ACS Publications. Most Trusted. Most Cited. Most Read
My Activity

Figure 1Loading Img

Radiometal-Labeled Peptide−PNA Conjugates for Targeting bcl-2 Expression:  Preparation, Characterization, and in Vitro mRNA Binding

View Author Information
Department of Veterinary Medicine and Surgery, Department of Radiology, Department of Chemistry, University of Missouri Research Reactor, and Department of Biochemistry, University of MissouriColumbia, Columbia, Missouri 65211
Cite this: Bioconjugate Chem. 2002, 13, 6, 1176–1180
Publication Date (Web):November 5, 2002
Copyright © 2002 American Chemical Society

    Article Views





    Read OnlinePDF (85 KB)
    Supporting Info (1)»


    Abstract Image

    A new antisense peptide−peptide nucleic acid (peptide−PNA) conjugate, designed for targeting bcl-2 expression, has been radiolabeled, characterized, and evaluated for bcl-2 mRNA binding in a cell-free system. A PNA complementary to the first six codons of the bcl-2 gene was synthesized by standard solid-phase Fmoc chemistry and conjugated to a new derivative of 1,4,7,10-tetraazacyclododecane-N,N‘,N‘ ‘,N‘ ‘‘-tetraacetic acid (DOTA) that allows macrocyclic radiometal chelates to be incorporated into any sequence position of a peptide−PNA conjugate. The DOTA−PNA conjugate was then coupled to a membrane-permeating transduction peptide, PTD-4, designed for intracellular delivery of the radiolabeled PNA. The conjugate was characterized by HPLC and ESI-MS and labeled with 111In and 90Y to high specific activities (>1000 Ci/mmol) with high radiochemical purity. Northern blot analysis showed that 90Y-PTD-4−K(DOTA)−anti-bcl-2-PNA bound specifically to as little as 50 fmol of bcl-2 mRNA, a result equivalent to that obtained with the analogous 32P-labeled DNA antisense oligonucleotide. Thus, the mRNA targeting properties of 111In- and 90Y-PTD-4−K(DOTA)−anti-bcl-2-PNA demonstrate potential for diagnostic imaging and targeted radiotherapy applications in bcl-2-positive cancers.


     To whom correspondence should be addressed:  Michael R. Lewis, Ph.D., Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, 379 E. Campus Drive, University of Missouri-Columbia, Columbia, MO 65211. Phone:  (573) 814-6000, ext. 3703. FAX:  (573) 814−6551. E-mail:  LewisMic@

     Department of Veterinary Medicine and Surgery.

     Department of Radiology.


     Department of Chemistry.


     University of Missouri Research Reactor.

     Department of Biochemistry.

    Supporting Information Available

    Jump To

    Experimental details on purification, radiometal labeling, and analytical characterization of PTD-4-PNA conjugates, subcloning of bcl-2, and mRNA binding assays. This material is available free of charge via the Internet at

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system:

    Cited By

    This article is cited by 37 publications.

