Drug Molecule. The Journal of Physical Chemistry B 2015, 119 (2) , 604-611. https://doi.org/10.1021/jp5102384
    35. Eduardo Humeres, Eduardo Pinheiro de Souza, Nito Angelo Debacher, Regina de F.P.M. Moreira, Cristiane Nunes Lopes, Ma Isabel Fernández, J. Arturo Santaballa, Moisés L. Canle, Wido H. Schreiner, and Abil E. Aliev . Photolysis of Phenylalanine in the Presence of Oxidized Carbon Nanotubes. Langmuir 2015, 31 (1) , 164-170. https://doi.org/10.1021/la503631b
    36. Hsin-Se Hsieh, Renren Wu, and Chad T. Jafvert . Light-Independent Reactive Oxygen Species (ROS) Formation through Electron Transfer from Carboxylated Single-Walled Carbon Nanotubes in Water. Environmental Science & Technology 2014, 48 (19) , 11330-11336. https://doi.org/10.1021/es503163w
    37. Qingxin Mu, Guibin Jiang, Lingxin Chen, Hongyu Zhou, Denis Fourches, Alexander Tropsha, and Bing Yan . Chemical Basis of Interactions Between Engineered Nanoparticles and Biological Systems. Chemical Reviews 2014, 114 (15) , 7740-7781. https://doi.org/10.1021/cr400295a
    38. Naoto Saito, Hisao Haniu, Yuki Usui, Kaoru Aoki, Kazuo Hara, Seiji Takanashi, Masayuki Shimizu, Nobuyo Narita, Masanori Okamoto, Shinsuke Kobayashi, Hiroki Nomura, Hiroyuki Kato, Naoyuki Nishimura, Seiichi Taruta, and Morinobu Endo . Safe Clinical Use of Carbon Nanotubes as Innovative Biomaterials. Chemical Reviews 2014, 114 (11) , 6040-6079. https://doi.org/10.1021/cr400341h
    39. Sukumaran Santhosh Babu, Vakayil K. Praveen, and Ayyappanpillai Ajayaghosh . Functional π-Gelators and Their Applications. Chemical Reviews 2014, 114 (4) , 1973-2129. https://doi.org/10.1021/cr400195e
    40. Tomasz Panczyk, Tatiana Da Ros, Giorgia Pastorin, Anna Jagusiak, and Jolanta Narkiewicz-Michalek . Role of Intermolecular Interactions in Assemblies of Nanocontainers Composed of Carbon Nanotubes and Magnetic Nanoparticles: A Molecular Dynamics Study. The Journal of Physical Chemistry C 2014, 118 (2) , 1353-1363. https://doi.org/10.1021/jp410736s
    41. Shisen Song, Bo You, Yingchun Zhu, Yandan Lin, Yin Wu, and Xiaochun Ge . Nanocrystal–Organic Hybrid Antifungal Agent: High Level Oriented Assembly of Zinc Hydroxide Carbonate Nanocrystals in Chitosan. Crystal Growth & Design 2014, 14 (1) , 38-45. https://doi.org/10.1021/cg401047a
    42. Tao Yang, Xiang Zhao, and Shigeru Nagase . Cycloaddition of Benzyne to Armchair Single-Walled Carbon Nanotubes: [2 + 2] or [4 + 2]?. Organic Letters 2013, 15 (23) , 5960-5963. https://doi.org/10.1021/ol402811b
    43. Timothy C. Johnstone, Justin J. Wilson, and Stephen J. Lippard . Monofunctional and Higher-Valent Platinum Anticancer Agents. Inorganic Chemistry 2013, 52 (21) , 12234-12249. https://doi.org/10.1021/ic400538c
    44. Iwao Ojima . Exploration of Fluorine Chemistry at the Multidisciplinary Interface of Chemistry and Biology. The Journal of Organic Chemistry 2013, 78 (13) , 6358-6383. https://doi.org/10.1021/jo400301u
    45. Sara Iliafar, Dmitri Vezenov, and Anand Jagota . Brownian Dynamics Simulation of Peeling a Strongly-Adsorbed Polymer Molecule from a Frictionless Substrate. Langmuir 2013, 29 (5) , 1435-1445. https://doi.org/10.1021/la304361f
