ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES

Gold Supported on Thin Oxide Films: From Single Atoms to Nanoparticles

View Author Information
Department of Chemical Physics, Fritz-Haber-Institute der Max-Plank-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
* To whom correspondence should be addressed. E-mail: [email protected]
Cite this: Acc. Chem. Res. 2008, 41, 8, 949–956
Publication Date (Web):July 11, 2008
https://doi.org/10.1021/ar800078m
Copyright © 2008 American Chemical Society
Article Views
2873
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (1 MB)

Abstract

Historically, people have prized gold for its beauty and the durability that resulted from its chemical inertness. However, even the ancient Romans had noted that finely dispersed gold can give rise to particular optical phenomena. A decade ago, researchers found that highly dispersed gold supported on oxides exhibits high chemical activity in a number of reactions. These chemical and optical properties have recently prompted considerable interest in applications of nanodispersed gold.

Despite their broad use, a microscopic understanding of these gold−metal oxide systems lags behind their application. Numerous studies are currently underway to understand why supported nanometer-sized gold particles show catalytic activity and to explore possible applications of their optical properties in photonics and biology.

This Account focuses on a microscopic understanding of the gold−substrate interaction and its impact on the properties of the adsorbed gold. Our strategy uses model systems in which gold atoms and clusters are supported on well-ordered thin oxide films grown on metal single crystals. As a result, we can investigate the systems with the rigor of modern surface science techniques while incorporating some of the complexity found in technological applications.

We use a variety of different experimental methods, namely, scanning probe techniques (scanning tunneling microscopy and spectroscopy, STM and STS), as well as infrared (IR), temperature-programmed desorption (TPD), and electron paramagnetic resonance (EPR) spectroscopy, to evaluate these interactions and combine these results with theoretical calculations. We examined the properties of supported gold with increasing complexity starting from single gold atoms to one- and two-dimensional clusters and three-dimensional particles. These investigations show that the binding of gold on oxide surfaces depends on the properties of the oxide, which leads to different electronic properties of the Au deposits. Changes in the electronic structure, namely, the charge state of Au atoms and clusters, can be induced by surface defects such as color centers.

Interestingly, the film thickness can also serve as a parameter to alter the properties of Au. Thin MgO films (two to three monolayer thickness) stabilize negatively charged Au atoms and two-dimensional Au particles. In three dimensions, the properties of Au particles bigger than 2−3 nm in diameter are largely independent of the support. Smaller three-dimensional particles, however, showed differences based on the supporting oxide. Presumably, the oxide support stabilizes particular atomic configurations, charge states, or electronic properties of the ultrasmall Au aggregates, which are in turn responsible for this distinct chemical behavior.

Cited By

This article is cited by 178 publications.

  1. Linxiao Chen, Laura C. Meyer, Libor Kovarik, Debora Meira, Xavier I. Pereira-Hernandez, Honghong Shi, Konstantin Khivantsev, Oliver Y. Gutiérrez, János Szanyi. Disordered, Sub-Nanometer Ru Structures on CeO2 are Highly Efficient and Selective Catalysts in Polymer Upcycling by Hydrogenolysis. ACS Catalysis 2022, 12 (8) , 4618-4627. https://doi.org/10.1021/acscatal.2c00684
  2. Hao Zheng, Alexander Weismann, Richard Berndt. Observation of a Shockley Surface State on Gold Nanoparticles with Sizes Down to 5 nm. The Journal of Physical Chemistry C 2021, 125 (45) , 25327-25331. https://doi.org/10.1021/acs.jpcc.1c08061
  3. Xiansheng Li, Xing Wang, Ilia I. Sadykov, Dennis Palagin, Olga V. Safonova, Junhua Li, Arik Beck, Frank Krumeich, Jeroen A. van Bokhoven, Luca Artiglia. Temperature and Reaction Environment Influence the Nature of Platinum Species Supported on Ceria. ACS Catalysis 2021, 11 (21) , 13041-13049. https://doi.org/10.1021/acscatal.1c03165
  4. Linxiao Chen, Raymond R. Unocic, Adam S. Hoffman, Jiyun Hong, Adriano H. Braga, Zhenghong Bao, Simon R. Bare, Janos Szanyi. Unlocking the Catalytic Potential of TiO2-Supported Pt Single Atoms for the Reverse Water–Gas Shift Reaction by Altering Their Chemical Environment. JACS Au 2021, 1 (7) , 977-986. https://doi.org/10.1021/jacsau.1c00111
  5. Rui Lang, Xiaorui Du, Yike Huang, Xunzhu Jiang, Qian Zhang, Yalin Guo, Kaipeng Liu, Botao Qiao, Aiqin Wang, Tao Zhang. Single-Atom Catalysts Based on the Metal–Oxide Interaction. Chemical Reviews 2020, 120 (21) , 11986-12043. https://doi.org/10.1021/acs.chemrev.0c00797
  6. Yonggang Yao, Zhennan Huang, Pengfei Xie, Tangyuan Li, Steven D. Lacey, Miaolun Jiao, Hua Xie, Kun Kelvin Fu, Rohit Jiji Jacob, Dylan Jacob Kline, Yong Yang, Michael R. Zachariah, Chao Wang, Reza Shahbazian-Yassar, Liangbing Hu. Ultrafast, Controllable Synthesis of Sub-Nano Metallic Clusters through Defect Engineering. ACS Applied Materials & Interfaces 2019, 11 (33) , 29773-29779. https://doi.org/10.1021/acsami.9b07198
  7. Sukanya Ghosh, Nisha Mammen, Shobhana Narasimhan. Descriptor for the Efficacy of Aliovalent Doping of Oxides and Its Application for the Charging of Supported Au Clusters. The Journal of Physical Chemistry C 2019, 123 (32) , 19794-19805. https://doi.org/10.1021/acs.jpcc.9b06119
  8. Dan Li, Rui You, Min Yang, Yuanxu Liu, Kun Qian, Shilong Chen, Tian Cao, Zhenhua Zhang, Jie Tian, Weixin Huang. Morphology-Dependent Evolutions of Sizes, Structures, and Catalytic Activity of Au Nanoparticles on Anatase TiO2 Nanocrystals. The Journal of Physical Chemistry C 2019, 123 (16) , 10367-10376. https://doi.org/10.1021/acs.jpcc.9b00262
  9. Ho Viet Thang, Gianfranco Pacchioni. Spontaneous Formation of Gold Cluster Anions on ZnO/Cu(111) Bilayer Films. The Journal of Physical Chemistry C 2019, 123 (13) , 7644-7653. https://doi.org/10.1021/acs.jpcc.8b03479
  10. Wilke Dononelli, Lyudmila V. Moskaleva, Thorsten Klüner. CO Oxidation over Unsupported Group 11 Metal Catalysts: New Mechanistic Insight from First-Principles. The Journal of Physical Chemistry C 2019, 123 (13) , 7818-7830. https://doi.org/10.1021/acs.jpcc.8b06676
  11. Ting Zhang, Di Zhang, Xinghua Han, Ting Dong, Xinwen Guo, Chunshan Song, Rui Si, Wei Liu, Yuefeng Liu, Zhongkui Zhao. Preassembly Strategy To Fabricate Porous Hollow Carbonitride Spheres Inlaid with Single Cu–N3 Sites for Selective Oxidation of Benzene to Phenol. Journal of the American Chemical Society 2018, 140 (49) , 16936-16940. https://doi.org/10.1021/jacs.8b10703
  12. C. R. Salvo, J. Keagy, J. A. Yarmoff. Adsorption of Br2 onto Small Au Nanoclusters. The Journal of Physical Chemistry C 2018, 122 (43) , 24732-24739. https://doi.org/10.1021/acs.jpcc.8b07309
  13. Haoxiang Xu, Daojian Cheng, Yi Gao, Xiao Cheng Zeng. Assessment of Catalytic Activities of Gold Nanoclusters with Simple Structure Descriptors. ACS Catalysis 2018, 8 (10) , 9702-9710. https://doi.org/10.1021/acscatal.8b02423
  14. Ahmed Ghalgaoui, Ridha Horchani, Jijin Wang, Aimeric Ouvrard, Serge Carrez, Bernard Bourguignon. Identification of Active Sites in Oxidation Reaction from Real-Time Probing of Adsorbate Motion over Pd Nanoparticles. The Journal of Physical Chemistry Letters 2018, 9 (18) , 5202-5206. https://doi.org/10.1021/acs.jpclett.8b02215
  15. Kewei Sun, Aixi Chen, Meizhuang Liu, Haiming Zhang, Ruomeng Duan, Penghui Ji, Ling Li, Qing Li, Chen Li, Dingyong Zhong, Klaus Müllen, Lifeng Chi. Surface-Assisted Alkane Polymerization: Investigation on Structure–Reactivity Relationship. Journal of the American Chemical Society 2018, 140 (14) , 4820-4825. https://doi.org/10.1021/jacs.7b09097
  16. Sergio Tosoni and Gianfranco Pacchioni . Trends in Adhesion Energies of Gold on MgO(100), Rutile TiO2(110), and CeO2(111) Surfaces: A Comparative DFT Study. The Journal of Physical Chemistry C 2017, 121 (51) , 28328-28338. https://doi.org/10.1021/acs.jpcc.7b09429
  17. Zhenjun Song, Bin Zhao, Hu Xu, and Peng Cheng . Remarkably Strong Chemisorption of Nitric Oxide on Insulating Oxide Films Promoted by Hybrid Structure. The Journal of Physical Chemistry C 2017, 121 (39) , 21482-21490. https://doi.org/10.1021/acs.jpcc.7b06912
  18. Ahmed Ghalgaoui, Aimeric Ouvrard, Jijin Wang, Serge Carrez, Wanquan Zheng, and Bernard Bourguignon . Electron to Adsorbate Energy Transfer in Nanoparticles: Adsorption Site, Size, and Support Matter. The Journal of Physical Chemistry Letters 2017, 8 (12) , 2666-2671. https://doi.org/10.1021/acs.jpclett.7b00698
  19. Dimitar A. Panayotov, Anatoly I. Frenkel, and John R. Morris . Catalysis and Photocatalysis by Nanoscale Au/TiO2: Perspectives for Renewable Energy. ACS Energy Letters 2017, 2 (5) , 1223-1231. https://doi.org/10.1021/acsenergylett.7b00189
  20. Susanne Mohr, Tobias Schmitt, Tibor Döpper, Feifei Xiang, Matthias Schwarz, Andreas Görling, M. Alexander Schneider, and Jörg Libuda . Coverage-Dependent Anchoring of 4,4′-Biphenyl Dicarboxylic Acid to CoO(111) Thin Films. Langmuir 2017, 33 (17) , 4178-4188. https://doi.org/10.1021/acs.langmuir.7b00465
  21. Stephanie L. Hemmingson, Gabriel M. Feeley, Naomi J. Miyake, and Charles T. Campbell . Energetics of 2D and 3D Gold Nanoparticles on MgO(100): Influence of Particle Size and Defects on Gold Adsorption and Adhesion Energies. ACS Catalysis 2017, 7 (3) , 2151-2163. https://doi.org/10.1021/acscatal.6b03173
  22. Hans-Joachim Freund . The Surface Science of Catalysis and More, Using Ultrathin Oxide Films as Templates: A Perspective. Journal of the American Chemical Society 2016, 138 (29) , 8985-8996. https://doi.org/10.1021/jacs.6b05565
  23. Hyesung An, Soonho Kwon, Hyunwoo Ha, Hyun You Kim, and Hyuck Mo Lee . Reactive Structural Motifs of Au Nanoclusters for Oxygen Activation and Subsequent CO Oxidation. The Journal of Physical Chemistry C 2016, 120 (17) , 9292-9298. https://doi.org/10.1021/acs.jpcc.6b01774
  24. Jan Pischel and Annemarie Pucci . Low-Temperature Adsorption of Carbon Monoxide on Gold Surfaces: IR Spectroscopy Uncovers Different Adsorption States on Pristine and Rough Au(111). The Journal of Physical Chemistry C 2015, 119 (32) , 18340-18351. https://doi.org/10.1021/acs.jpcc.5b05051
  25. A. S. Crampton, C. J. Ridge, M. D. Rötzer, G. Zwaschka, T. Braun, V. D’Elia, J.-M. Basset, F. F. Schweinberger, S. Günther, and U. Heiz . Atomic Structure Control of Silica Thin Films on Pt(111). The Journal of Physical Chemistry C 2015, 119 (24) , 13665-13669. https://doi.org/10.1021/acs.jpcc.5b02667
  26. Hanqing Pan, Serena Low, Nisala Weerasuriya, and Young-Seok Shon . Graphene Oxide-Promoted Reshaping and Coarsening of Gold Nanorods and Nanoparticles. ACS Applied Materials & Interfaces 2015, 7 (5) , 3406-3413. https://doi.org/10.1021/am508801e
  27. Lidiya S. Kibis, Andrey I. Stadnichenko, Sergey V. Koscheev, Vladimir I. Zaikovskii, and Andrei I. Boronin . Highly Oxidized Gold Nanoparticles: In Situ Synthesis, Electronic Properties, and Reaction Probability Toward CO Oxidation. The Journal of Physical Chemistry C 2015, 119 (5) , 2523-2529. https://doi.org/10.1021/jp510684s
  28. Jan Čechal, Josef Polčák, and Tomáš Šikola . Detachment Limited Kinetics of Gold Diffusion through Ultrathin Oxide Layers. The Journal of Physical Chemistry C 2014, 118 (31) , 17549-17555. https://doi.org/10.1021/jp5031703
  29. Swetlana Schauermann, Niklas Nilius, Shamil Shaikhutdinov, and Hans-Joachim Freund . Nanoparticles for Heterogeneous Catalysis: New Mechanistic Insights. Accounts of Chemical Research 2013, 46 (8) , 1673-1681. https://doi.org/10.1021/ar300225s
  30. Tomoki Akita, Masanori Kohyama, and Masatake Haruta . Electron Microscopy Study of Gold Nanoparticles Deposited on Transition Metal Oxides. Accounts of Chemical Research 2013, 46 (8) , 1773-1782. https://doi.org/10.1021/ar300259n
  31. Gianfranco Pacchioni and Hajo Freund . Electron Transfer at Oxide Surfaces. The MgO Paradigm: from Defects to Ultrathin Films. Chemical Reviews 2013, 113 (6) , 4035-4072. https://doi.org/10.1021/cr3002017
  32. Charles T. Campbell and Jason R. V. Sellers . Enthalpies and Entropies of Adsorption on Well-Defined Oxide Surfaces: Experimental Measurements. Chemical Reviews 2013, 113 (6) , 4106-4135. https://doi.org/10.1021/cr300329s
  33. Malgorzata Mucha, Eva Kaletová, Anna Kohutová, Frank Scholz, Elizabeth S. Stensrud, Ivan Stibor, Lubomír Pospíšil, Florian von Wrochem, and Josef Michl . Alkylation of Gold Surface by Treatment with C18H37HgOTs and Anodic Hg Stripping. Journal of the American Chemical Society 2013, 135 (15) , 5669-5677. https://doi.org/10.1021/ja3117125
  34. Hyun You Kim and Graeme Henkelman . CO Oxidation at the Interface between Doped CeO2 and Supported Au Nanoclusters. The Journal of Physical Chemistry Letters 2012, 3 (16) , 2194-2199. https://doi.org/10.1021/jz300631f
  35. Manolis Stratakis and Hermenegildo Garcia . Catalysis by Supported Gold Nanoparticles: Beyond Aerobic Oxidative Processes. Chemical Reviews 2012, 112 (8) , 4469-4506. https://doi.org/10.1021/cr3000785
  36. Bing Yang, Yi Pan, Xiao Lin, Niklas Nilius, Hans-Joachim Freund, Catherine Hulot, Anne Giraud, Siegfried Blechert, Sergio Tosoni, and Joachim Sauer . Stabilizing Gold Adatoms by Thiophenyl Derivatives: A Possible Route toward Metal Redispersion. Journal of the American Chemical Society 2012, 134 (27) , 11161-11167. https://doi.org/10.1021/ja300304s
  37. Jinlong Gong . Structure and Surface Chemistry of Gold-Based Model Catalysts. Chemical Reviews 2012, 112 (5) , 2987-3054. https://doi.org/10.1021/cr200041p
  38. Yan Zhang, Xinjiang Cui, Feng Shi, and Youquan Deng . Nano-Gold Catalysis in Fine Chemical Synthesis. Chemical Reviews 2012, 112 (4) , 2467-2505. https://doi.org/10.1021/cr200260m
  39. Xiang Shao, Niklas Nilius, and Hans-Joachim Freund . Li/Mo Codoping of CaO Films: A Means to Tailor the Equilibrium Shape of Au Deposits. Journal of the American Chemical Society 2012, 134 (5) , 2532-2534. https://doi.org/10.1021/ja211396t
  40. Sergio Tosoni, A. Daniel Boese, and Joachim Sauer . Interaction Between Gold Atoms and Thio-Aryl Ligands on the Au(111) Surface. The Journal of Physical Chemistry C 2011, 115 (50) , 24871-24879. https://doi.org/10.1021/jp2083538
  41. Rui Liu, Jing-fu Liu, Xiao-xia Zhou, and Gui-bin Jiang . Cysteine Modified Small Ligament Au Nanoporous Film: An Easy Fabricating and Highly Efficient Surface-Assisted Laser Desorption/Ionization Substrate. Analytical Chemistry 2011, 83 (10) , 3668-3674. https://doi.org/10.1021/ac103222p
  42. Jaehoon Jung, Hyung-Joon Shin, Yousoo Kim, and Maki Kawai . Activation of Ultrathin Oxide Films for Chemical Reaction by Interface Defects. Journal of the American Chemical Society 2011, 133 (16) , 6142-6145. https://doi.org/10.1021/ja200854g
  43. Lingshun Xu, Wenhua Zhang, Yulin Zhang, Zongfang Wu, Bohao Chen, Zhiquan Jiang, Yunsheng Ma, Jinlong Yang, and Weixin Huang . Oxygen Vacancy-Controlled Reactivity of Hydroxyls on an FeO(111) Monolayer Film. The Journal of Physical Chemistry C 2011, 115 (14) , 6815-6824. https://doi.org/10.1021/jp200423j
  44. Nicole Cathcart and Vladimir Kitaev. Silver Nanoclusters: Single-Stage Scaleable Synthesis of Monodisperse Species and Their Chirooptical Properties. The Journal of Physical Chemistry C 2010, 114 (38) , 16010-16017. https://doi.org/10.1021/jp101764q
  45. Emma L. Wilson and Wendy A. Brown. Low Pressure RAIRS Studies of Model Catalytic Systems. The Journal of Physical Chemistry C 2010, 114 (15) , 6879-6893. https://doi.org/10.1021/jp912080t
  46. M. Boronat, P. Concepción and A. Corma. Unravelling the Nature of Gold Surface Sites by Combining IR Spectroscopy and DFT Calculations. Implications in Catalysis. The Journal of Physical Chemistry C 2009, 113 (38) , 16772-16784. https://doi.org/10.1021/jp905157r
  47. Jinlong Gong and C. Buddie Mullins. Surface Science Investigations of Oxidative Chemistry on Gold. Accounts of Chemical Research 2009, 42 (8) , 1063-1073. https://doi.org/10.1021/ar8002706
  48. Nicole Cathcart, Pretesh Mistry, Christy Makra, Brendan Pietrobon, Neil Coombs, Masoud Jelokhani-Niaraki and Vladimir Kitaev . Chiral Thiol-Stabilized Silver Nanoclusters with Well-Resolved Optical Transitions Synthesized by a Facile Etching Procedure in Aqueous Solutions. Langmuir 2009, 25 (10) , 5840-5846. https://doi.org/10.1021/la9005967
  49. M. Baron, O. Bondarchuk, D. Stacchiola, S. Shaikhutdinov and H.-J. Freund. Interaction of Gold with Cerium Oxide Supports: CeO2(111) Thin Films vs CeOx Nanoparticles. The Journal of Physical Chemistry C 2009, 113 (15) , 6042-6049. https://doi.org/10.1021/jp9001753
  50. Ho Viet Thang, Thong Le Minh Pham. DFT insights into the electronic structure of Rh single-atom catalysts stabilized on the CeO2(1 1 1) surface. Chemical Physics Letters 2022, 803 , 139810. https://doi.org/10.1016/j.cplett.2022.139810
  51. Ziqi Zhang, Yin Lei, Weimin Huang. Recent progress in carbon-based materials boosting electrochemical water splitting. Chinese Chemical Letters 2022, 33 (8) , 3623-3631. https://doi.org/10.1016/j.cclet.2021.11.041
  52. Jong Hwan Park, Jeong Woo Yang, Min Gyo Byun, Nong Moon Hwang, Jinwoo Park, Byung Deok Yu. Charging effects on the vibrational properties of Au and Au2 on MgO(100). Current Applied Physics 2022, 36 , 34-42. https://doi.org/10.1016/j.cap.2022.01.003
  53. Kanika Bharti, Kalyan K. Sadhu. Syntheses of metal oxide-gold nanocomposites for biological applications. Results in Chemistry 2022, 4 , 100288. https://doi.org/10.1016/j.rechem.2022.100288
  54. Stephanie Lambie, Krista G. Steenbergen, Nicola Gaston, Beate Paulus. Clustering of metal dopants in defect sites of graphene-based materials. Physical Chemistry Chemical Physics 2021, 24 (1) , 98-111. https://doi.org/10.1039/D1CP05008G
  55. Zhiwei Wang, Wenlong Wang, Jin Wang, Yi Yuan, Qianyuan Wu, Hongying Hu. High-Valent Iron-Oxo Species Mediated Cyclic Oxidation through Single-Atom Fe-N6 Sites with High Peroxymonosulfate Utilization Rate. Applied Catalysis B: Environmental 2021, 11 , 121049. https://doi.org/10.1016/j.apcatb.2021.121049
  56. Rui Qi, Beien Zhu, Yi Gao. Effects of atom-to-defect ratio on the thermostability of dispersed Au atoms on reduced TiO2(1 0 1) surface. Applied Surface Science 2021, 565 , 150519. https://doi.org/10.1016/j.apsusc.2021.150519
  57. Ken Sakaushi, Kohei Uosaki. Computationally empowered design of emerging earth-abundant electrocatalysts toward electron- /proton-transferring energy conversion. Current Opinion in Electrochemistry 2021, 26 , 100661. https://doi.org/10.1016/j.coelec.2020.100661
  58. Günther Rupprechter. Operando Surface Spectroscopy and Microscopy during Catalytic Reactions: From Clusters via Nanoparticles to Meso‐Scale Aggregates. Small 2021, 2 , 2004289. https://doi.org/10.1002/smll.202004289
  59. Baoqi Yin, Zhixun Luo. Coinage metal clusters: From superatom chemistry to genetic materials. Coordination Chemistry Reviews 2021, 429 , 213643. https://doi.org/10.1016/j.ccr.2020.213643
  60. Huang Zhou, Yafei Zhao, Jie Xu, Haoran Sun, Zhijun Li, Wei Liu, Tongwei Yuan, Wei Liu, Xiaoqian Wang, Weng-Chon Cheong, Zhiyuan Wang, Xin Wang, Chao Zhao, Yancai Yao, Wenyu Wang, Fangyao Zhou, Min Chen, Benjin Jin, Rongbo Sun, Jing Liu, Xun Hong, Tao Yao, Shiqiang Wei, Jun Luo, Yuen Wu. Recover the activity of sintered supported catalysts by nitrogen-doped carbon atomization. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-019-14223-w
  61. Chun-Yen Liu, Shijia Zhang, Daniel Martinez, Meng Li, Thomas P. Senftle. Using statistical learning to predict interactions between single metal atoms and modified MgO(100) supports. npj Computational Materials 2020, 6 (1) https://doi.org/10.1038/s41524-020-00371-x
  62. Lianping Wu, Shuling Hu, Wenshan Yu, Shengping Shen, Teng Li. Stabilizing mechanism of single-atom catalysts on a defective carbon surface. npj Computational Materials 2020, 6 (1) https://doi.org/10.1038/s41524-020-0292-y
  63. David Kuhness, Jagriti Pal, Hyun Jin Yang, Nisha Mammen, Karoliina Honkala, Hannu Häkkinen, Wolf-Dieter Schneider, Markus Heyde, Hans-Joachim Freund. Binding Behavior of Carbonmonoxide to Gold Atoms on Ag(001). Topics in Catalysis 2020, 63 (15-18) , 1578-1584. https://doi.org/10.1007/s11244-020-01290-3
  64. Lianping Wu, Tian Guo, Teng Li. Rational design of transition metal single-atom electrocatalysts: a simulation-based, machine learning-accelerated study. Journal of Materials Chemistry A 2020, 8 (37) , 19290-19299. https://doi.org/10.1039/D0TA06207C
  65. Anderson Guarnizo Franco, Luis Fernando Rodríguez Herrera, Ximena Carolina Pulido Villamil. Single Atoms. Revista Facultad de Ciencias Básicas 2020, 15 (2) , 69-81. https://doi.org/10.18359/rfcb.4031
  66. Hyuk Choi, Eunji Kang, Hyun You Kim. Theoretical Investigation of Water Adsorption Chemistry of CeO2(111) Surfaces by Density Functional Theory. Korean Journal of Materials Research 2020, 30 (5) , 267-271. https://doi.org/10.3740/MRSK.2020.30.5.267
  67. Ho Viet Thang, Gianfranco Pacchioni. On the Real Nature of Rh Single‐Atom Catalysts Dispersed on the ZrO 2 Surface. ChemCatChem 2020, 12 (9) , 2595-2604. https://doi.org/10.1002/cctc.201901878
  68. Sukanya Ghosh, Nisha Mammen, Shobhana Narasimhan. Support work function as a descriptor and predictor for the charge and morphology of deposited Au nanoparticles. The Journal of Chemical Physics 2020, 152 (14) , 144704. https://doi.org/10.1063/1.5143642
  69. Congcong Wang, Yixin Chen, Siyang Feng, Nan Zhang, Lin Shen, Kai Zhang, Bai Yang. The preparation of hollow Fe 3 O 4 /[email protected] NCs to stabilize subminiature Pd nanoparticles for the reduction of 4-nitrophenol. New Journal of Chemistry 2020, 44 (12) , 4869-4876. https://doi.org/10.1039/C9NJ06165G
  70. Lu Zhao, Yun Zhang, Lin-Bo Huang, Xiao-Zhi Liu, Qing-Hua Zhang, Chao He, Ze-Yuan Wu, Lin-Juan Zhang, Jinpeng Wu, Wanli Yang, Lin Gu, Jin-Song Hu, Li-Jun Wan. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-09290-y
  71. Sheau Wei Ong, Bin Leong Ong, Eng Soon Tok. Optical and chemical stability of sputtered-Au nanoparticles and film in ambient environment. Applied Surface Science 2019, 488 , 753-762. https://doi.org/10.1016/j.apsusc.2019.05.233
  72. Yonggang Yao, Zhennan Huang, Pengfei Xie, Lianping Wu, Lu Ma, Tangyuan Li, Zhenqian Pang, Miaolun Jiao, Zhiqiang Liang, Jinlong Gao, Yang He, Dylan Jacob Kline, Michael R. Zachariah, Chongmin Wang, Jun Lu, Tianpin Wu, Teng Li, Chao Wang, Reza Shahbazian-Yassar, Liangbing Hu. High temperature shockwave stabilized single atoms. Nature Nanotechnology 2019, 14 (9) , 851-857. https://doi.org/10.1038/s41565-019-0518-7
  73. Zhenjun Song, Bin Zhao, Qiang Wang, Peng Cheng. Homolytic cleavage of water on magnesia film promoted by interfacial oxide−metal nanocomposite. Applied Surface Science 2019, 487 , 1222-1232. https://doi.org/10.1016/j.apsusc.2019.05.137
  74. Sergio Tosoni, Gianfranco Pacchioni. Oxide‐Supported Gold Clusters and Nanoparticles in Catalysis: A Computational Chemistry Perspective. ChemCatChem 2019, 11 (1) , 73-89. https://doi.org/10.1002/cctc.201801082
  75. Sujit Kumar Ghosh, Hasimur Rahaman. Noble Metal–Manganese Oxide Hybrid Nanocatalysts. 2019,,, 313-340. https://doi.org/10.1016/B978-0-12-814134-2.00009-7
  76. Hai Cao, Deepali Waghray, Stefan Knoppe, Wim Dehaen, Thierry Verbiest, Steven De Feyter. Tailoring atomic layer growth at the liquid-metal interface. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-07381-w
  77. Joong‐Hee Min, Yi‐An Chen, I‐Te Chen, Tianlei Sun, Dennis T. Lee, Chengjun Li, Yong Zhu, Brendan T. O'Connor, Gregory N. Parsons, Chih‐Hao Chang. Conformal Physical Vapor Deposition Assisted by Atomic Layer Deposition and Its Application for Stretchable Conductors. Advanced Materials Interfaces 2018, 5 (22) , 1801379. https://doi.org/10.1002/admi.201801379
  78. Zhenjun Song, Bin Zhao, Qiang Wang, Peng Cheng. Steering reduction and decomposition of peroxide compounds by interface interactions between MgO thin film and transition-metal support. Applied Surface Science 2018, 459 , 812-821. https://doi.org/10.1016/j.apsusc.2018.08.071
  79. Ho Viet Thang, Gianfranco Pacchioni, Leo DeRita, Phillip Christopher. Nature of stable single atom Pt catalysts dispersed on anatase TiO2. Journal of Catalysis 2018, 367 , 104-114. https://doi.org/10.1016/j.jcat.2018.08.025
  80. Jia Zhao, Bolin Wang, Yuxue Yue, Shuxia Di, Yuanyuan Zhai, Haihua He, Gangfeng Sheng, Huixia Lai, Yihan Zhu, Lingling Guo, Xiaonian Li. Towards a greener approach for the preparation of highly active gold/carbon catalyst for the hydrochlorination of ethyne. Journal of Catalysis 2018, 365 , 153-162. https://doi.org/10.1016/j.jcat.2018.06.030
  81. Shengjie Wei, Ang Li, Jin-Cheng Liu, Zhi Li, Wenxing Chen, Yue Gong, Qinghua Zhang, Weng-Chon Cheong, Yu Wang, Lirong Zheng, Hai Xiao, Chen Chen, Dingsheng Wang, Qing Peng, Lin Gu, Xiaodong Han, Jun Li, Yadong Li. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nature Nanotechnology 2018, 13 (9) , 856-861. https://doi.org/10.1038/s41565-018-0197-9
  82. Christopher Salvo, Prasanta Karmakar, Jory Yarmoff. Inhomogeneous charge distribution across gold nanoclusters measured by scattered low energy alkali ions. Physical Review B 2018, 98 (3) https://doi.org/10.1103/PhysRevB.98.035437
  83. Ho Viet Thang, Sergio Tosoni, Liu Fang, Pieter Bruijnincx, Gianfranco Pacchioni. Nature of Sintering-Resistant, Single-Atom Ru Species Dispersed on Zirconia-Based Catalysts: A DFT and FTIR Study of CO Adsorption. ChemCatChem 2018, 10 (12) , 2634-2645. https://doi.org/10.1002/cctc.201800246
  84. Kakali Santra, Pradipta Purkayastha. Combination of hollow fluorescent carbon and gold nanoparticles: A super-catalyst. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2018, 191 , 221-225. https://doi.org/10.1016/j.saa.2017.10.028
  85. Homa Khosravian. Synthesis and characterization of rhodium nanoclusters on TiO2(110) surface using organometallic compounds. Surface Science 2018, 667 , 38-44. https://doi.org/10.1016/j.susc.2017.09.015
  86. Sergio Tosoni, Gianfranco Pacchioni. Influence of surface hydroxylation on the Ru atom diffusion on the ZrO2(101) surface: A DFT study. Surface Science 2017, 664 , 87-94. https://doi.org/10.1016/j.susc.2017.06.005
  87. Bing Han, Rui Lang, Botao Qiao, Aiqin Wang, Tao Zhang. Highlights of the major progress in single-atom catalysis in 2015 and 2016. Chinese Journal of Catalysis 2017, 38 (9) , 1498-1507. https://doi.org/10.1016/S1872-2067(17)62872-9
  88. Eduardo A. Larios-Rodríguez, F. F. Castillón-Barraza, Ronaldo Herrera-Urbina, Ulises Santiago, Alvaro Posada-Amarillas. Synthesis of AucorePdshell Nanoparticles by a Green Chemistry Method and Characterization by HAADF-STEM Imaging. Journal of Cluster Science 2017, 28 (4) , 2075-2086. https://doi.org/10.1007/s10876-017-1200-6
  89. Na Li, Yu He, Yili Ge, Gongwu Song. “Turn-Off-On” Fluorescence Switching of Ascorbic Acid-Reductive Silver Nanoclusters: a Sensor for Ascorbic Acid and Arginine in Biological Fluids. Journal of Fluorescence 2017, 27 (1) , 293-302. https://doi.org/10.1007/s10895-016-1957-2
  90. Weixin Huang, Guanghui Sun, Tian Cao. Surface chemistry of group IB metals and related oxides. Chemical Society Reviews 2017, 46 (7) , 1977-2000. https://doi.org/10.1039/C6CS00828C
  91. Benjamin N. Reinecke, Kendra P. Kuhl, Hirohito Ogasawara, Lin Li, Johannes Voss, Frank Abild-Pedersen, Anders Nilsson, Thomas F. Jaramillo. Elucidating the electronic structure of supported gold nanoparticles and its relevance to catalysis by means of hard X-ray photoelectron spectroscopy. Surface Science 2016, 650 , 24-33. https://doi.org/10.1016/j.susc.2015.12.025
  92. Andrew S. Crampton, Marian D. Rötzer, Florian F. Schweinberger, Bokwon Yoon, Uzi Landman, Ueli Heiz. Controlling Ethylene Hydrogenation Reactivity on Pt 13 Clusters by Varying the Stoichiometry of the Amorphous Silica Support. Angewandte Chemie 2016, 128 (31) , 9099-9103. https://doi.org/10.1002/ange.201603332
  93. Andrew S. Crampton, Marian D. Rötzer, Florian F. Schweinberger, Bokwon Yoon, Uzi Landman, Ueli Heiz. Controlling Ethylene Hydrogenation Reactivity on Pt 13 Clusters by Varying the Stoichiometry of the Amorphous Silica Support. Angewandte Chemie International Edition 2016, 55 (31) , 8953-8957. https://doi.org/10.1002/anie.201603332
  94. Hannu Häkkinen. Electronic shell structures in bare and protected metal nanoclusters. Advances in Physics: X 2016, 1 (3) , 467-491. https://doi.org/10.1080/23746149.2016.1219234
  95. Dimitar A. Panayotov, John R. Morris. Surface chemistry of Au/TiO2: Thermally and photolytically activated reactions. Surface Science Reports 2016, 71 (1) , 77-271. https://doi.org/10.1016/j.surfrep.2016.01.002
  96. Xun-Lei Ding, Dan Wang, Rui-Jie Li, Heng-Lu Liao, Yan Zhang, Hua-Yong Zhang. Adsorption of a single gold or silver atom on vanadium oxide clusters. Physical Chemistry Chemical Physics 2016, 18 (14) , 9497-9503. https://doi.org/10.1039/C6CP00808A
  97. Ming-Xing Liang, Liang Zhao, Jianfeng Jia, Hai-Shun Wu. Au n (n = 1–16) clusters on the ZrO 2 (111) surface: a DFT+U investigation. Physical Chemistry Chemical Physics 2016, 18 (44) , 30491-30497. https://doi.org/10.1039/C6CP05977E
  98. Paulino Alonso-Cristobal, M. Arturo Lopez-Quintela, Rafael Contreras-Caceres, Enrique Lopez-Cabarcos, Jorge Rubio-Retama, Marco Laurenti. Synthesis of catalytically active gold clusters on the surface of Fe 3 O 4 @SiO 2 nanoparticles. RSC Advances 2016, 6 (102) , 100614-100622. https://doi.org/10.1039/C6RA20055A
  99. Florencia Calaza, Christian Stiehler, Yuichi Fujimori, Martin Sterrer, Sebastian Beeg, Miguel Ruiz-Oses, Niklas Nilius, Markus Heyde, Teemu Parviainen, Karoliina Honkala, Hannu Häkkinen, Hans-Joachim Freund. Aktivierung und Elektronentransfer-induzierte Reaktion von Kohlendioxid an einer Oxid-Metall-Grenzfläche. Angewandte Chemie 2015, 127 (42) , 12661-12665. https://doi.org/10.1002/ange.201501420
  100. Florencia Calaza, Christian Stiehler, Yuichi Fujimori, Martin Sterrer, Sebastian Beeg, Miguel Ruiz-Oses, Niklas Nilius, Markus Heyde, Teemu Parviainen, Karoliina Honkala, Hannu Häkkinen, Hans-Joachim Freund. Carbon Dioxide Activation and Reaction Induced by Electron Transfer at an Oxide-Metal Interface. Angewandte Chemie International Edition 2015, 54 (42) , 12484-12487. https://doi.org/10.1002/anie.201501420
Load all citations

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE