ACS Publications. Most Trusted. Most Cited. Most Read
Hydrogen Evolution Catalyzed by Cobaloximes
My Activity

Figure 1Loading Img
    Article

    Hydrogen Evolution Catalyzed by Cobaloximes
    Click to copy article linkArticle link copied!

    View Author Information
    Beckman Institute, California Institute of Technology, Pasadena, California 91125
    * To whom correspondence should be addressed. E-mail addresses: [email protected]; [email protected]; [email protected]
    Other Access Options

    Accounts of Chemical Research

    Cite this: Acc. Chem. Res. 2009, 42, 12, 1995–2004
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ar900253e
    Published November 23, 2009
    Copyright © 2009 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Natural photosynthesis uses sunlight to drive the conversion of energy-poor molecules (H2O, CO2) to energy-rich ones (O2, (CH2O)n). Scientists are working hard to develop efficient artificial photosynthetic systems toward the “Holy Grail” of solar-driven water splitting. High on the list of challenges is the discovery of molecules that efficiently catalyze the reduction of protons to H2. In this Account, we report on one promising class of molecules: cobalt complexes with diglyoxime ligands (cobaloximes).

    Chemical, electrochemical, and photochemical methods all have been utilized to explore proton reduction catalysis by cobaloxime complexes. Reduction of a CoII-diglyoxime generates a CoI species that reacts with a proton source to produce a CoIII-hydride. Then, in a homolytic pathway, two CoIII-hydrides react in a bimolecular step to eliminate H2. Alternatively, in a heterolytic pathway, protonation of the CoIII-hydride produces H2 and CoIII.

    A thermodynamic analysis of H2 evolution pathways sheds new light on the barriers and driving forces of the elementary reaction steps involved in proton reduction by CoI-diglyoximes. In combination with experimental results, this analysis shows that the barriers to H2 evolution along the heterolytic pathway are, in most cases, substantially greater than those of the homolytic route. In particular, a formidable barrier is associated with CoIII-diglyoxime formation along the heterolytic pathway.

    Our investigations of cobaloxime-catalyzed H2 evolution, coupled with the thermodynamic preference for a homolytic route, suggest that the rate-limiting step is associated with formation of the hydride. An efficient water splitting device may require the tethering of catalysts to an electrode surface in a fashion that does not inhibit association of CoIII-hydrides.

    Copyright © 2009 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 981 publications.

    1. Daiki Nishiori, Lillian K. Hensleigh, Nghi P. Nguyen, Ian Peterson, Gary F. Moore. Wavelength-Resolving Catalytic Turnover Frequencies and Identifying Alternate Proton Donors in Solar-Fuel-Forming Reactions. ACS Catalysis 2025, 15 (8) , 6361-6371. https://doi.org/10.1021/acscatal.4c07140
    2. Xiaofan Yang, Jie Liu, Nicholas R. Bagnall, Johan P. A. Heuts, Brady Worrell, Christopher Waldron, David M. Haddleton. Assessing Cobalt(II/III) Complex Purity Using XRD and Its Impact on Effectiveness of Catalytic Chain Transfer Polymerization. Macromolecules 2025, 58 (6) , 3188-3198. https://doi.org/10.1021/acs.macromol.5c00049
    3. Fabio Juliá. Catalysis in the Excited State: Bringing Innate Transition Metal Photochemistry into Play. ACS Catalysis 2025, 15 (6) , 4665-4680. https://doi.org/10.1021/acscatal.4c07962
    4. Jillian L. Dempsey. Deciphering Reaction Mechanisms of Molecular Proton Reduction Catalysts with Cyclic Voltammetry: Kinetic vs Thermodynamic Control. Accounts of Chemical Research 2025, 58 (6) , 947-957. https://doi.org/10.1021/acs.accounts.5c00002
    5. Guangchao Liang, Min Zhang. Harnessing the Cobalt-Catalyzed Hydrogen Evolution Reaction through a Data-Driven Approach. Inorganic Chemistry 2025, 64 (6) , 2737-2747. https://doi.org/10.1021/acs.inorgchem.4c04645
    6. Huiqing Yuan, Mei Ming, Shuang Yang, Kai Guo, Bixian Chen, Long Jiang, Zhiji Han. Molecular Copper–Anthraquinone Photocatalysts for Robust Hydrogen Production. Journal of the American Chemical Society 2024, 146 (46) , 31901-31910. https://doi.org/10.1021/jacs.4c11223
    7. Charlotte L. Montgomery, Mehmed Z. Ertem, Leo Chevalier, Jillian L. Dempsey. Circumventing Kinetic Barriers to Metal Hydride Formation with Metal–Ligand Cooperativity. Journal of the American Chemical Society 2024, 146 (44) , 30020-30032. https://doi.org/10.1021/jacs.4c01716
    8. Erik J. Askins, Abdul Sarkar, Pouyan Navabi, Khagesh Kumar, Sarah Jasmin Finkelmeyer, Martin Presselt, Jordi Cabana, Ksenija D. Glusac. Interfacial Electrochemistry of Catalyst-Coordinated Graphene Nanoribbons. Journal of the American Chemical Society 2024, 146 (32) , 22360-22373. https://doi.org/10.1021/jacs.4c05250
    9. Bin Sun, Jiayin Wang, Shuangshuang Zhou, Jiaxing Xu, Xiaohui Zhuang, Zehui Meng, Yifan Xu, Zhiguo Zhang, Can Jin. Decatungstate/Cobalt Dual Catalyzed Dehydrogenation of Ketones Enabled by Polarity-Matched Site-Selective Activation. ACS Catalysis 2024, 14 (14) , 11138-11146. https://doi.org/10.1021/acscatal.4c02956
    10. Marcel Boecker, Sarah Lander, Riccarda Müller, Anna-Laurine Gaus, Christof Neumann, Julia Moser, Mathias Micheel, Andrey Turchanin, Max von Delius, Christopher V. Synatschke, Kerstin Leopold, Maria Wächtler, Tanja Weil. Screening Cobalt-based Catalysts on Multicomponent CdSe@CdS Nanorods for Photocatalytic Hydrogen Evolution in Aqueous Media. ACS Applied Nano Materials 2024, 7 (12) , 14146-14153. https://doi.org/10.1021/acsanm.4c01645
    11. Kaiji Shen, Marcello Gennari, Christian Philouze, Ajdin Velić, Serhiy Demeshko, Franc Meyer, Carole Duboc. Chromium–Thiolate Complex Undergoing C–S Bond Cleavage. Inorganic Chemistry 2024, 63 (20) , 9119-9128. https://doi.org/10.1021/acs.inorgchem.4c00402
    12. Qiuyang Li, Kaifeng Wu, Haiming Zhu, Ye Yang, Sheng He, Tianquan Lian. Charge Transfer from Quantum-Confined 0D, 1D, and 2D Nanocrystals. Chemical Reviews 2024, 124 (9) , 5695-5763. https://doi.org/10.1021/acs.chemrev.3c00742
    13. Liang Yao, Alexander M. Pütz, Hugo Vignolo-González, Bettina V. Lotsch. Covalent Organic Frameworks as Single-Site Photocatalysts for Solar-to-Fuel Conversion. Journal of the American Chemical Society 2024, 146 (14) , 9479-9492. https://doi.org/10.1021/jacs.3c11539
    14. Biplab Biswas, Anjila I. Siddiqui, Mithun Chandra Majee, Swadhin Kumar Saha, Biswajit Mondal, Rajat Saha, Carlos J. Gómez García. Heptanuclear Mixed-Valence Co4IIICo3II Molecular Wheel─A Molecular Analogue of Layered Double Hydroxides with Single-Molecule Magnet Behavior and Electrocatalytic Activity for Hydrogen Evolution Reactions. Inorganic Chemistry 2024, 63 (14) , 6161-6172. https://doi.org/10.1021/acs.inorgchem.3c04065
    15. Young Hyun Hong, Madhuri Nilajakar, Yong-Min Lee, Wonwoo Nam, Shunichi Fukuzumi. Artificial Photosynthesis for Regioselective Reduction of NAD(P)+ to NAD(P)H Using Water as an Electron and Proton Source. Journal of the American Chemical Society 2024, 146 (8) , 5152-5161. https://doi.org/10.1021/jacs.3c10369
    16. Yanjun Wan, Emmanuel Ramírez, Ayzia Ford, Harriet K. Zhang, Jack R. Norton, Gang Li. RETRACTED: Cooperative Fe/Co-Catalyzed Remote Desaturation for the Synthesis of Unsaturated Amide Derivatives. Journal of the American Chemical Society 2024, 146 (7) , 4985-4992. https://doi.org/10.1021/jacs.3c14481
    17. Virginia A. Larson, Nicolai Lehnert. Covalent Attachment of Cobalt Bis(Benzylaminedithiolate) to Reduced Graphene Oxide as a Thin-Film Electrocatalyst for Hydrogen Production with Remarkable Dioxygen Tolerance. ACS Catalysis 2024, 14 (1) , 192-210. https://doi.org/10.1021/acscatal.3c03788
    18. Himani Joshi, Nilima Sinha, Kahkasha Parveen, Srimanta Pakhira. Unveiling the Electrocatalytic Activity of Cobaloxime Metallolinker in the UU-100(Co) Metal–Organic Framework toward the H2 Evolution Reaction: A DFT Study. Energy & Fuels 2023, 37 (24) , 19771-19784. https://doi.org/10.1021/acs.energyfuels.3c03013
    19. Jun-Li Li, Hao-Yuan Li, Shan-Shan Zhang, Shigang Shen, Xiu-Long Yang, Xiaoying Niu. Photoredox/Cobalt-Catalyzed Cascade Oxidative Synthesis of 2,5-Disubstituted 1,3,4-Oxadiazoles under Oxidant-Free Conditions. The Journal of Organic Chemistry 2023, 88 (21) , 14874-14886. https://doi.org/10.1021/acs.joc.3c01078
    20. Hagen Neugebauer, Hung T. Vuong, John L. Weber, Richard A. Friesner, James Shee, Andreas Hansen. Toward Benchmark-Quality Ab Initio Predictions for 3d Transition Metal Electrocatalysts: A Comparison of CCSD(T) and ph-AFQMC. Journal of Chemical Theory and Computation 2023, 19 (18) , 6208-6225. https://doi.org/10.1021/acs.jctc.3c00617
    21. Collin N. Muniz, Claire A. Archer, Jack S. Applebaum, Anushan Alagaratnam, Jonas Schaab, Peter I. Djurovich, Mark E. Thompson. Two-Coordinate Coinage Metal Complexes as Solar Photosensitizers. Journal of the American Chemical Society 2023, 145 (25) , 13846-13857. https://doi.org/10.1021/jacs.3c02825
    22. Alberto Bianco, Alessandro Gradone, Vittorio Morandi, Giacomo Bergamini. RuO2 Nanostructure as an Efficient and Versatile Catalyst for H2 Photosynthesis. ACS Applied Energy Materials 2023, 6 (11) , 6243-6250. https://doi.org/10.1021/acsaem.3c00764
    23. Nina F. Suremann, Brian D. McCarthy, Wanja Gschwind, Amol Kumar, Ben A. Johnson, Leif Hammarström, Sascha Ott. Molecular Catalysis of Energy Relevance in Metal–Organic Frameworks: From Higher Coordination Sphere to System Effects. Chemical Reviews 2023, 123 (10) , 6545-6611. https://doi.org/10.1021/acs.chemrev.2c00587
    24. ZhaoXuanAssociate ProfessorKumaravel Dinesh Gunasekaran, CRANN/AMBER, School of Chemistry, Trinity College Dublin, Dublin. Homogeneous Water Splitting. 2023https://doi.org/10.1021/acsinfocus.7e7005
    25. Avijit Das, Afsar Ali, Geetika Gupta, Aakash Santra, Priya Jain, Pravin P. Ingole, Satadal Paul, Sayantan Paria. Catalytic Four-Electron Reduction of Oxygen to Water by a Molecular Cobalt Complex Consisting of a Proton Exchanging Site at the Secondary Coordination Sphere. ACS Catalysis 2023, 13 (8) , 5285-5297. https://doi.org/10.1021/acscatal.3c00822
    26. Young Hyun Hong, Yong-Min Lee, Wonwoo Nam, Shunichi Fukuzumi. Reaction Intermediates in Artificial Photosynthesis with Molecular Catalysts. ACS Catalysis 2023, 13 (1) , 308-341. https://doi.org/10.1021/acscatal.2c05033
    27. Nghi P. Nguyen, Lillian K. Hensleigh, Daiki Nishiori, Edgar A. Reyes Cruz, Gary F. Moore. Degrade-Repair Cycle of a Fuel-Forming Photoelectrode. ACS Applied Energy Materials 2022, 5 (11) , 13128-13133. https://doi.org/10.1021/acsaem.2c02367
    28. Sangmin Kim, Junho Kim, Hongyu Zhong, Grace B. Panetti, Paul J. Chirik. Catalytic N–H Bond Formation Promoted by a Ruthenium Hydride Complex Bearing a Redox-Active Pyrimidine-Imine Ligand. Journal of the American Chemical Society 2022, 144 (45) , 20661-20671. https://doi.org/10.1021/jacs.2c07800
    29. Mei Ming, Huiqing Yuan, Shuang Yang, Zuting Wei, Qinqin Lei, Jingxiang Lei, Zhiji Han. Efficient Red-Light-Driven Hydrogen Evolution with an Anthraquinone Organic Dye. Journal of the American Chemical Society 2022, 144 (43) , 19680-19684. https://doi.org/10.1021/jacs.2c08171
    30. Xiangyu Wu, Cara N. Gannett, Jinjian Liu, Rui Zeng, Luiz F. T. Novaes, Hongsen Wang, Héctor D. Abruña, Song Lin. Intercepting Hydrogen Evolution with Hydrogen-Atom Transfer: Electron-Initiated Hydrofunctionalization of Alkenes. Journal of the American Chemical Society 2022, 144 (39) , 17783-17791. https://doi.org/10.1021/jacs.2c08278
    31. Ritu, Saikat Das, Ya-Ming Tian, Tobias Karl, Nidhi Jain, Burkhard König. Photocatalyzed Dehydrogenation of Aliphatic N-Heterocycles Releasing Dihydrogen. ACS Catalysis 2022, 12 (16) , 10326-10332. https://doi.org/10.1021/acscatal.2c02830
    32. Jack Thomas-Colwell, Arvin Sookezian, Daniel A. Kurtz, Jeremy Kallick, Lawrence M. Henling, Troy A. Stich, Michael G. Hill, Bryan M. Hunter. Tuning Cobalt(II) Phosphine Complexes to be Axially Ambivalent. Inorganic Chemistry 2022, 61 (32) , 12625-12634. https://doi.org/10.1021/acs.inorgchem.2c01562
    33. Jens Niklas, Lars Kohler, Andrea M. Potocny, Kristy L. Mardis, Karen L. Mulfort, Oleg G. Poluektov. Electronic Structure of Molecular Cobalt Catalysts for H2 Production Revealed by Multifrequency EPR. The Journal of Physical Chemistry C 2022, 126 (29) , 11889-11899. https://doi.org/10.1021/acs.jpcc.2c02576
    34. Eric S. Wiedner, Aaron M. Appel, Simone Raugei, Wendy J. Shaw, R. Morris Bullock. Molecular Catalysts with Diphosphine Ligands Containing Pendant Amines. Chemical Reviews 2022, 122 (14) , 12427-12474. https://doi.org/10.1021/acs.chemrev.1c01001
    35. Sundarraj Sriram, Selvam Mathi, Bakthavachalam Vishnu, Jayaraman Jayabharathi. Entwined Co(OH)2 In Situ Anchoring on 3D Nickel Foam with Phenomenal Bifunctional Activity in Overall Water Splitting. Energy & Fuels 2022, 36 (13) , 7006-7016. https://doi.org/10.1021/acs.energyfuels.2c01144
    36. Robert E. Warburton, Alexander V. Soudackov, Sharon Hammes-Schiffer. Theoretical Modeling of Electrochemical Proton-Coupled Electron Transfer. Chemical Reviews 2022, 122 (12) , 10599-10650. https://doi.org/10.1021/acs.chemrev.1c00929
    37. Zongbin Jia, Long Zhang, Sanzhong Luo. Asymmetric C–H Dehydrogenative Allylic Alkylation by Ternary Photoredox-Cobalt-Chiral Primary Amine Catalysis under Visible Light. Journal of the American Chemical Society 2022, 144 (24) , 10705-10710. https://doi.org/10.1021/jacs.2c03299
    38. Wei Zhou, Shuo Wu, Paolo Melchiorre. Tetrachlorophthalimides as Organocatalytic Acceptors for Electron Donor–Acceptor Complex Photoactivation. Journal of the American Chemical Society 2022, 144 (20) , 8914-8919. https://doi.org/10.1021/jacs.2c03546
    39. Cyrille Costentin, Fakourou Camara, Jérôme Fortage, Marie-Noëlle Collomb. Photoinduced Catalysis of Redox Reactions. Turnover Numbers, Turnover Frequency, and Limiting Processes: Kinetic Analysis and Application to Light-Driven Hydrogen Production. ACS Catalysis 2022, 12 (10) , 6246-6254. https://doi.org/10.1021/acscatal.2c01289
    40. Zhen-Wen Wang, Qing Zhao, Chong-An Chen, Jun-Jun Sun, Hongjin Lv, Guo-Yu Yang. Chiral {Ni6PW9} Cluster–Organic Framework: Synthesis, Structure, and Properties. Inorganic Chemistry 2022, 61 (19) , 7477-7483. https://doi.org/10.1021/acs.inorgchem.2c00575
    41. Allen F. Prusinowski, Henry C. Sise, Taylor N. Bednar, David A. Nagib. Radical Aza-Heck Cyclization of Imidates via Energy Transfer, Electron Transfer, and Cobalt Catalysis. ACS Catalysis 2022, 12 (8) , 4327-4332. https://doi.org/10.1021/acscatal.2c00804
    42. Simon De Kreijger, Olivier Schott, Ludovic Troian-Gautier, Emilie Cauët, Garry S. Hanan, Benjamin Elias. Red Absorbing Cyclometalated Ir(III) Diimine Photosensitizers Competent for Hydrogen Photocatalysis. Inorganic Chemistry 2022, 61 (13) , 5245-5254. https://doi.org/10.1021/acs.inorgchem.1c03727
    43. Xiaochuang Wang, Yi Li, Xuesong Wu. Photoredox/Cobalt Dual Catalysis Enabled Regiospecific Synthesis of Distally Unsaturated Ketones with Hydrogen Evolution. ACS Catalysis 2022, 12 (6) , 3710-3718. https://doi.org/10.1021/acscatal.2c00204
    44. Long-Long Su, Yi-Wen Zheng, Wen-Guang Wang, Bin Chen, Xiang-Zhu Wei, Li-Zhu Wu, Chen-Ho Tung. Photocatalytic Synthesis of Quinolines via Povarov Reaction under Oxidant-Free Conditions. Organic Letters 2022, 24 (5) , 1180-1185. https://doi.org/10.1021/acs.orglett.1c04287
    45. Philip R. D. Murray, James H. Cox, Nicholas D. Chiappini, Casey B. Roos, Elizabeth A. McLoughlin, Benjamin G. Hejna, Suong T. Nguyen, Hunter H. Ripberger, Jacob M. Ganley, Elaine Tsui, Nick Y. Shin, Brian Koronkiewicz, Guanqi Qiu, Robert R. Knowles. Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chemical Reviews 2022, 122 (2) , 2017-2291. https://doi.org/10.1021/acs.chemrev.1c00374
    46. Nicholas E. S. Tay, Dan Lehnherr, Tomislav Rovis. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chemical Reviews 2022, 122 (2) , 2487-2649. https://doi.org/10.1021/acs.chemrev.1c00384
    47. Eric M. Lopato, Stefan Bernhard. Exploring Multidimensional Chemical Spaces: Instrumentation and Chemical Systems for the Parallelization of Hydrogen Evolving Photocatalytic Reactions. Energy & Fuels 2021, 35 (23) , 18957-18981. https://doi.org/10.1021/acs.energyfuels.1c02168
    48. Min-Jie Zhou, Lei Zhang, Guixia Liu, Chen Xu, Zheng Huang. Site-Selective Acceptorless Dehydrogenation of Aliphatics Enabled by Organophotoredox/Cobalt Dual Catalysis. Journal of the American Chemical Society 2021, 143 (40) , 16470-16485. https://doi.org/10.1021/jacs.1c05479
    49. Sarmistha Bhunia, Atanu Rana, Shabnam Hematian, Kenneth D. Karlin, Abhishek Dey. Proton Relay in Iron Porphyrins for Hydrogen Evolution Reaction. Inorganic Chemistry 2021, 60 (18) , 13876-13887. https://doi.org/10.1021/acs.inorgchem.1c01079
    50. Ziqi Zhao, Shaoqi Zhan, Lu Feng, Chang Liu, Mårten S. G. Ahlquist, Xiujuan Wu, Ke Fan, Fusheng Li, Licheng Sun. Molecular Engineering of Photocathodes based on Polythiophene Organic Semiconductors for Photoelectrochemical Hydrogen Generation. ACS Applied Materials & Interfaces 2021, 13 (34) , 40602-40611. https://doi.org/10.1021/acsami.1c10561
    51. Maksym A. Dedushko, Jessica H. Pikul, Julie A. Kovacs. Superoxide Oxidation by a Thiolate-Ligated Iron Complex and Anion Inhibition. Inorganic Chemistry 2021, 60 (10) , 7250-7261. https://doi.org/10.1021/acs.inorgchem.1c00336
    52. Andrew W. Cook, Thomas J. Emge, Kate M. Waldie. Insights into Formate Oxidation by a Series of Cobalt Piano-Stool Complexes Supported by Bis(phosphino)amine Ligands. Inorganic Chemistry 2021, 60 (10) , 7372-7380. https://doi.org/10.1021/acs.inorgchem.1c00563
    53. Xiuhua Lin, Peng Qin, Shaofei Ni, Tilong Yang, Mingde Li, Li Dang. Priority of Mixed Diamine Ligands in Cobalt Dithiolene Complex-Catalyzed H2 Evolution: A Theoretical Study. Inorganic Chemistry 2021, 60 (9) , 6688-6695. https://doi.org/10.1021/acs.inorgchem.1c00483
    54. Nicolas Queyriaux. Redox-Active Ligands in Electroassisted Catalytic H+ and CO2 Reductions: Benefits and Risks. ACS Catalysis 2021, 11 (7) , 4024-4035. https://doi.org/10.1021/acscatal.1c00237
    55. Daniel A. Kurtz, Debanjan Dhar, Noémie Elgrishi, Banu Kandemir, Sean F. McWilliams, William C. Howland, Chun-Hsing Chen, Jillian L. Dempsey. Redox-Induced Structural Reorganization Dictates Kinetics of Cobalt(III) Hydride Formation via Proton-Coupled Electron Transfer. Journal of the American Chemical Society 2021, 143 (9) , 3393-3406. https://doi.org/10.1021/jacs.0c11992
    56. Rachel N. Motz, Eric M. Lopato, Timothy U. Connell, Stefan Bernhard. High-Throughput Screening of Earth-Abundant Water Reduction Catalysts toward Photocatalytic Hydrogen Evolution. Inorganic Chemistry 2021, 60 (2) , 774-781. https://doi.org/10.1021/acs.inorgchem.0c02790
    57. Khanittha Walaijai, Stuart A. Cavill, Adrian C. Whitwood, Richard E. Douthwaite, Robin N. Perutz. Electrocatalytic Proton Reduction by a Cobalt(III) Hydride Complex with Phosphinopyridine PN Ligands. Inorganic Chemistry 2020, 59 (24) , 18055-18067. https://doi.org/10.1021/acs.inorgchem.0c02505
    58. Jia-Dong Guo, Xiu-Long Yang, Bin Chen, Chen-Ho Tung, Li-Zhu Wu. Photoredox/Cobalt-Catalyzed C(sp3)–H Bond Functionalization toward Phenanthrene Skeletons with Hydrogen Evolution. Organic Letters 2020, 22 (24) , 9627-9632. https://doi.org/10.1021/acs.orglett.0c03665
    59. Soumyodip Banerjee, Rasha I. Anayah, Carter S. Gerke, V. Sara Thoi. From Molecules to Porous Materials: Integrating Discrete Electrocatalytic Active Sites into Extended Frameworks. ACS Central Science 2020, 6 (10) , 1671-1684. https://doi.org/10.1021/acscentsci.0c01088
    60. Young Hyun Hong, Yong-Min Lee, Wonwoo Nam, Shunichi Fukuzumi. Photocatalytic Hydrogen Evolution from Plastoquinol Analogues as a Potential Functional Model of Photosystem I. Inorganic Chemistry 2020, 59 (20) , 14838-14846. https://doi.org/10.1021/acs.inorgchem.0c02254
    61. Kelly L. Materna, Anna M. Beiler, Anders Thapper, Sascha Ott, Haining Tian, Leif Hammarström. Understanding the Performance of NiO Photocathodes with Alkyl-Derivatized Cobalt Catalysts and a Push–Pull Dye. ACS Applied Materials & Interfaces 2020, 12 (28) , 31372-31381. https://doi.org/10.1021/acsami.0c05228
    62. Kerstin Gottschling, Gökcen Savasci, Hugo Vignolo-González, Sandra Schmidt, Philipp Mauker, Tanmay Banerjee, Petra Rovó, Christian Ochsenfeld, Bettina V. Lotsch. Rational Design of Covalent Cobaloxime–Covalent Organic Framework Hybrids for Enhanced Photocatalytic Hydrogen Evolution. Journal of the American Chemical Society 2020, 142 (28) , 12146-12156. https://doi.org/10.1021/jacs.0c02155
    63. Jose L. Alvarez-Hernandez, Andrew E. Sopchak, Kara L. Bren. Buffer pKa Impacts the Mechanism of Hydrogen Evolution Catalyzed by a Cobalt Porphyrin-Peptide. Inorganic Chemistry 2020, 59 (12) , 8061-8069. https://doi.org/10.1021/acs.inorgchem.0c00362
    64. Joshua B. McManus, Jeremy D. Griffin, Alexander R. White, David A. Nicewicz. Homobenzylic Oxygenation Enabled by Dual Organic Photoredox and Cobalt Catalysis. Journal of the American Chemical Society 2020, 142 (23) , 10325-10330. https://doi.org/10.1021/jacs.0c04422
    65. Sumanta Kumar Padhi, Surabhi Rai, Sk Samim Akhter. Redox-Induced Structural Switching through Sporadic Pyridine-Bridged CoIICoII Dimer and Electrocatalytic Proton Reduction. Inorganic Chemistry 2020, 59 (11) , 7810-7821. https://doi.org/10.1021/acs.inorgchem.0c00911
    66. Xiao-Ye Yu, Quan-Qing Zhao, Jun Chen, Wen-Jing Xiao, Jia-Rong Chen. When Light Meets Nitrogen-Centered Radicals: From Reagents to Catalysts. Accounts of Chemical Research 2020, 53 (5) , 1066-1083. https://doi.org/10.1021/acs.accounts.0c00090
    67. Hiroaki Kotani, Takuya Miyazaki, Emi Aoki, Hayato Sakai, Taku Hasobe, Takahiko Kojima. Efficient Near-Infrared Light-Driven Hydrogen Evolution Catalyzed by a Saddle-Distorted Porphyrin as a Photocatalyst. ACS Applied Energy Materials 2020, 3 (4) , 3193-3197. https://doi.org/10.1021/acsaem.0c00206
    68. Jennifer M. Le, Georgios Alachouzos, Marco Chino, Alison J. Frontier, Angela Lombardi, Kara L. Bren. Tuning Mechanism through Buffer Dependence of Hydrogen Evolution Catalyzed by a Cobalt Mini-enzyme. Biochemistry 2020, 59 (12) , 1289-1297. https://doi.org/10.1021/acs.biochem.0c00060
    69. Hao Tang, Edward N. Brothers, Craig A. Grapperhaus, Michael B. Hall. Electrocatalytic Hydrogen Evolution and Oxidation with Rhenium Tris(thiolate) Complexes: A Competition between Rhenium and Sulfur for Electrons and Protons. ACS Catalysis 2020, 10 (6) , 3778-3789. https://doi.org/10.1021/acscatal.9b04579
    70. Tyler LeBlond, Peter H. Dinolfo. Density Functional Theory Prediction of the Electrocatalytic Mechanism of Proton Reduction by a Dicobalt Tetrakis(Schiff Base) Macrocycle. Inorganic Chemistry 2020, 59 (6) , 3764-3774. https://doi.org/10.1021/acs.inorgchem.9b03411
    71. Qi Xu, Baihui Zheng, Xiaoxuan Zhou, Ling Pan, Qun Liu, Yifei Li. Photoinduced C(sp2)–H/C(sp2)–H Cross-Coupling of Alkenes: Direct Synthesis of 1,3-Dienes. Organic Letters 2020, 22 (5) , 1692-1697. https://doi.org/10.1021/acs.orglett.9b04201
    72. Di Huang, Jiuling Yu, Zhengcheng Zhang, Chaiwat Engtrakul, Anthony Burrell, Meng Zhou, Hongmei Luo, Robert C. Tenent. Enhancing the Electrocatalysis of LiNi0.5Co0.2Mn0.3O2 by Introducing Lithium Deficiency for Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2020, 12 (9) , 10496-10502. https://doi.org/10.1021/acsami.9b22438
    73. Sophia G. Robinson, Matthew S. Sigman. Integrating Electrochemical and Statistical Analysis Tools for Molecular Design and Mechanistic Understanding. Accounts of Chemical Research 2020, 53 (2) , 289-299. https://doi.org/10.1021/acs.accounts.9b00527
    74. Yixuan Zhou, Wenhui Hu, Sizhuo Yang, Yunbo Zhang, James Nyakuchena, Korlan Duisenova, Sungsik Lee, Donghua Fan, Jier Huang. Site-Selective Probes of Mixed-Node Metal Organic Frameworks for Photocatalytic Hydrogen Generation. The Journal of Physical Chemistry C 2020, 124 (2) , 1405-1412. https://doi.org/10.1021/acs.jpcc.9b09634
    75. Megan N. Jackson, Yogesh Surendranath. Molecular Control of Heterogeneous Electrocatalysis through Graphite Conjugation. Accounts of Chemical Research 2019, 52 (12) , 3432-3441. https://doi.org/10.1021/acs.accounts.9b00439
    76. Saikat Chakraborty, Emily H. Edwards, Banu Kandemir, Kara L. Bren. Photochemical Hydrogen Evolution from Neutral Water with a Cobalt Metallopeptide Catalyst. Inorganic Chemistry 2019, 58 (24) , 16402-16410. https://doi.org/10.1021/acs.inorgchem.9b02067
    77. Daniel A. Kurtz, Jillian L. Dempsey. Proton-Coupled Electron Transfer Kinetics for the Photoinduced Generation of a Cobalt(III)-Hydride Complex. Inorganic Chemistry 2019, 58 (24) , 16510-16517. https://doi.org/10.1021/acs.inorgchem.9b02445
    78. Thu-Trang Tran, Thomas Pino, Minh-Huong Ha-Thi. Watching Intermolecular Light-Induced Charge Accumulation on Naphthalene Diimide by Tris(bipyridyl)ruthenium(II) Photosensitizer. The Journal of Physical Chemistry C 2019, 123 (47) , 28651-28658. https://doi.org/10.1021/acs.jpcc.9b09556
    79. Souvik Roy, Zhehao Huang, Asamanjoy Bhunia, Ashleigh Castner, Arvind K. Gupta, Xiaodong Zou, Sascha Ott. Electrocatalytic Hydrogen Evolution from a Cobaloxime-Based Metal–Organic Framework Thin Film. Journal of the American Chemical Society 2019, 141 (40) , 15942-15950. https://doi.org/10.1021/jacs.9b07084
    80. Jeffrey W. Slater, Sean C. Marguet, Michelle E. Gray, Haleigh A. Monaco, Marcos Sotomayor, Hannah S. Shafaat. Power of the Secondary Sphere: Modulating Hydrogenase Activity in Nickel-Substituted Rubredoxin. ACS Catalysis 2019, 9 (10) , 8928-8942. https://doi.org/10.1021/acscatal.9b01720
    81. Vu T. Nguyen, Viet D. Nguyen, Graham C. Haug, Hang T. Dang, Shengfei Jin, Zhiliang Li, Carsten Flores-Hansen, Brenda S. Benavides, Hadi D. Arman, Oleg V. Larionov. Alkene Synthesis by Photocatalytic Chemoenzymatically Compatible Dehydrodecarboxylation of Carboxylic Acids and Biomass. ACS Catalysis 2019, 9 (10) , 9485-9498. https://doi.org/10.1021/acscatal.9b02951
    82. Alexander J. Gupta, Nicholas S. Vishnosky, Oleksandr Hietsoi, Yaroslav Losovyj, Jacob Strain, Joshua Spurgeon, Mark S. Mashuta, Rahul Jain, Robert M. Buchanan, Gautam Gupta, Craig A. Grapperhaus. Effect of Stacking Interactions on the Translation of Structurally Related Bis(thiosemicarbazonato)nickel(II) HER Catalysts to Modified Electrode Surfaces. Inorganic Chemistry 2019, 58 (18) , 12025-12039. https://doi.org/10.1021/acs.inorgchem.9b01209
    83. Jennifer M. Le, Kara L. Bren. Engineered Enzymes and Bioinspired Catalysts for Energy Conversion. ACS Energy Letters 2019, 4 (9) , 2168-2180. https://doi.org/10.1021/acsenergylett.9b01308
    84. Megan N. Jackson, Corey J. Kaminsky, Seokjoon Oh, Jonathan F. Melville, Yogesh Surendranath. Graphite Conjugation Eliminates Redox Intermediates in Molecular Electrocatalysis. Journal of the American Chemical Society 2019, 141 (36) , 14160-14167. https://doi.org/10.1021/jacs.9b04981
    85. Wan-Fa Tian, Chun-Hong Hu, Ke-Han He, Xiao-Ya He, Yang Li. Visible-Light Photoredox-Catalyzed Decarboxylative Alkylation of Heteroarenes Using Carboxylic Acids with Hydrogen Release. Organic Letters 2019, 21 (17) , 6930-6935. https://doi.org/10.1021/acs.orglett.9b02539
    86. Wen-Qiang Liu, Tao Lei, Shuai Zhou, Xiu-Long Yang, Jian Li, Bin Chen, Jayaraman Sivaguru, Chen-Ho Tung, Li-Zhu Wu. Cobaloxime Catalysis: Selective Synthesis of Alkenylphosphine Oxides under Visible Light. Journal of the American Chemical Society 2019, 141 (35) , 13941-13947. https://doi.org/10.1021/jacs.9b06920
    87. Siliu Lyu, Julien Massin, Michele Pavone, Ana B. Muñoz-García, Christine Labrugère, Thierry Toupance, Murielle Chavarot-Kerlidou, Vincent Artero, Céline Olivier. H2-Evolving Dye-Sensitized Photocathode Based on a Ruthenium–Diacetylide/Cobaloxime Supramolecular Assembly. ACS Applied Energy Materials 2019, 2 (7) , 4971-4980. https://doi.org/10.1021/acsaem.9b00652
    88. Robin Gueret, Carmen E. Castillo, Mateusz Rebarz, Fabrice Thomas, Michel Sliwa, Jérôme Chauvin, Baptiste Dautreppe, Jacques Pécaut, Jérôme Fortage, Marie-Noëlle Collomb. Cobalt(II) Pentaaza-Macrocyclic Schiff Base Complex as Catalyst for Light-Driven Hydrogen Evolution in Water: Electrochemical Generation and Theoretical Investigation of the One-Electron Reduced Species. Inorganic Chemistry 2019, 58 (14) , 9043-9056. https://doi.org/10.1021/acs.inorgchem.9b00447
    89. Andrew G. Maher , Mengran Liu , and Daniel G. Nocera . Ligand Noninnocence in Nickel Porphyrins: Nickel Isobacteriochlorin Formation under Hydrogen Evolution Conditions. Inorganic Chemistry 2019, 58 (12) , 7958-7968. https://doi.org/10.1021/acs.inorgchem.9b00717
    90. Zsolt Benedek, Marcell Papp, Julianna Oláh, Tibor Szilvási. Exploring Hydrogen Evolution Accompanying Nitrogen Reduction on Biomimetic Nitrogenase Analogs: Can Fe–NxHyIntermediates Be Active Under Turnover Conditions?. Inorganic Chemistry 2019, 58 (12) , 7969-7977. https://doi.org/10.1021/acs.inorgchem.9b00719
    91. Ming-Ming Qiao, Yi-Yin Liu, Sheng Yao, Tian-Cong Ma, Zi-Long Tang, De-Qing Shi, Wen-Jing Xiao. Photoredox/Cobalt-Catalyzed Phosphinyloxy Radical Addition/Cyclization Cascade: Synthesis of Phosphaisocoumarins. The Journal of Organic Chemistry 2019, 84 (11) , 6798-6806. https://doi.org/10.1021/acs.joc.9b00570
    92. Pramod Rai, Kakoli Maji, Biplab Maji. Photoredox/Cobalt Dual Catalysis for Visible-Light-Mediated Alkene–Alkyne Coupling. Organic Letters 2019, 21 (10) , 3755-3759. https://doi.org/10.1021/acs.orglett.9b01201
    93. Haitao Lei, Xialiang Li, Jia Meng, Haoquan Zheng, Wei Zhang, Rui Cao. Structure Effects of Metal Corroles on Energy-Related Small Molecule Activation Reactions. ACS Catalysis 2019, 9 (5) , 4320-4344. https://doi.org/10.1021/acscatal.9b00310
    94. Stavroula Kampouri, Kyriakos C. Stylianou. Dual-Functional Photocatalysis for Simultaneous Hydrogen Production and Oxidation of Organic Substances. ACS Catalysis 2019, 9 (5) , 4247-4270. https://doi.org/10.1021/acscatal.9b00332
    95. Zongbin Jia, Qi Yang, Long Zhang, Sanzhong Luo. Photoredox Mediated Acceptorless Dehydrogenative Coupling of Saturated N-Heterocycles. ACS Catalysis 2019, 9 (4) , 3589-3594. https://doi.org/10.1021/acscatal.9b00123
    96. Stefan Vanicek, Markus Jochriem, Christopher Hassenrück, Souvik Roy, Holger Kopacka, Klaus Wurst, Thomas Müller, Rainer F. Winter, Erwin Reisner, Benno Bildstein. Redox-Rich Metallocene Tetrazene Complexes: Synthesis, Structure, Electrochemistry, and Catalysis. Organometallics 2019, 38 (6) , 1361-1371. https://doi.org/10.1021/acs.organomet.8b00681
    97. Kristian E. Dalle, Julien Warnan, Jane J. Leung, Bertrand Reuillard, Isabell S. Karmel, Erwin Reisner. Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes. Chemical Reviews 2019, 119 (4) , 2752-2875. https://doi.org/10.1021/acs.chemrev.8b00392
    98. Jinfan Chen, Patrick H.-L. Sit. Thermodynamic Properties of Hydrogen-Producing Cobaloxime Catalysts: A Density Functional Theory Analysis. ACS Omega 2019, 4 (1) , 582-592. https://doi.org/10.1021/acsomega.8b02107
    99. David P. Hickey, Christopher Sandford, Zayn Rhodes, Tobias Gensch, Lydia R. Fries, Matthew S. Sigman, Shelley D. Minteer. Investigating the Role of Ligand Electronics on Stabilizing Electrocatalytically Relevant Low-Valent Co(I) Intermediates. Journal of the American Chemical Society 2019, 141 (3) , 1382-1392. https://doi.org/10.1021/jacs.8b12634
    100. Elizabeth A. McLoughlin, Logan J. Giles, Robert M. Waymouth, Ritimukta Sarangi. X-ray Absorption Spectroscopy and Theoretical Investigation of the Reductive Protonation of Cyclopentadienyl Cobalt Compounds. Inorganic Chemistry 2019, 58 (2) , 1167-1176. https://doi.org/10.1021/acs.inorgchem.8b02475
    Load more citations

    Accounts of Chemical Research

    Cite this: Acc. Chem. Res. 2009, 42, 12, 1995–2004
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ar900253e
    Published November 23, 2009
    Copyright © 2009 American Chemical Society

    Article Views

    21k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.