    46. Xiaowei Ma, Li-Hua Zhang, Li-Rong Wang, Xue Xue, Ji-Hong Sun, Yan Wu, Guozhang Zou, Xia Wu, Paul C. Wang, Wayne G. Wamer, Jun-Jie Yin, Kaiyuan Zheng, and Xing-Jie Liang . Single-Walled Carbon Nanotubes Alter Cytochrome c Electron Transfer and Modulate Mitochondrial Function. ACS Nano 2012, 6 (12) , 10486-10496. https://doi.org/10.1021/nn302457v
    47. Tomasz Panczyk, Mateusz Drach, Pawel Szabelski, and Anna Jagusiak . Magnetic Anisotropy Effects on the Behavior of a Carbon Nanotube Functionalized by Magnetic Nanoparticles Under External Magnetic Fields. The Journal of Physical Chemistry C 2012, 116 (49) , 26091-26101. https://doi.org/10.1021/jp3101442
    48. Akshaya Shankar, Anand Jagota, and Jeetain Mittal . DNA Base Dimers Are Stabilized by Hydrogen-Bonding Interactions Including Non-Watson–Crick Pairing Near Graphite Surfaces. The Journal of Physical Chemistry B 2012, 116 (40) , 12088-12094. https://doi.org/10.1021/jp304260t
    49. Merve Yuksel, Demet Goen Colak, Mehriban Akin, Ioan Cianga, Manolya Kukut, E. Ilker Medine, Mustafa Can, Serhan Sakarya, Perihan Unak, Suna Timur, and Yusuf Yagci . Nonionic, Water Self-Dispersible “Hairy-Rod” Poly(p-phenylene)-g-poly(ethylene glycol) Copolymer/Carbon Nanotube Conjugates for Targeted Cell Imaging. Biomacromolecules 2012, 13 (9) , 2680-2691. https://doi.org/10.1021/bm3006193
    50. Sara Iliafar, Kyle Wagner, Suresh Manohar, Anand Jagota, and Dmitri Vezenov . Quantifying Interactions between DNA Oligomers and Graphite Surface Using Single Molecule Force Spectroscopy. The Journal of Physical Chemistry C 2012, 116 (26) , 13896-13903. https://doi.org/10.1021/jp212326x
    51. Joshua T. Robinson, Guosong Hong, Yongye Liang, Bo Zhang, Omar K. Yaghi, and Hongjie Dai . In Vivo Fluorescence Imaging in the Second Near-Infrared Window with Long Circulating Carbon Nanotubes Capable of Ultrahigh Tumor Uptake. Journal of the American Chemical Society 2012, 134 (25) , 10664-10669. https://doi.org/10.1021/ja303737a
    52. Lunjiang Tang and Xiaoning Yang . Molecular Dynamics Simulation of C60 Encapsulation into Single-Walled Carbon Nanotube in Solvent Conditions. The Journal of Physical Chemistry C 2012, 116 (21) , 11783-11791. https://doi.org/10.1021/jp302348d
    53. Santanu Bhattacharya, Daniel Roxbury, Xun Gong, Debabrata Mukhopadhyay, and Anand Jagota . DNA Conjugated SWCNTs Enter Endothelial Cells via Rac1 Mediated Macropinocytosis. Nano Letters 2012, 12 (4) , 1826-1830. https://doi.org/10.1021/nl204058u
    54. Moumita Ghosh, Subhabrata Maiti, Sounak Dutta, Dibyendu Das, and Prasanta Kumar Das . Covalently Functionalized Single-Walled Carbon Nanotubes at Reverse Micellar Interface: A Strategy to Improve Lipase Activity. Langmuir 2012, 28 (3) , 1715-1724. https://doi.org/10.1021/la2035906
    55. Benjamin Gebhardt, Ferdinand Hof, Claudia Backes, Matthias Müller, Thomas Plocke, Janina Maultzsch, Christian Thomsen, Frank Hauke, and Andreas Hirsch . Selective Polycarboxylation of Semiconducting Single-Walled Carbon Nanotubes by Reductive Sidewall Functionalization. Journal of the American Chemical Society 2011, 133 (48) , 19459-19473. https://doi.org/10.1021/ja206818n
    56. Sebastian Kraszewski, Mounir Tarek, and Christophe Ramseyer . Uptake and Translocation Mechanisms of Cationic Amino Derivatives Functionalized on Pristine C60 by Lipid Membranes: A Molecular Dynamics Simulation Study. ACS Nano 2011, 5 (11) , 8571-8578. https://doi.org/10.1021/nn201952c
    57. Tomasz Panczyk, Philip J. Camp, Giorgia Pastorin, and Tomasz P. Warzocha . Computational Study of Some Aspects of Chemical Optimization of a Functional Magnetically Triggered Nanocontainer. The Journal of Physical Chemistry C 2011, 115 (39) , 19074-19083. https://doi.org/10.1021/jp2064563
    58. Anna Llanes-Pallas, K. Yoosaf, Hassan Traboulsi, John Mohanraj, Thomas Seldrum, Jacques Dumont, Andrea Minoia, Roberto Lazzaroni, Nicola Armaroli, and Davide Bonifazi . Modular Engineering of H-Bonded Supramolecular Polymers for Reversible Functionalization of Carbon Nanotubes. Journal of the American Chemical Society 2011, 133 (39) , 15412-15424. https://doi.org/10.1021/ja2011516
    59. Rosa Di Felice and Stefano Corni . Simulation of Peptide–Surface Recognition. The Journal of Physical Chemistry Letters 2011, 2 (13) , 1510-1519. https://doi.org/10.1021/jz200297k
    60. Kun Huang, Amy Jacobs, and Javid Rzayev . De Novo Synthesis and Cellular Uptake of Organic Nanocapsules with Tunable Surface Chemistry. Biomacromolecules 2011, 12 (6) , 2327-2334. https://doi.org/10.1021/bm200394t
    61. E. Terrado, R. Molina, E. Natividad, M. Castro, P. Erra, D. Mishkinis, A. Torres, and M. T. Martínez . Modifying the Heat Transfer and Capillary Pressure of Loop Heat Pipe Wicks with Carbon Nanotubes. The Journal of Physical Chemistry C 2011, 115 (19) , 9312-9319. https://doi.org/10.1021/jp101351y
    62. Tomasz Panczyk, Tomasz P. Warzocha, and Philip J. Camp . Enhancing the Control of a Magnetically Capped Molecular Nanocontainer: Monte Carlo Studies. The Journal of Physical Chemistry C 2011, 115 (16) , 7928-7938. https://doi.org/10.1021/jp200102u
    63. Xiongce Zhao . Self-Assembly of DNA Segments on Graphene and Carbon Nanotube Arrays in Aqueous Solution: A Molecular Simulation Study. The Journal of Physical Chemistry C 2011, 115 (14) , 6181-6189. https://doi.org/10.1021/jp110013r
    64. Byumseok Koh, Jong Bae Park, Ximiao Hou, and Wei Cheng . Comparative Dispersion Studies of Single-Walled Carbon Nanotubes in Aqueous Solution. The Journal of Physical Chemistry B 2011, 115 (11) , 2627-2633. https://doi.org/10.1021/jp110376h
    65. Ze-Yun Xiao, Xin Zhao, Xi-Kui Jiang, and Zhan-Ting Li . Tunable Coordinative Assembly of a Disc-Like Molecule and Metal Ions: From Mirospheres to Microtubes and Microrods. Chemistry of Materials 2011, 23 (6) , 1505-1511. https://doi.org/10.1021/cm103182e
    66. Monica Shokeen, Eric D. Pressly, Aviv Hagooly, Alexander Zheleznyak, Nicholas Ramos, Ashley L. Fiamengo, Michael J. Welch, Craig J. Hawker, and Carolyn J. Anderson . Evaluation of Multivalent, Functional Polymeric Nanoparticles for Imaging Applications. ACS Nano 2011, 5 (2) , 738-747. https://doi.org/10.1021/nn102278w
    67. Monica Benincasa, Sabrina Pacor, Wei Wu, Maurizio Prato, Alberto Bianco, and Renato Gennaro . Antifungal Activity of Amphotericin B Conjugated to Carbon Nanotubes. ACS Nano 2011, 5 (1) , 199-208. https://doi.org/10.1021/nn1023522
    68. Jugal Kishore Sahoo, Muhammad Nawaz Tahir, Aswani Yella, Robert Branscheid, Ute Kolb, and Wolfgang Tremel . Soluble IF-ReS2 Nanoparticles by Surface Functionalization with Terpyridine Ligands. Langmuir 2011, 27 (1) , 385-391. https://doi.org/10.1021/la103687y
    69. Sung You Hong Malcolm L. H. Green Benjamin G. Davis . Recent Biotechnological Applications of Glyco-Nanomaterials. 2011, 1-13. https://doi.org/10.1021/bk-2011-1091.ch001
    70. Parambath Anilkumar Kenneth N. Tackett II Fushen Lu Pengju G. Luo Lingrong Gu Ankoma Anderson Ya-Ping Sun . Sugar-Functionalized Carbon Nanotubes: Unique Properties and Interactions with Biological Species. 2011, 123-141. https://doi.org/10.1021/bk-2011-1091.ch008
    71. Giovanni Bottari, Gema de la Torre, Dirk M. Guldi, and Tomás Torres. Covalent and Noncovalent Phthalocyanine−Carbon Nanostructure Systems: Synthesis, Photoinduced Electron Transfer, and Application to Molecular Photovoltaics. Chemical Reviews 2010, 110 (11) , 6768-6816. https://doi.org/10.1021/cr900254z
    72. Yuling Yang, Xiaoyi Li, Jinliang Jiang, Huailiang Du, Lina Zhao, and Yuliang Zhao . Control Performance and Biomembrane Disturbance of Carbon Nanotube Artificial Water Channels by Nitrogen-Doping. ACS Nano 2010, 4 (10) , 5755-5762. https://doi.org/10.1021/nn1014825
    73. Cristiana S. O. Paulo, Maria Vidal, and Lino S. Ferreira . Antifungal Nanoparticles and Surfaces. Biomacromolecules 2010, 11 (10) , 2810-2817. https://doi.org/10.1021/bm100893r
    74. Yasuhiko Hirana, Yasuhiko Tanaka, Yasuro Niidome, and Naotoshi Nakashima . Strong Micro-Dielectric Environment Effect on the Band Gaps of (n,m)Single-Walled Carbon Nanotubes. Journal of the American Chemical Society 2010, 132 (37) , 13072-13077. https://doi.org/10.1021/ja105980a
    75. Lei Ren and Wenwan Zhong . Oxidation Reactions Mediated by Single-Walled Carbon Nanotubes in Aqueous Solution. Environmental Science & Technology 2010, 44 (18) , 6954-6958. https://doi.org/10.1021/es101821m
    76. Uwe Hahn, Sarah Engmann, Christian Oelsner, Christian Ehli, Dirk M. Guldi and Tomas Torres. Immobilizing Water-Soluble Dendritic Electron Donors and Electron Acceptors—Phthalocyanines and Perylenediimides—onto Single Wall Carbon Nanotubes. Journal of the American Chemical Society 2010, 132 (18) , 6392-6401. https://doi.org/10.1021/ja100065h
    77. Riccardo Marega, Vincent Aroulmoji, Massimo Bergamin, Luigi Feruglio, Francesca Dinon, Alberto Bianco, Erminio Murano and Maurizio Prato . Two-Dimensional Diffusion-Ordered NMR Spectroscopy as a Tool for Monitoring Functionalized Carbon Nanotube Purification and Composition. ACS Nano 2010, 4 (4) , 2051-2058. https://doi.org/10.1021/nn100257h
    78. Tarek R. Fadel, Michael Look, Peter A. Staffier, Gary L. Haller, Lisa D. Pfefferle and Tarek M. Fahmy . Clustering of Stimuli on Single-Walled Carbon Nanotube Bundles Enhances Cellular Activation. Langmuir 2010, 26 (8) , 5645-5654. https://doi.org/10.1021/la902068z
    79. E. Sacher. Asymmetries in Transition Metal XPS Spectra: Metal Nanoparticle Structure, and Interaction with the Graphene-Structured Substrate Surface. Langmuir 2010, 26 (6) , 3807-3814. https://doi.org/10.1021/la902678x
    80. Dominik Eder. Carbon Nanotube−Inorganic Hybrids. Chemical Reviews 2010, 110 (3) , 1348-1385. https://doi.org/10.1021/cr800433k
    81. Hillary L. Smith, Rachel L. Usala, Eden W. McQueen and Jonas I. Goldsmith. Novel Polyaromatic-Terminated Transition Metal Complexes for the Functionalization of Carbon Surfaces. Langmuir 2010, 26 (5) , 3342-3349. https://doi.org/10.1021/la9031249
    82. Nicole F. Steinmetz, Marianne E. Mertens, Rebecca E. Taurog, John E. Johnson, Ulrich Commandeur, Rainer Fischer and Marianne Manchester . Potato Virus X as a Novel Platform for Potential Biomedical Applications. Nano Letters 2010, 10 (1) , 305-312. https://doi.org/10.1021/nl9035753
    83. Eden W. McQueen and Jonas I. Goldsmith. Electrochemical Analysis of Single-Walled Carbon Nanotubes Functionalized with Pyrene-Pendant Transition Metal Complexes. Journal of the American Chemical Society 2009, 131 (48) , 17554-17556. https://doi.org/10.1021/ja907294q
    84. Marya Ahmed, Xiaoze Jiang, Zhicheng Deng and Ravin Narain. Cationic Glyco-Functionalized Single-Walled Carbon Nanotubes as Efficient Gene Delivery Vehicles. Bioconjugate Chemistry 2009, 20 (11) , 2017-2022. https://doi.org/10.1021/bc900229v
    85. T. Panczyk and T. P. Warzocha . Monte Carlo Study of the Properties of a Carbon Nanotube Functionalized by Magnetic Nanoparticles. The Journal of Physical Chemistry C 2009, 113 (44) , 19155-19160. https://doi.org/10.1021/jp9062065
    86. J.-F. Colomer, R. Marega, H. Traboulsi, M. Meneghetti, G. Van Tendeloo and D. Bonifazi . Microwave-Assisted Bromination of Double-Walled Carbon Nanotubes. Chemistry of Materials 2009, 21 (20) , 4747-4749. https://doi.org/10.1021/cm902029m
    87. Xiehong Cao, Bing Li, Yizhong Huang, Freddy Boey, Ting Yu, Zexiang Shen and Hua Zhang. Facile “Scratching” Method with Common Metal Objects To Generate Large-Scale Catalyst Patterns Used for Growth of Single-Walled Carbon Nanotubes. ACS Applied Materials & Interfaces 2009, 1 (9) , 1873-1877. https://doi.org/10.1021/am900478y
    88. Hao Wang, Ronghua Yang, Liu Yang and Weihong Tan . Nucleic Acid Conjugated Nanomaterials for Enhanced Molecular Recognition. ACS Nano 2009, 3 (9) , 2451-2460. https://doi.org/10.1021/nn9006303
    89. Yan-Li Zhao and J. Fraser Stoddart . Noncovalent Functionalization of Single-Walled Carbon Nanotubes. Accounts of Chemical Research 2009, 42 (8) , 1161-1171. https://doi.org/10.1021/ar900056z
    90. Wei Zhang, Ali U. Shaikh, Emily Y. Tsui and Timothy M. Swager . Cobalt Porphyrin Functionalized Carbon Nanotubes for Oxygen Reduction. Chemistry of Materials 2009, 21 (14) , 3234-3241. https://doi.org/10.1021/cm900747t
    91. M. Antonia Herrero, Francesca M. Toma, Khuloud T. Al-Jamal, Kostas Kostarelos, Alberto Bianco, Tatiana Da Ros, Fouzia Bano, Loredana Casalis, Giacinto Scoles and Maurizio Prato . Synthesis and Characterization of a Carbon Nanotube−Dendron Series for Efficient siRNA Delivery. Journal of the American Chemical Society 2009, 131 (28) , 9843-9848. https://doi.org/10.1021/ja903316z
    92. Sheng-Tao Yang, Haifang Wang, Mohammed J. Meziani, Yuanfang Liu, Xin Wang and Ya-Ping Sun . Biodefunctionalization of Functionalized Single-Walled Carbon Nanotubes in Mice. Biomacromolecules 2009, 10 (7) , 2009-2012. https://doi.org/10.1021/bm900263z
    93. Lei Ren, Hong K. Kim and Wenwan Zhong . Capillary Electrophoresis-Assisted Identification of Peroxyl Radical Generated by Single-Walled Carbon Nanotubes in a Cell-Free System. Analytical Chemistry 2009, 81 (13) , 5510-5516. https://doi.org/10.1021/ac900831u
    94. Riccardo Marega, Vincent Aroulmoji, Francesca Dinon, Lisa Vaccari, Silvia Giordani, Alberto Bianco, Erminio Murano and Maurizio Prato. Diffusion-Ordered NMR Spectroscopy in the Structural Characterization of Functionalized Carbon Nanotubes. Journal of the American Chemical Society 2009, 131 (25) , 9086-9093. https://doi.org/10.1021/ja902728w
    95. Susana M. Tomásio and Tiffany R. Walsh. Modeling the Binding Affinity of Peptides for Graphitic Surfaces. Influences of Aromatic Content and Interfacial Shape. The Journal of Physical Chemistry C 2009, 113 (20) , 8778-8785. https://doi.org/10.1021/jp8087594
    96. Dibyendu Das and Prasanta Kumar Das. Superior Activity of Structurally Deprived Enzyme−Carbon Nanotube Hybrids in Cationic Reverse Micelles. Langmuir 2009, 25 (8) , 4421-4428. https://doi.org/10.1021/la803753g
    97. Ruhung Wang, Carole Mikoryak, Elena Chen, Synyoung Li, Paul Pantano and Rockford K. Draper . Gel Electrophoresis Method to Measure the Concentration of Single-Walled Carbon Nanotubes Extracted from Biological Tissue. Analytical Chemistry 2009, 81 (8) , 2944-2952. https://doi.org/10.1021/ac802485n
    98. Sachiko Matsumura, Shigeo Sato, Masako Yudasaka, Akihiro Tomida, Takashi Tsuruo, Sumio Iijima and Kiyotaka Shiba . Prevention of Carbon Nanohorn Agglomeration Using a Conjugate Composed of Comb-Shaped Polyethylene Glycol and a Peptide Aptamer. Molecular Pharmaceutics 2009, 6 (2) , 441-447. https://doi.org/10.1021/mp800141v
    99. Naveen Gandra, Pui Lam Chiu, Wenbing Li, Yolanda R. Anderson, Somenath Mitra, Huixin He and Ruomei Gao. Photosensitized Singlet Oxygen Production upon Two-Photon Excitation of Single-Walled Carbon Nanotubes and Their Functionalized Analogues. The Journal of Physical Chemistry C 2009, 113 (13) , 5182-5185. https://doi.org/10.1021/jp809268q
    100. Qiaoling Liu, Bo Chen, Qinli Wang, Xiaoli Shi, Zeyu Xiao, Jinxin Lin and Xiaohong Fang . Carbon Nanotubes as Molecular Transporters for Walled Plant Cells. Nano Letters 2009, 9 (3) , 1007-1010. https://doi.org/10.1021/nl803083u
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect