ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

NODAGATOC, a New Chelator-Coupled Somatostatin Analogue Labeled with [67/68Ga] and [111In] for SPECT, PET, and Targeted Therapeutic Applications of Somatostatin Receptor (hsst2) Expressing Tumors

View Author Information
Division of Radiological Chemistry, Institute of Nuclear Medicine, Department of Radiology, University Hospital, Petersgraben 4, CH-4031 Basel, Switzerland, Departamento de Bioquímica e CNC, Universidade de Coimbra, Coimbra, Portugal, Faculdade de Medicina, Serviço de Biofísica, Universidade de Coimbra, Coimbra, Portugal, and Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, University of Berne, PO Box 62, Murtenstrasse 31, CH-3010 Berne, Switzerland
Cite this: Bioconjugate Chem. 2002, 13, 3, 530–541
Publication Date (Web):April 23, 2002
https://doi.org/10.1021/bc010074f
Copyright © 2002 American Chemical Society

    Article Views

    2476

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (139 KB)

    Abstract

    A monoreactive NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid) derived prochelator (1-(1-carboxy-3-carbo-tert-butoxypropyl)-4,7-(carbo-tert-butoxymethyl)-1,4,7-triazacyclononane (NODAGA(tBu)3)) was synthesized in five steps with an overall yield of 21%. It is useful for the coupling to the N-terminus of peptides on solid phase and in solution; it was coupled to [Tyr3]-octreotide (TOC) on solid phase, and the resulting peptide, NODAGA-Tyr3-octreotide (NODAGATOC), was labeled with the radiometals 111In and 67Ga in high yields and good specific activities. [67Ga]− and [111In]−NODAGA-Tyr3-octreotide appear to be useful to visualize primary tumors and metastases which express somatostatin receptors subtype 2 (sstr2), such as neuroendocrine tumors, because of their high affinity to this receptor subtype with IC50 = 3.5 ± 1.6 nM and 1.7 ± 0.2 nM, respectively. NODAGATOC could be used as a SPECT and PET tracer, when labeled with 111In, 67Ga, or 68Ga, and even for therapeutic applications. Surprisingly, [111In]−NODAGATOC shows 2 times higher binding affinity to sstr2, but also a factor of 4 higher affinity to sstr5 compared to [67Ga]−NODAGATOC. [67Ga]−NODAGATOC is very stable in serum and rat liver homogenate. There is no difference in the rate of internalization into AR4-2J rat pancreatic tumor cells; both radioligands are highly internalized, at 4 h a 3 times higher uptake compared to [111In]−DOTA-Tyr3-octreotide ([111In]−DOTATOC) was found. The biodistribution of [67Ga]−NODAGATOC in AR4-2J tumor bearing nude mice is very favorable at short times after injection; there is fast excretion from all nontarget organs except the kidneys and high uptake in sst receptor rich organs and in the AR4-2J tumor. Again it is superior to [111In]−DOTATOC in this respect. The results indicate an improved biological behavior which is likely due to the fact that an additional spacer group separates the chelate from the pharmacophoric part of the somatostatin analogue.

     Institute of Nuclear Medicine.

     K.-P.E. and M.I.M.P contributed equally to these studies.

     Departamento de Bioquímica e CNC, Universidade de Coimbra.

    §

     Faculdade de Medicina, Serviço de Biofísica, Universidade de Coimbra.

     University of Berne.

    *

     To whom correspondence should be addressed:  Tel:  ++41 61 265 46 99; Fax:  ++41 61 265 55 59, E-mail:  hmaecke@ uhbs.ch.

    Cited By

    This article is cited by 177 publications.

    1. Volker Morath, Corinna Brandt, Friedrich-Christian Deuschle, Claudia T. Mendler, Birgit Blechert, Dominik Summer, Cyril Barinka, Clemens Decristoforo, Wolfgang A. Weber, Markus Schwaiger, Arne Skerra. Molecular Design of 68Ga- and 89Zr-Labeled Anticalin Radioligands for PET-Imaging of PSMA-Positive Tumors. Molecular Pharmaceutics 2023, 20 (5) , 2490-2501. https://doi.org/10.1021/acs.molpharmaceut.2c01066
    2. Ruiyue Zhao, Karl Ploessl, Zhihao Zha, Seokrye Choi, David Alexoff, Lin Zhu, Hank F. Kung. Synthesis and Evaluation of 68Ga- and 177Lu-Labeled (R)- vs (S)-DOTAGA Prostate-Specific Membrane Antigen-Targeting Derivatives. Molecular Pharmaceutics 2020, 17 (12) , 4589-4602. https://doi.org/10.1021/acs.molpharmaceut.0c00777
    3. M. Andrey Joaqui-Joaqui, Mukesh K. Pandey, Aditya Bansal, Mandapati V. Ramakrishnam Raju, Fiona Armstrong-Pavlik, Ayca Dundar, Henry L. Wong, Timothy R. DeGrado, Valérie C. Pierre. Catechol-Based Functionalizable Ligands for Gallium-68 Positron Emission Tomography Imaging. Inorganic Chemistry 2020, 59 (17) , 12025-12038. https://doi.org/10.1021/acs.inorgchem.0c00975
    4. Thomas I. Kostelnik, Chris Orvig. Radioactive Main Group and Rare Earth Metals for Imaging and Therapy. Chemical Reviews 2019, 119 (2) , 902-956. https://doi.org/10.1021/acs.chemrev.8b00294
    5. F. Y. Adeowo, B. Honarparvar, and A. A. Skelton . Density Functional Theory Study on the Complexation of NOTA as a Bifunctional Chelator with Radiometal Ions. The Journal of Physical Chemistry A 2017, 121 (32) , 6054-6062. https://doi.org/10.1021/acs.jpca.7b01017
    6. Renáta Farkas, Klaudia Siwowska, Simon M. Ametamey, Roger Schibli, Nicholas P. van der Meulen, and Cristina Müller . 64Cu- and 68Ga-Based PET Imaging of Folate Receptor-Positive Tumors: Development and Evaluation of an Albumin-Binding NODAGA–Folate. Molecular Pharmaceutics 2016, 13 (6) , 1979-1987. https://doi.org/10.1021/acs.molpharmaceut.6b00143
    7. Zhihao Zha, Jin Song, Seok Rye Choi, Zehui Wu, Karl Ploessl, Megan Smith, and Hank Kung . 68Ga-Bivalent Polypegylated Styrylpyridine Conjugates for Imaging Aβ Plaques in Cerebral Amyloid Angiopathy. Bioconjugate Chemistry 2016, 27 (5) , 1314-1323. https://doi.org/10.1021/acs.bioconjchem.6b00127
    8. Michelle T. Ma, Carleen Cullinane, Cinzia Imberti, Julia Baguña Torres, Samantha Y. A. Terry, Peter Roselt, Rodney J. Hicks, and Philip J. Blower . New Tris(hydroxypyridinone) Bifunctional Chelators Containing Isothiocyanate Groups Provide a Versatile Platform for Rapid One-Step Labeling and PET Imaging with 68Ga3+. Bioconjugate Chemistry 2016, 27 (2) , 309-318. https://doi.org/10.1021/acs.bioconjchem.5b00335
    9. Jakub Šimeček, Ondřej Zemek, Petr Hermann, Johannes Notni, and Hans-Jürgen Wester . Tailored Gallium(III) Chelator NOPO: Synthesis, Characterization, Bioconjugation, and Application in Preclinical Ga-68-PET Imaging. Molecular Pharmaceutics 2014, 11 (11) , 3893-3903. https://doi.org/10.1021/mp400642s
    10. S. Roosenburg, P. Laverman, L. Joosten, M. S. Cooper, P. K. Kolenc-Peitl, J. M. Foster, C. Hudson, J. Leyton, J. Burnet, W. J. G. Oyen, P. J. Blower, S. J. Mather, O. C. Boerman, and J. K. Sosabowski . PET and SPECT Imaging of a Radiolabeled Minigastrin Analogue Conjugated with DOTA, NOTA, and NODAGA and Labeled with 64Cu, 68Ga, and 111In. Molecular Pharmaceutics 2014, 11 (11) , 3930-3937. https://doi.org/10.1021/mp500283k
    11. Brian M. Zeglis, Jacob L. Houghton, Michael J. Evans, Nerissa Viola-Villegas, and Jason S. Lewis . Underscoring the Influence of Inorganic Chemistry on Nuclear Imaging with Radiometals. Inorganic Chemistry 2014, 53 (4) , 1880-1899. https://doi.org/10.1021/ic401607z
    12. Eszter Boros, Elena Rybak-Akimova, Jason P. Holland, Tyson Rietz, Nicholas Rotile, Francesco Blasi, Helen Day, Reza Latifi, and Peter Caravan . Pycup—A Bifunctional, Cage-like Ligand for 64Cu Radiolabeling. Molecular Pharmaceutics 2014, 11 (2) , 617-629. https://doi.org/10.1021/mp400686z
    13. Mohamed Altai, Joanna Strand, Daniel Rosik, Ram Kumar Selvaraju, Amelie Eriksson Karlström, Anna Orlova, and Vladimir Tolmachev . Influence of Nuclides and Chelators on Imaging Using Affibody Molecules: Comparative Evaluation of Recombinant Affibody Molecules Site-Specifically Labeled with 68Ga and 111In via Maleimido Derivatives of DOTA and NODAGA. Bioconjugate Chemistry 2013, 24 (6) , 1102-1109. https://doi.org/10.1021/bc300678y
    14. Francisco L. Guerra Gomez, Tomoya Uehara, Takemi Rokugawa, Yusuke Higaki, Hiroyuki Suzuki, Hirofumi Hanaoka, Hiromichi Akizawa, and Yasushi Arano . Synthesis and Evaluation of Diastereoisomers of 1,4,7-Triazacyclononane-1,4,7-tris-(glutaric acid) (NOTGA) for Multimeric Radiopharmaceuticals of Gallium. Bioconjugate Chemistry 2012, 23 (11) , 2229-2238. https://doi.org/10.1021/bc300340g
    15. Haixun Guo, Fabio Gallazzi, and Yubin Miao . Gallium-67-Labeled Lactam Bridge-Cyclized Alpha-MSH Peptides with Enhanced Melanoma Uptake and Reduced Renal Uptake. Bioconjugate Chemistry 2012, 23 (6) , 1341-1348. https://doi.org/10.1021/bc300191z
    16. Constance Chollet, Ralf Bergmann, Jens Pietzsch, and Annette G. Beck-Sickinger . Design, Evaluation, and Comparison of Ghrelin Receptor Agonists and Inverse Agonists as Suitable Radiotracers for PET Imaging. Bioconjugate Chemistry 2012, 23 (4) , 771-784. https://doi.org/10.1021/bc2005889
    17. Jakub Šimeček, Martin Schulz, Johannes Notni, Jan Plutnar, Vojtěch Kubíček, Jana Havlíčková, and Petr Hermann . Complexation of Metal Ions with TRAP (1,4,7-Triazacyclononane Phosphinic Acid) Ligands and 1,4,7-Triazacyclononane-1,4,7-triacetic Acid: Phosphinate-Containing Ligands as Unique Chelators for Trivalent Gallium. Inorganic Chemistry 2012, 51 (1) , 577-590. https://doi.org/10.1021/ic202103v
    18. Ajay N. Singh, Wei Liu, Guiyang Hao, Amit Kumar, Anjali Gupta, Orhan K. Öz, Jer-Tsong Hsieh, and Xiankai Sun . Multivalent Bifunctional Chelator Scaffolds for Gallium-68 Based Positron Emission Tomography Imaging Probe Design: Signal Amplification via Multivalency. Bioconjugate Chemistry 2011, 22 (8) , 1650-1662. https://doi.org/10.1021/bc200227d
    19. Vladimir Tolmachev, Mohamed Altai, Mattias Sandström, Anna Perols, Amelie Eriksson Karlström, Frederic Boschetti, and Anna Orlova . Evaluation of a Maleimido Derivative of NOTA for Site-Specific Labeling of Affibody Molecules. Bioconjugate Chemistry 2011, 22 (5) , 894-902. https://doi.org/10.1021/bc100470x
    20. Michael K. Schultz, Sharavathi G. Parameswarappa and F. Christopher Pigge . Synthesis of a DOTA−Biotin Conjugate for Radionuclide Chelation via Cu-Free Click Chemistry. Organic Letters 2010, 12 (10) , 2398-2401. https://doi.org/10.1021/ol100774p
    21. Mark D. Bartholomä, Anika S. Louie, John F. Valliant and Jon Zubieta. Technetium and Gallium Derived Radiopharmaceuticals: Comparing and Contrasting the Chemistry of Two Important Radiometals for the Molecular Imaging Era. Chemical Reviews 2010, 110 (5) , 2903-2920. https://doi.org/10.1021/cr1000755
    22. Thaddeus J. Wadas, Edward H. Wong, Gary R. Weisman and Carolyn J. Anderson. Coordinating Radiometals of Copper, Gallium, Indium, Yttrium, and Zirconium for PET and SPECT Imaging of Disease. Chemical Reviews 2010, 110 (5) , 2858-2902. https://doi.org/10.1021/cr900325h
    23. Shuang Liu. Radiolabeled Cyclic RGD Peptides as Integrin αvβ3-Targeted Radiotracers: Maximizing Binding Affinity via Bivalency. Bioconjugate Chemistry 2009, 20 (12) , 2199-2213. https://doi.org/10.1021/bc900167c
    24. Haixun Guo, Jianquan Yang, Nalini Shenoy and Yubin Miao . Gallium-67-Labeled Lactam Bridge-Cyclized α-Melanocyte Stimulating Hormone Peptide for Primary and Metastatic Melanoma Imaging. Bioconjugate Chemistry 2009, 20 (12) , 2356-2363. https://doi.org/10.1021/bc900428x
    25. Tapan K. Nayak and Martin W. Brechbiel. Radioimmunoimaging with Longer-Lived Positron-Emitting Radionuclides: Potentials and Challenges. Bioconjugate Chemistry 2009, 20 (5) , 825-841. https://doi.org/10.1021/bc800299f
    26. Chang-Tong Yang, Subramanya G. Sreerama, Wen-Yuan Hsieh and Shuang Liu. Synthesis and Characterization of a Novel Macrocyclic Chelator with 3-Hydroxy-4-Pyrone Chelating Arms and Its Complexes with Medicinally Important Metals. Inorganic Chemistry 2008, 47 (7) , 2719-2727. https://doi.org/10.1021/ic7022506
    27. I. Velikyan, H. Maecke and B. Langstrom . Convenient Preparation of 68Ga-Based PET-Radiopharmaceuticals at Room Temperature. Bioconjugate Chemistry 2008, 19 (2) , 569-573. https://doi.org/10.1021/bc700341x
    28. Patrick R. W. J. Davey, Brett M. Paterson. Modern Developments in Bifunctional Chelator Design for Gallium Radiopharmaceuticals. Molecules 2023, 28 (1) , 203. https://doi.org/10.3390/molecules28010203
    29. Mariacristina Failla, Giuseppe Floresta, Vincenzo Abbate. Peptide-based positron emission tomography probes: current strategies for synthesis and radiolabelling. RSC Medicinal Chemistry 2023, 44 https://doi.org/10.1039/D2MD00397J
    30. Huimin Zhou, Guangfa Bao, Ziqiang Wang, Buchuan Zhang, Dan Li, Lixing Chen, Xiaoyun Deng, Bo Yu, Jun Zhao, Xiaohua Zhu. PET imaging of an optimized anti-PD-L1 probe 68Ga-NODAGA-BMS986192 in immunocompetent mice and non-human primates. EJNMMI Research 2022, 12 (1) https://doi.org/10.1186/s13550-022-00906-x
    31. Yongsheng Liu, Shengze Yu, Tianqi Xu, Vitalina Bodenko, Anna Orlova, Maryam Oroujeni, Sara S. Rinne, Vladimir Tolmachev, Anzhelika Vorobyeva, Torbjörn Gräslund. Preclinical Evaluation of a New Format of 68Ga- and 111In-Labeled Affibody Molecule ZIGF-1R:4551 for the Visualization of IGF-1R Expression in Malignant Tumors Using PET and SPECT. Pharmaceutics 2022, 14 (7) , 1475. https://doi.org/10.3390/pharmaceutics14071475
    32. A. G. Polivanova, I. N. Solovieva, D. O. Botev, D. Y. Yuriev, A. N. Mylnikova, M. S. Oshchepkov. Bifunctional gallium cation chelators. Fine Chemical Technologies 2022, 17 (2) , 107-130. https://doi.org/10.32362/2410-6593-2022-17-2-107-130
    33. Francesco Bartoli, William C. Eckelman, Marie Boyd, Robert J. Mairs, Paola A. Erba. Principles of Molecular Targeting for Radionuclide Therapy. 2022, 1-54. https://doi.org/10.1007/978-3-319-26067-9_32-2
    34. Sara S. Rinne, Anzhelika Vorobyeva. Radiometals—Chemistry and radiolabeling. 2022, 95-106. https://doi.org/10.1016/B978-0-12-822960-6.00044-2
    35. Francesco Bartoli, William C. Eckelman, Marie Boyd, Robert J. Mairs, Paola A. Erba. Principles of Molecular Targeting for Radionuclide Therapy. 2022, 41-93. https://doi.org/10.1007/978-3-031-05494-5_32
    36. Stephen J. Archibald, Louis Allott. The aluminium-[18F]fluoride revolution: simple radiochemistry with a big impact for radiolabelled biomolecules. EJNMMI Radiopharmacy and Chemistry 2021, 6 (1) https://doi.org/10.1186/s41181-021-00141-0
    37. Bradley E. Osborne, Thomas T. C. Yue, Edward C. T. Waters, Friedrich Baark, Richard Southworth, Nicholas J. Long. Synthesis and ex vivo biological evaluation of gallium-68 labelled NODAGA chelates assessing cardiac uptake and retention. Dalton Transactions 2021, 50 (41) , 14695-14705. https://doi.org/10.1039/D1DT02224E
    38. Samiah Alhabardi, Hesham Radwan, Basim Alotaibi, Yousif Almalki, Ehab Elzayat, Zakia Shinwari, Subhani M. Okarvi, Ibrahim Aljammaz, . Synthesis, Radiolabeling, and Biological Evaluation of 68Ga-Mucin1 and Its Folate Hybrid Peptide Conjugates for the Diagnosis of Ovarian Cancer. Journal of Chemistry 2021, 2021 , 1-12. https://doi.org/10.1155/2021/2329676
    39. María Elena Cardoso, Emilia Tejería, Kevin Zirbesegger, Eduardo Savio, Mariella Terán, Ana María Rey Ríos. Development and characterization of two novel 68 Ga‐labelled neuropeptide Y short analogues with potential application in breast cancer imaging. Chemical Biology & Drug Design 2021, 98 (1) , 182-191. https://doi.org/10.1111/cbdd.13864
    40. Mária Bodnár Mikulová, Peter Mikuš. Advances in Development of Radiometal Labeled Amino Acid-Based Compounds for Cancer Imaging and Diagnostics. Pharmaceuticals 2021, 14 (2) , 167. https://doi.org/10.3390/ph14020167
    41. Michael R. Lewis, Cathy S. Cutler, Silvia S. Jurisson. Targeted Antibodies and Peptides. 2021, 531-546. https://doi.org/10.1016/B978-0-12-816386-3.00022-3
    42. Charlotte Rivas, Jessica A. Jackson, Ingebjørg N. Hungnes, Michelle T. Ma. Radioactive Metals in Imaging and Therapy. 2021, 706-740. https://doi.org/10.1016/B978-0-08-102688-5.00010-6
    43. Benjamin P. Burke, Stephen J. Archibald. Labeling with Gallium‐68. 2020, 291-323. https://doi.org/10.1002/9781119500575.ch9
    44. Michael Hofstetter, Euy Sung Moon, Fabio D’Angelo, Lucien Geissbühler, Ian Alberts, Ali Afshar-Oromieh, Frank Rösch, Axel Rominger, Eleni Gourni. Effect of the versatile bifunctional chelator AAZTA5 on the radiometal labelling properties and the in vitro performance of a gastrin releasing peptide receptor antagonist. EJNMMI Radiopharmacy and Chemistry 2020, 5 (1) https://doi.org/10.1186/s41181-020-00115-8
    45. Romain Eychenne, Christelle Bouvry, Mickael Bourgeois, Pascal Loyer, Eric Benoist, Nicolas Lepareur. Overview of Radiolabeled Somatostatin Analogs for Cancer Imaging and Therapy. Molecules 2020, 25 (17) , 4012. https://doi.org/10.3390/molecules25174012
    46. Elly L. van der Veen, Frans V. Suurs, Frederik Cleeren, Guy Bormans, Philip H. Elsinga, Geke A.P. Hospers, Marjolijn N. Lub-de Hooge, Elisabeth G.E. de Vries, Erik F.J. de Vries, Inês F. Antunes. Development and Evaluation of Interleukin-2–Derived Radiotracers for PET Imaging of T Cells in Mice. Journal of Nuclear Medicine 2020, 61 (9) , 1355-1360. https://doi.org/10.2967/jnumed.119.238782
    47. Zarif Ashhar, Nor Azah Yusof, Fathinul Fikri Ahmad Saad, Siti Mariam Mohd Nor, Faruq Mohammad, Wan Hamirul Bahrin Wan Kamal, Muhammad Hishar Hassan, Hazlina Ahmad Hassali, Hamad A. Al-Lohedan. Preparation, Characterization, and Radiolabeling of [68Ga]Ga-NODAGA-Pamidronic Acid: A Potential PET Bone Imaging Agent. Molecules 2020, 25 (11) , 2668. https://doi.org/10.3390/molecules25112668
    48. Zsolt Baranyai, Gyula Tircsó, Frank Rösch. The Use of the Macrocyclic Chelator DOTA in Radiochemical Separations. European Journal of Inorganic Chemistry 2020, 2020 (1) , 36-56. https://doi.org/10.1002/ejic.201900706
    49. Brett A. Vaughn, Shin Hye Ahn, Eduardo Aluicio-Sarduy, Justin Devaraj, Aeli P. Olson, Jonathan Engle, Eszter Boros. Chelation with a twist: a bifunctional chelator to enable room temperature radiolabeling and targeted PET imaging with scandium-44. Chemical Science 2020, 11 (2) , 333-342. https://doi.org/10.1039/C9SC04655K
    50. Jannie le Roux, Sietske Rubow, Thomas Ebenhan, Carl Wagener. An automated synthesis method for 68Ga-labelled ubiquicidin 29–41. Journal of Radioanalytical and Nuclear Chemistry 2020, 323 (1) , 105-116. https://doi.org/10.1007/s10967-019-06910-1
    51. Jean-Philippe Sinnes, Johannes Nagel, Frank Rösch. AAZTA5/AAZTA5-TOC: synthesis and radiochemical evaluation with 68Ga, 44Sc and 177Lu. EJNMMI Radiopharmacy and Chemistry 2019, 4 (1) https://doi.org/10.1186/s41181-019-0068-1
    52. Nkemakonam C. Okoye, Jakob E. Baumeister, Firouzeh Najafi Khosroshahi, Heather M. Hennkens, Silvia S. Jurisson. Chelators and metal complex stability for radiopharmaceutical applications. Radiochimica Acta 2019, 107 (9-11) , 1087-1120. https://doi.org/10.1515/ract-2018-3090
    53. Rosalba Mansi, Melpomeni Fani. Design and development of the theranostic pair 177 Lu‐OPS201/ 68 Ga‐OPS202 for targeting somatostatin receptor expressing tumors. Journal of Labelled Compounds and Radiopharmaceuticals 2019, 62 (10) , 635-645. https://doi.org/10.1002/jlcr.3755
    54. Marc Pretze, Nick P. van der Meulen, Carmen Wängler, Roger Schibli, Björn Wängler. Targeted 64 Cu‐labeled gold nanoparticles for dual imaging with positron emission tomography and optical imaging. Journal of Labelled Compounds and Radiopharmaceuticals 2019, 62 (8) , 471-482. https://doi.org/10.1002/jlcr.3736
    55. Anzhelika Vorobyeva, Kristina Westerlund, Bogdan Mitran, Mohamed Altai, Sara Rinne, Jens Sörensen, Anna Orlova, Vladimir Tolmachev, Amelie Eriksson Karlström. Development of an optimal imaging strategy for selection of patients for affibody-based PNA-mediated radionuclide therapy. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-27886-0
    56. Jesse Pulido, Maria de Cabrera, Adam J. Sobczak, Alejandro Amor-Coarasa, Anthony J. McGoron, Stanislaw F. Wnuk. 4-N-Alkanoyl and 4-N-alkyl gemcitabine analogues with NOTA chelators for 68-gallium labelling. Bioorganic & Medicinal Chemistry 2018, 26 (21) , 5624-5630. https://doi.org/10.1016/j.bmc.2018.10.007
    57. Maryam Oroujeni, Javad Garousi, Ken Andersson, John Löfblom, Bogdan Mitran, Anna Orlova, Vladimir Tolmachev. Preclinical Evaluation of [68Ga]Ga-DFO-ZEGFR:2377: A Promising Affibody-Based Probe for Noninvasive PET Imaging of EGFR Expression in Tumors. Cells 2018, 7 (9) , 141. https://doi.org/10.3390/cells7090141
    58. Frederic Debordeaux, Lucie Chansel-Debordeaux, Jean-Baptiste Pinaquy, Philippe Fernandez, Jurgen Schulz. What about αvβ3 integrins in molecular imaging in oncology?. Nuclear Medicine and Biology 2018, 62-63 , 31-46. https://doi.org/10.1016/j.nucmedbio.2018.04.006
    59. Tanmaya Joshi, Manja Kubeil, Anne Nsubuga, Garima Singh, Gilles Gasser, Holger Stephan. Harnessing the Coordination Chemistry of 1,4,7-Triazacyclononane for Biomimicry and Radiopharmaceutical Applications. ChemPlusChem 2018, 83 (7) , 554-564. https://doi.org/10.1002/cplu.201800103
    60. Yong Huang, Yajing Liu, Song Liu, Renbo Wu, Zehui Wu. An Efficient Synthesis of N , N , N ‐Substituted 1,4,7‐Triazacyclononane. European Journal of Organic Chemistry 2018, 2018 (13) , 1546-1551. https://doi.org/10.1002/ejoc.201800048
    61. Weijun Wei, Emily B. Ehlerding, Xiaoli Lan, Quanyong Luo, Weibo Cai. PET and SPECT imaging of melanoma: the state of the art. European Journal of Nuclear Medicine and Molecular Imaging 2018, 45 (1) , 132-150. https://doi.org/10.1007/s00259-017-3839-5
    62. Subhani M. Okarvi, Helmut R. Maecke. Radiolabelled peptides in medical imaging. 2018, 431-483. https://doi.org/10.1016/B978-0-08-100736-5.00019-3
    63. Drishty Satpati, Ajit Shinto, K. K. Kamaleshwaran, Haladhar Dev Sarma, Ashutosh Dash. Preliminary PET/CT Imaging with Somatostatin Analogs [68Ga]DOTAGA-TATE and [68Ga]DOTAGA-TOC. Molecular Imaging and Biology 2017, 19 (6) , 878-884. https://doi.org/10.1007/s11307-017-1072-z
    64. Maria I.M. Prata, João P. André, Zoltán Kovács, Anett I. Takács, Gyula Tircsó, Imre Tóth, Carlos F.G.C. Geraldes. Gallium(III) chelates of mixed phosphonate-carboxylate triazamacrocyclic ligands relevant to nuclear medicine: Structural, stability and in vivo studies. Journal of Inorganic Biochemistry 2017, 177 , 8-16. https://doi.org/10.1016/j.jinorgbio.2017.08.015
    65. Javad Garousi, Ken G. Andersson, Johan H. Dam, Birgitte B. Olsen, Bogdan Mitran, Anna Orlova, Jos Buijs, Stefan Ståhl, John Löfblom, Helge Thisgaard, Vladimir Tolmachev. The use of radiocobalt as a label improves imaging of EGFR using DOTA-conjugated Affibody molecule. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-05700-7
    66. Mohamed Altai, Kristina Westerlund, Justin Velletta, Bogdan Mitran, Hadis Honarvar, Amelie Eriksson Karlström. Evaluation of affibody molecule-based PNA-mediated radionuclide pretargeting: Development of an optimized conjugation protocol and 177 Lu labeling. Nuclear Medicine and Biology 2017, 54 , 1-9. https://doi.org/10.1016/j.nucmedbio.2017.07.003
    67. Anna Tornesello, Luigi Buonaguro, Maria Tornesello, Franco Buonaguro. New Insights in the Design of Bioactive Peptides and Chelating Agents for Imaging and Therapy in Oncology. Molecules 2017, 22 (8) , 1282. https://doi.org/10.3390/molecules22081282
    68. György Trencsényi, Noémi Dénes, Gábor Nagy, Adrienn Kis, András Vida, Flóra Farkas, Judit P. Szabó, Tünde Kovács, Ervin Berényi, Ildikó Garai, Péter Bai, János Hunyadi, István Kertész. Comparative preclinical evaluation of 68Ga-NODAGA and 68Ga-HBED-CC conjugated procainamide in melanoma imaging. Journal of Pharmaceutical and Biomedical Analysis 2017, 139 , 54-64. https://doi.org/10.1016/j.jpba.2017.02.049
    69. Johannes Notni, Dominik Reich, Oleg V. Maltsev, Tobias G. Kapp, Katja Steiger, Frauke Hoffmann, Irene Esposito, Wilko Weichert, Horst Kessler, Hans-Jürgen Wester. In Vivo PET Imaging of the Cancer Integrin αvβ6 Using 68 Ga-Labeled Cyclic RGD Nonapeptides. Journal of Nuclear Medicine 2017, 58 (4) , 671-677. https://doi.org/10.2967/jnumed.116.182824