    1. Xing Ma, Gitali Devi, Qiuyu Qu, Desiree-Faye Kaixin Toh, Gang Chen, and Yanli Zhao . Intracellular Delivery of Antisense Peptide Nucleic Acid by Fluorescent Mesoporous Silica Nanoparticles. Bioconjugate Chemistry 2014, 25 (8) , 1412-1420.
    2. Kathrin Brückner, Robert Zitterbart, Oliver Seitz, Sebastian Beck, and Michael W. Linscheid . Solid Phase Synthesis of Short Peptide-Based Multimetal Tags for Biomolecule Labeling. Bioconjugate Chemistry 2014, 25 (6) , 1069-1077.
    3. Anu Kiviniemi, Joonas Mäkelä, Jussi Mäkilä, Tiina Saanijoki, Heidi Liljenbäck, Päivi Poijärvi-Virta, Harri Lönnberg, Tiina Laitala-Leinonen, Anne Roivainen, and Pasi Virta . Solid-Supported NOTA and DOTA Chelators Useful for the Synthesis of 3′-Radiometalated Oligonucleotides. Bioconjugate Chemistry 2012, 23 (9) , 1981-1988.
    4. Seulki Lee, Jin Xie and Xiaoyuan Chen. Peptides and Peptide Hormones for Molecular Imaging and Disease Diagnosis. Chemical Reviews 2010, 110 (5) , 3087-3111.
    5. Wei Shi, Sukanta Dolai, Saadyah Averick, Suraj S. Fernando, Jose A. Saltos, William L’Amoreaux, Probal Banerjee and Krishnaswami Raja. A General Methodology Toward Drug/Dye Incorporated Living Copolymer−Protein Hybrids: (NIRF Dye-Glucose) Copolymer−Avidin/BSA Conjugates as Prototypes. Bioconjugate Chemistry 2009, 20 (8) , 1595-1601.
    6. Mrinmoyee Majumder, Viswanathan Palanisamy. Compendium of Methods to Uncover RNA-Protein Interactions In Vivo. Methods and Protocols 2021, 4 (1) , 22.
    7. Igor G. Panyutin. Labeling Peptide Nucleic Acids with Indium-111. 2019, 185-191.
    8. Xiaoxiao Wang, Mark Milne, Francisco Martínez, Timothy J. Scholl, Robert H. E. Hudson. Synthesis of a poly(Gd( iii )-DOTA)–PNA conjugate as a potential MRI contrast agent via post-synthetic click chemistry functionalization. RSC Advances 2017, 7 (71) , 45222-45226.
    9. Marlies Gijs, An Aerts, Nathalie Impens, Sarah Baatout, André Luxen. Aptamers as radiopharmaceuticals for nuclear imaging and therapy. Nuclear Medicine and Biology 2016, 43 (4) , 253-271.
    10. Prakash Sista, Koushik Ghosh, Jennifer S. Martinez, Reginaldo C. Rocha. Metallo-Biopolymers: Conjugation Strategies and Applications. Polymer Reviews 2014, 54 (4) , 627-676.
    11. Ethan R. Balkin, Dijie Liu, Fang Jia, Varyanna C. Ruthengael, Suzanne M. Shaffer, William H. Miller, Michael R. Lewis. Comparative biodistributions and dosimetry of [177Lu]DOTA-anti-bcl-2-PNA-Tyr3-octreotate and [177Lu]DOTA-Tyr3-octreotate in a mouse model of B-cell lymphoma/leukemia. Nuclear Medicine and Biology 2014, 41 (1) , 36-42.
    12. Gilles Gasser. Preparation of Metal-Containing Peptide Nucleic Acid Bioconjugates on the Solid Phase. 2014, 55-72.
    13. Holger Stephan, Christian Foerster, Gilles Gasser. Synthesis, Characterization, and Evaluation of Radiometal-Containing Peptide Nucleic Acids. 2014, 37-54.
    14. Tanmaya Joshi, Malay Patra, Leone Spiccia, Gilles Gasser. Di-heterometalation of thiol-functionalized peptide nucleic acids. Artificial DNA: PNA & XNA 2013, 4 (1) , 11-18.
    15. Kimberly A. Statham-Ringen, Kimberly A. Selting, Jimmy C. Lattimer, Carolyn J. Henry, Jonathan A. Green, Jeffrey N. Bryan, Fang Jia, Michael R. Lewis. Evaluation of a B-cell leukemia-lymphoma 2-specific radiolabeled peptide nucleic acid–peptide conjugate for scintigraphic detection of neoplastic lymphocytes in dogs with B-cell lymphoma. American Journal of Veterinary Research 2012, 73 (5) , 681-688.
    16. Gilles Gasser, Anna M. Sosniak, Nils Metzler-Nolte. Metal-containing peptide nucleic acid conjugates. Dalton Transactions 2011, 40 (27) , 7061.
    17. Gilles Gasser, Katrin Jäger, Martin Zenker, Ralf Bergmann, Jörg Steinbach, Holger Stephan, Nils Metzler-Nolte. Preparation, 99mTc-labeling and biodistribution studies of a PNA oligomer containing a new ligand derivative of 2,2′-dipicolylamine. Journal of Inorganic Biochemistry 2010, 104 (11) , 1133-1140.
    18. Peng Fu, Baozhong Shen, Changjiu Zhao, Guomei Tian. Molecular Imaging of MDM2 Messenger RNA with 99m Tc-Labeled Antisense Oligonucleotides in Experimental Human Breast Cancer Xenografts. Journal of Nuclear Medicine 2010, 51 (11) , 1805-1812.
    19. Leonard G. Luyt. The Design of Radiolabeled Peptides for Targeting Malignancies. 2010, 101-120.
    20. Archana Mukherjee, Eric Wickstrom, Mathew L. Thakur. Imaging oncogene expression. European Journal of Radiology 2009, 70 (2) , 265-273.
    21. Fang Jia, Said Daibes Figueroa, Fabio Gallazzi, Baghavathy S. Balaji, Mark Hannink, Susan Z. Lever, Timothy J. Hoffman, Michael R. Lewis. Molecular Imaging of bcl-2 Expression in Small Lymphocytic Lymphoma Using 111 In-Labeled PNA–Peptide Conjugates. Journal of Nuclear Medicine 2008, 49 (3) , 430-438.
    22. Danny L. Costantini, Meiduo Hu, Raymond M. Reilly. Update: Peptide Motifs for Insertion of Radiolabeled Biomolecules into Cells and Routing to the Nucleus for Cancer Imaging or Radiotherapeutic Applications. Cancer Biotherapy and Radiopharmaceuticals 2008, 23 (1) , 3-24.
    23. Georg Dirscherl, Burkhard König. The Use of Solid‐Phase Synthesis Techniques for the Preparation of Peptide–Metal Complex Conjugates. European Journal of Organic Chemistry 2008, 2008 (4) , 597-634.
    24. Katsunori Tanaka, Koichi Fukase. PET (positron emission tomography) imaging of biomolecules using metal–DOTA complexes: a new collaborative challenge by chemists, biologists, and physicians for future diagnostics and exploration of in vivo dynamics. Organic & Biomolecular Chemistry 2008, 6 (5) , 815.
    25. Leonard I. Wiebe. Applications of nucleoside-based molecular probes for the in vivo assessment of tumour biochemistry using positron emission tomography (PET). Brazilian Archives of Biology and Technology 2007, 50 (3) , 445-459.
    26. X. Tian, A. Chakrabarti, N. Amirkhanov, M.R. Aruva, K. Zhang, C.A. Cardi, S. Lai, M.L. Thakur, E. Wickstrom. Receptor-mediated internalization of chelator–PNA–peptide hybridization probes for radioimaging or magnetic resonance imaging of oncogene mRNAs in tumours. Biochemical Society Transactions 2007, 35 (1) , 72-76.
    27. Tim Kersebohm, Srec̀ko I. Kirin, Nils Metzler-Nolte. Insertion of an internal dipeptide into PNA oligomers: Thermal melting studies and further functionalization. Bioorganic & Medicinal Chemistry Letters 2006, 16 (11) , 2964-2968.
    28. Domenica Musumeci, Margherita Valente, Domenica Capasso, Rosanna Palumbo, Matthias Görlach, Michaela Schmidtke, Roland Zell, Giovanni N. Roviello, Roberto Sapio, Carlo Pedone, Enrico M. Bucci. A short PNA targeting coxsackievirus B3 5′-nontranslated region prevents virus-induced cytolysis. Journal of Peptide Science 2006, 12 (3) , 161-170.
    29. Yu-Min Zhang, Ching-Hsuan Tung, Jiang He, Ning Liu, Ivan Yanachkov, Guozheng Liu, Mary Rusckowski, Jean-Luc Vanderheyden. Construction of a novel chimera consisting of a chelator-containing Tat peptide conjugated to a morpholino antisense oligomer for technetium-99m labeling and accelerating cellular kinetics. Nuclear Medicine and Biology 2006, 33 (2) , 263-269.
    30. Jennifer Zielinski, Kalle Kilk, Tiina Peritz, Theresa Kannanayakal, Kevin Y. Miyashiro, Emelía Eiríksdóttir, Jeanine Jochems, Ûlo Langel, James Eberwine. In vivo identification of ribonucleoprotein-RNA interactions. Proceedings of the National Academy of Sciences 2006, 103 (5) , 1557-1562.
    31. Igor G. Panyutin, Ronald D. Neumann. The potential for gene-targeted radiation therapy of cancers. Trends in Biotechnology 2005, 23 (10) , 492-496.
    32. Buck Rogers. PET and SPECT as Platforms for Molecular Imaging. 2005, 59-93.
    33. Timofei S. Zatsepin, Dmitry A. Stetsenko, Michael J. Gait, Tatiana S. Oretskaya. Synthesis of DNA conjugates by solid-phase fragment condensation via aldehyde–nucleophile coupling. Tetrahedron Letters 2005, 46 (18) , 3191-3195.
    35. Donald J. Hnatowich, Kayoko Nakamura. Antisense targeting in cell culture with radiolabeled DNAs —a brief review of recent progress—. Annals of Nuclear Medicine 2004, 18 (5) , 363-368.
    36. Luis M. De León‐Rodriguez, Zoltan Kovacs, Gregg R. Dieckmann, A. Dean Sherry. Solid‐Phase Synthesis of DOTA–Peptides. Chemistry – A European Journal 2004, 10 (5) , 1149-1155.
    37. Michael R. Lewis, Fang Jia. Antisense imaging: And miles to go before we sleep?. Journal of Cellular Biochemistry 2003, 90 (3) , 464-472.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Your Mendeley pairing has expired. Please reconnect