    70. Muhamad F. bin Othman, Nabil R. Mitry, Valerie J. Lewington, Philip J. Blower, Samantha Y.A. Terry. Re-assessing gallium-67 as a therapeutic radionuclide. Nuclear Medicine and Biology 2017, 46 , 12-18. https://doi.org/10.1016/j.nucmedbio.2016.10.008
    71. Hamideh Sabahnoo, Zohreh Noaparast, Seyed Mohammad Abedi, Seyed Jalal Hosseinimehr. New small 99mTc-labeled peptides for HER2 receptor imaging. European Journal of Medicinal Chemistry 2017, 127 , 1012-1024. https://doi.org/10.1016/j.ejmech.2016.11.011
    72. Stefano Boschi, Filippo Lodi. Chemistry of PET Radiopharmaceuticals: Labelling Strategies. 2017, 79-103. https://doi.org/10.1007/978-3-319-40070-9_4
    73. Clemens Decristoforo, Uwe Haberkorn, Roland Haubner, Walter Mier, Sibylle I. Ziegler. PET and SPECT. 2017, 361-402. https://doi.org/10.1007/978-3-319-42202-2_15
    74. Maria Iris Tsionou, Caroline E. Knapp, Calum A. Foley, Catherine R. Munteanu, Andrew Cakebread, Cinzia Imberti, Thomas R. Eykyn, Jennifer D. Young, Brett M. Paterson, Philip J. Blower, Michelle T. Ma. Comparison of macrocyclic and acyclic chelators for gallium-68 radiolabelling. RSC Adv. 2017, 7 (78) , 49586-49599. https://doi.org/10.1039/C7RA09076E
    75. Johanna Seemann, Bradley Waldron, David Parker, Frank Roesch. DATATOC: a novel conjugate for kit-type 68Ga labelling of TOC at ambient temperature. EJNMMI Radiopharmacy and Chemistry 2017, 1 (1) https://doi.org/10.1186/s41181-016-0007-3
    76. Katharina A. Domnanich, Cristina Müller, Renata Farkas, Raffaella M. Schmid, Bernard Ponsard, Roger Schibli, Andreas Türler, Nicholas P. van der Meulen. 44Sc for labeling of DOTA- and NODAGA-functionalized peptides: preclinical in vitro and in vivo investigations. EJNMMI Radiopharmacy and Chemistry 2017, 1 (1) https://doi.org/10.1186/s41181-016-0013-5
    77. Michelle T. Ma, Philip J. Blower. Chelators for Diagnostic Molecular Imaging with Radioisotopes of Copper, Gallium and Zirconium. 2016, 260-312. https://doi.org/10.1039/9781782623892-00260
    78. Philipp Spang, Christian Herrmann, Frank Roesch. Bifunctional Gallium-68 Chelators: Past, Present, and Future. Seminars in Nuclear Medicine 2016, 46 (5) , 373-394. https://doi.org/10.1053/j.semnuclmed.2016.04.003
    79. Zehui Wu, Zhihao Zha, Seok Rye Choi, Karl Plössl, Lin Zhu, Hank F. Kung. New 68Ga-PhenA bisphosphonates as potential bone imaging agents. Nuclear Medicine and Biology 2016, 43 (6) , 360-371. https://doi.org/10.1016/j.nucmedbio.2016.03.002
    80. Mónica Vilche, Ana Laura Reyes, Elena Vasilskis, Patricia Oliver, Henia Balter, Henry Engler. 68 Ga-NOTA-UBI-29-41 as a PET Tracer for Detection of Bacterial Infection. Journal of Nuclear Medicine 2016, 57 (4) , 622-627. https://doi.org/10.2967/jnumed.115.161265
    81. Subhani M. Okarvi, Helmut R. Maecke. Radiometallo-Labeled Peptides in Tumor Diagnosis and Targeted Radionuclide Therapy. 2016, 341-396. https://doi.org/10.1016/bs.adioch.2015.11.003
    82. Thomas W. Price, John Greenman, Graeme J. Stasiuk. Current advances in ligand design for inorganic positron emission tomography tracers 68 Ga, 64 Cu, 89 Zr and 44 Sc. Dalton Transactions 2016, 45 (40) , 15702-15724. https://doi.org/10.1039/C5DT04706D
    83. Michelle T. Ma, Carleen Cullinane, Kelly Waldeck, Peter Roselt, Rodney J. Hicks, Philip J. Blower. Rapid kit-based 68Ga-labelling and PET imaging with THP-Tyr3-octreotate: a preliminary comparison with DOTA-Tyr3-octreotate. EJNMMI Research 2015, 5 (1) https://doi.org/10.1186/s13550-015-0131-1
    84. Sophie Poty, Pauline Désogère, Jakub Šimeček, Claire Bernhard, Victor Goncalves, Christine Goze, Frédéric Boschetti, Johannes Notni, Hans J. Wester, Franck Denat. MA‐NOTMP: A Triazacyclononane Trimethylphosphinate Based Bifunctional Chelator for Gallium Radiolabelling of Biomolecules. ChemMedChem 2015, 10 (9) , 1475-1479. https://doi.org/10.1002/cmdc.201500198
    85. Gábor Máté, Jakub Šimeček, Miroslav Pniok, István Kertész, Johannes Notni, Hans-Jürgen Wester, László Galuska, Petr Hermann. The Influence of the Combination of Carboxylate and Phosphinate Pendant Arms in 1,4,7-Triazacyclononane-Based Chelators on Their 68Ga Labelling Properties. Molecules 2015, 20 (7) , 13112-13126. https://doi.org/10.3390/molecules200713112
    86. Johanna Seemann, Bradley P. Waldron, Frank Roesch, David Parker. Approaching ‘Kit‐Type’ Labelling with 68 Ga: The DATA Chelators. ChemMedChem 2015, 10 (6) , 1019-1026. https://doi.org/10.1002/cmdc.201500092
    87. Chuangyan Zhai, Dominik Summer, Christine Rangger, Hubertus Haas, Roland Haubner, Clemens Decristoforo. Fusarinine C, a novel siderophore‐based bifunctional chelator for radiolabeling with Gallium‐68. Journal of Labelled Compounds and Radiopharmaceuticals 2015, 58 (5) , 209-214. https://doi.org/10.1002/jlcr.3286
    88. Zohreh Varasteh, Bogdan Mitran, Ulrika Rosenström, Irina Velikyan, Maria Rosestedt, Gunnar Lindeberg, Jens Sörensen, Mats Larhed, Vladimir Tolmachev, Anna Orlova. The effect of macrocyclic chelators on the targeting properties of the 68 Ga-labeled gastrin releasing peptide receptor antagonist PEG 2 -RM26. Nuclear Medicine and Biology 2015, 42 (5) , 446-454. https://doi.org/10.1016/j.nucmedbio.2014.12.009
    89. Melpomeni Fani, Helmut R. Maecke. Radiolabeled Somatostatin Receptor Antagonists. 2015, 306-321. https://doi.org/10.1002/9781119031659.ch27
    90. C. Lamesa, A. Rauscher, F. Lacoeuille, M.-D. Desruet, B. Guillet, A. Faivre-Chauvet. 68Ga somatostatin analog radiolabelling: The radiopharmacist's point of view. Médecine Nucléaire 2015, 39 (1) , 3-10. https://doi.org/10.1016/j.mednuc.2015.01.003
    91. J. C. Knight, M. Mosley, M. R. L. Stratford, H. T. Uyeda, H. A. Benink, M. Cong, F. Fan, S. Faulkner, B. Cornelissen. Development of an enzymatic pretargeting strategy for dual-modality imaging. Chemical Communications 2015, 51 (19) , 4055-4058. https://doi.org/10.1039/C4CC10265G
    92. Zsolt Baranyai, Dominik Reich, Adrienn Vágner, Martina Weineisen, Imre Tóth, Hans-Jürgen Wester, Johannes Notni. A shortcut to high-affinity Ga-68 and Cu-64 radiopharmaceuticals: one-pot click chemistry trimerisation on the TRAP platform. Dalton Transactions 2015, 44 (24) , 11137-11146. https://doi.org/10.1039/C5DT00576K
    93. Pauline Désogère, Yoann Rousselin, Sophie Poty, Claire Bernhard, Christine Goze, Frédéric Boschetti, Franck Denat. Efficient Synthesis of 1,4,7‐Triazacyclononane and 1,4,7‐Triazacyclononane‐Based Bifunctional Chelators for Bioconjugation. European Journal of Organic Chemistry 2014, 2014 (35) , 7831-7838. https://doi.org/10.1002/ejoc.201402708
    94. Eric W. Price, Chris Orvig. The Chemistry of Inorganic Nuclides ( 86 Y, 68 Ga, 64 Cu, 89 Zr, 124 I). 2014, 105-135. https://doi.org/10.1002/9781118854754.ch5
    95. Jonathan R. Dilworth, Sofia I. Pascu. The Radiopharmaceutical Chemistry of Gallium(III) and Indium(III) for SPECT Imaging. 2014, 165-178. https://doi.org/10.1002/9781118854754.ch7
    96. Jessie R. Nedrow, Alexander G. White, Jalpa Modi, Kim Nguyen, Albert J. Chang, Carolyn J. Anderson. Positron Emission Tomographic Imaging of Copper 64– and Gallium 68–Labeled Chelator Conjugates of the Somatostatin Agonist Tyr 3 -Octreotate. Molecular Imaging 2014, 13 (7) , 7290.2014.00020. https://doi.org/10.2310/7290.2014.00020
    97. Shubhra Chaturvedi, Anil Kumar Mishra. Vectors for the delivery of radiopharmaceuticals in cancer therapeutics. Therapeutic Delivery 2014, 5 (8) , 893-912. https://doi.org/10.4155/tde.14.57
    98. Miguel Hernandez Pampaloni, Lorenzo Nardo. PET/MRI Radiotracer Beyond 18F-FDG. PET Clinics 2014, 9 (3) , 345-349. https://doi.org/10.1016/j.cpet.2014.03.010
    99. Mattia Asti, Michele Iori, Pier C. Capponi, Giulia Atti, Sara Rubagotti, René Martin, Albert Brennauer, Marco Müller, Ralf Bergmann, Paola A. Erba, Annibale Versari. Influence of different chelators on the radiochemical properties of a 68-Gallium labelled bombesin analogue. Nuclear Medicine and Biology 2014, 41 (1) , 24-35. https://doi.org/10.1016/j.nucmedbio.2013.08.010
    100. Choong Mo Kang, Hyun-Jung Koo, Yearn Seong Choe, Joon Young Choi, Kyung-Han Lee, Byung-Tae Kim. 68Ga-NODAGA-VEGF121 for in vivo imaging of VEGF receptor expression. Nuclear Medicine and Biology 2014, 41 (1) , 51-57. https://doi.org/10.1016/j.nucmedbio.2013.09.005
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect