Synthesis of Radiometal-Labeled and Fluorescent Cell-Permeating Peptide−PNA Conjugates for Targeting the bcl-2 Proto-oncogene
- Fabio Gallazzi
- ,
- Yi Wang
- ,
- Fang Jia
- ,
- Nalini Shenoy
- ,
- Linda A. Landon
- ,
- Mark Hannink
- ,
- Susan Z. Lever
- , and
- Michael R. Lewis
Abstract
The B-cell lymphoma/leukemia-2 (bcl-2) proto-oncogene has been associated with the transformation of benign lesions to malignancy, disease progression, poor prognosis, reduced survival, and development of resistance to radiation and chemotherapy in many types of cancer. The objective of this work was to synthesize an antisense peptide nucleic acid (PNA) complementary to the first six codons of the bcl-2 open reading frame, conjugated to a membrane-permeating peptide for intracellular delivery, and modified with a bifunctional chelating agent for targeting imaging and therapeutic radiometals to tumors overexpressing bcl-2. Four peptide−PNA constructs were synthesized by a combination of manual and automated stepwise elongation techniques, including bcl-2 antisense conjugates and nonsense conjugates with no complementarity to any known mammalian gene or DNA sequence. The PNA sequences were synthesized manually by solid-phase 9-fluorenylmethoxycarbonyl (Fmoc) techniques. Then a fully protected lysine monomer, modified with 1,4,7,10-tetraazacyclododecane-N,N‘,N‘ ‘,N‘ ‘‘-tetraacetic acid (DOTA) for radiometal chelation, was coupled manually to each PNA sequence. Synthesis of the DOTA−PNA conjugates was followed by automated elongation with a peptide sequence (PTD-4-glycine, PTD-4-G), known to mediate cellular internalization of impermeable effector molecules, or its retro-inverso analogue (ri-PTD-4-G). Preparation of the four conjugates required an innovative synthetic strategy, using mild acid conditions to generate hydrophobic, partially deprotected intermediates. These intermediates were purified by semipreparative reversed-phase HPLC and completely deprotected to yield pure peptide−PNA conjugates in 6% to 9% overall yield. Using modifications of this synthetic strategy, the ri-PTD-4-G conjugate of bcl-2 antisense PNA was prepared using a lysine derivative of tetramethylrhodamine (TMR) for fluorescence microscopy. Plasma stability studies showed that 111In-DOTA-labeled ri-PTD-4-G−anti-bcl-2 PNA was stable for 168 h at 37 °C, unlike the conjugate containing the parent peptide sequence. Scanning confocal fluorescence microscopy of TMR-labeled ri-PTD-4-G−anti-bcl-2 PNA in Raji lymphoma cells demonstrated that the retro-inverso peptide was active in membrane permeation and mediated cellular internalization of the antisense PNA into the cytoplasm, where high concentrations of bcl-2 mRNA are expected to be present.
†
Molecular Biology Program.
‡
Department of Veterinary Medicine and Surgery.
§
Department of Chemistry.
‖
Department of Biochemistry.
⊥
University of Missouri Research Reactor.
*
To whom correspondence should be addressed: Michael R. Lewis, Ph.D., Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, 379 E. Campus Drive, University of MissouriColumbia, Columbia, MO 65211. Phone: (573) 814-6000, ext. 3703. Fax: (573) 814-6551. E-mail: LewisMic@ missouri.edu.
✗
Department of Radiology.
Cited By
This article is cited by 39 publications.
- Xing Ma, Gitali Devi, Qiuyu Qu, Desiree-Faye Kaixin Toh, Gang Chen, and Yanli Zhao . Intracellular Delivery of Antisense Peptide Nucleic Acid by Fluorescent Mesoporous Silica Nanoparticles. Bioconjugate Chemistry 2014, 25
(8)
, 1412-1420. https://doi.org/10.1021/bc5002714
- Elizabeth A. Hillard and Gérard Jaouen . Bioorganometallics: Future Trends in Drug Discovery, Analytical Chemistry, and Catalysis,. Organometallics 2011, 30
(1)
, 20-27. https://doi.org/10.1021/om100964h
- Nariman V. Amirkhanov, Kaijun Zhang, Mohan R. Aruva, Mathew L. Thakur and Eric Wickstrom . Imaging Human Pancreatic Cancer Xenografts by Targeting Mutant KRAS2 mRNA with [111In]DOTAn-Poly(diamidopropanoyl)m-KRAS2 PNA-d(Cys-Ser-Lys-Cys) Nanoparticles. Bioconjugate Chemistry 2010, 21
(4)
, 731-740. https://doi.org/10.1021/bc900523c
- Luis M. De León-Rodríguez and Zoltan Kovacs . The Synthesis and Chelation Chemistry of DOTA−Peptide Conjugates. Bioconjugate Chemistry 2008, 19
(2)
, 391-402. https://doi.org/10.1021/bc700328s
- Karin A. Stephenson,, Sangeeta Ray Banerjee,, Travis Besanger,, Oyebola O. Sogbein,, Murali K. Levadala,, Nicole McFarlane,, Jennifer A. Lemon,, Douglas R. Boreham,, Kevin P. Maresca,, John D. Brennan,, John W. Babich,, Jon Zubieta, and, John F. Valliant. Bridging the Gap between in Vitro and in Vivo Imaging: Isostructural Re and 99mTc Complexes for Correlating Fluorescence and Radioimaging Studies. Journal of the American Chemical Society 2004, 126
(28)
, 8598-8599. https://doi.org/10.1021/ja047751b
- Ülo Langel. Methods for Molecular Imaging, Detection and Visualization of CPPs. 2023, 263-311. https://doi.org/10.1007/978-3-031-38731-9_10
- Ülo Langel. Introduction. 2023, 1-41. https://doi.org/10.1007/978-3-031-38731-9_1
- Xiaoxiao Wang, Mark Milne, Francisco Martínez, Timothy J. Scholl, Robert H. E. Hudson. Synthesis of a poly(Gd(
iii
)-DOTA)–PNA conjugate as a potential MRI contrast agent via post-synthetic click chemistry functionalization. RSC Advances 2017, 7
(71)
, 45222-45226. https://doi.org/10.1039/C7RA09040D
- Abdul Shukkur Ebrahim, Hussam Sabbagh, Allison Liddane, Ali Raufi, Mustapha Kandouz, Ayad Al-Katib. Hematologic malignancies: newer strategies to counter the BCL-2 protein. Journal of Cancer Research and Clinical Oncology 2016, 142
(9)
, 2013-2022. https://doi.org/10.1007/s00432-016-2144-1
- Veerle Kersemans. Imaging of Instracellular Targets. 2016, 487-508. https://doi.org/10.1201/b19052-36
- Fang Jia, Baghavathy S. Balaji, Fabio Gallazzi, Michael R. Lewis. Copper-64-labeled anti-bcl-2 PNA-peptide conjugates selectively localize to bcl-2-positive tumors in mouse models of B-cell lymphoma. Nuclear Medicine and Biology 2015, 42
(11)
, 809-815. https://doi.org/10.1016/j.nucmedbio.2015.06.002
- Bart Cornelissen. Imaging the inside of a tumour: a review of radionuclide imaging and theranostics targeting intracellular epitopes. Journal of Labelled Compounds and Radiopharmaceuticals 2014, 57
(4)
, 310-316. https://doi.org/10.1002/jlcr.3152
- Ethan R. Balkin, Dijie Liu, Fang Jia, Varyanna C. Ruthengael, Suzanne M. Shaffer, William H. Miller, Michael R. Lewis. Comparative biodistributions and dosimetry of [177Lu]DOTA-anti-bcl-2-PNA-Tyr3-octreotate and [177Lu]DOTA-Tyr3-octreotate in a mouse model of B-cell lymphoma/leukemia. Nuclear Medicine and Biology 2014, 41
(1)
, 36-42. https://doi.org/10.1016/j.nucmedbio.2013.10.006
- Holger Stephan, Christian Foerster, Gilles Gasser. Synthesis, Characterization, and Evaluation of Radiometal-Containing Peptide Nucleic Acids. 2014, 37-54. https://doi.org/10.1007/978-1-62703-553-8_4
- Mazen Jamous, Uwe Haberkorn, Walter Mier. Synthesis of Peptide Radiopharmaceuticals for the Therapy and Diagnosis of Tumor Diseases. Molecules 2013, 18
(3)
, 3379-3409. https://doi.org/10.3390/molecules18033379
- Guozheng Liu, Shuping Dou, Yuxia Liu, Minmin Liang, Ling Chen, Dengfeng Cheng, Dale Greiner, Mary Rusckowski, Donald J. Hnatowich. Unexpected side products in the conjugation of an amine-derivatized morpholino oligomer with p-isothiocyanate benzyl DTPA and their removal. Nuclear Medicine and Biology 2011, 38
(2)
, 159-163. https://doi.org/10.1016/j.nucmedbio.2010.08.008
- Vasileios Askoxylakis, Sabine Zitzmann-Kolbe, Frederic Zoller, Annette Altmann, Annette Markert, Shoaib Rana, Annabell Marr, Walter Mier, Jürgen Debus, Uwe Haberkorn. Challenges in Optimizing a Prostate Carcinoma Binding Peptide, Identified through the Phage Display Technology. Molecules 2011, 16
(2)
, 1559-1578. https://doi.org/10.3390/molecules16021559
- Luciano Lattuada, Alessandro Barge, Giancarlo Cravotto, Giovanni Battista Giovenzana, Lorenzo Tei. The synthesis and application of polyamino polycarboxylic bifunctional chelating agents. Chemical Society Reviews 2011, 40
(5)
, 3019. https://doi.org/10.1039/c0cs00199f
- Gilles Gasser, Anna M. Sosniak, Nils Metzler-Nolte. Metal-containing peptide nucleic acid conjugates. Dalton Transactions 2011, 40
(27)
, 7061. https://doi.org/10.1039/c0dt01706j
- Gilles Gasser, Katrin Jäger, Martin Zenker, Ralf Bergmann, Jörg Steinbach, Holger Stephan, Nils Metzler-Nolte. Preparation, 99mTc-labeling and biodistribution studies of a PNA oligomer containing a new ligand derivative of 2,2′-dipicolylamine. Journal of Inorganic Biochemistry 2010, 104
(11)
, 1133-1140. https://doi.org/10.1016/j.jinorgbio.2010.06.011
- Peng Fu, Baozhong Shen, Changjiu Zhao, Guomei Tian. Molecular Imaging of MDM2 Messenger RNA with
99m
Tc-Labeled Antisense Oligonucleotides in Experimental Human Breast Cancer Xenografts. Journal of Nuclear Medicine 2010, 51
(11)
, 1805-1812. https://doi.org/10.2967/jnumed.110.077982
- Veerle Kersemans, Bart Cornelissen. Targeting the Tumour: Cell Penetrating Peptides for Molecular Imaging and Radiotherapy. Pharmaceuticals 2010, 3
(3)
, 600-620. https://doi.org/10.3390/ph3030600
- Elena Ferri, Daniela Donghi, Monica Panigati, Giuseppe Prencipe, Laura D'Alfonso, Ivan Zanoni, Clara Baldoli, Stefano Maiorana, Giuseppe D'Alfonso, Emanuela Licandro. Luminescent conjugates between dinuclear rhenium(i) complexes and peptide nucleic acids (PNA) for cell imaging and DNA targeting. Chemical Communications 2010, 46
(34)
, 6255. https://doi.org/10.1039/c0cc00450b
- Hiroshi Harada, Masahiro Hiraoka. Protein Transduction Domain-Mediated Delivery of Anticancer Proteins. 2009, 297-319. https://doi.org/10.1007/978-1-4419-0131-6_10
- Anna M. Sosniak, Gilles Gasser, Nils Metzler-Nolte. Thermal melting studies of alkyne- and ferrocene-containing PNA bioconjugates. Organic & Biomolecular Chemistry 2009, 7
(23)
, 4992. https://doi.org/10.1039/b913964h
- Nariman V. Amirkhanov, Ivan Dimitrov, Armin W. Opitz, Kaijun Zhang, John P. Lackey, Christopher A. Cardi, Song Lai, Norman J. Wagner, Mathew L. Thakur, Eric Wickstrom. Design of (Gd‐DO3A)
n
‐polydiamidopropanoyl‐peptide nucleic acid‐
D
(Cys‐Ser‐Lys‐Cys) magnetic resonance contrast agents. Biopolymers 2008, 89
(12)
, 1061-1076. https://doi.org/10.1002/bip.21059
- Catarina Xavier, Clelia Giannini, Lurdes Gano, Stefano Maiorana, Roger Alberto, Isabel Santos. Synthesis, characterization, and evaluation of a novel 99mTc(CO)3 pyrazolyl conjugate of a peptide nucleic acid sequence. JBIC Journal of Biological Inorganic Chemistry 2008, 13
(8)
, 1335-1344. https://doi.org/10.1007/s00775-008-0419-y
- Fang Jia, Said Daibes Figueroa, Fabio Gallazzi, Baghavathy S. Balaji, Mark Hannink, Susan Z. Lever, Timothy J. Hoffman, Michael R. Lewis. Molecular Imaging of
bcl-2
Expression in Small Lymphocytic Lymphoma Using
111
In-Labeled PNA–Peptide Conjugates. Journal of Nuclear Medicine 2008, 49
(3)
, 430-438. https://doi.org/10.2967/jnumed.107.045138
- Danny L. Costantini, Meiduo Hu, Raymond M. Reilly. Update:
Peptide Motifs for Insertion of Radiolabeled Biomolecules into Cells and Routing to the Nucleus for Cancer Imaging or Radiotherapeutic Applications. Cancer Biotherapy and Radiopharmaceuticals 2008, 23
(1)
, 3-24. https://doi.org/10.1089/cbr.2007.0430
- Adriana Tovar-Salazar, Jasbeer Dhawan, Anna Lovejoy, Q. Alison Liu, Andrew N. Gifford. Preparation of radioiodinated peptide nucleic acids with high specific activity. Analytical Biochemistry 2007, 360
(1)
, 92-98. https://doi.org/10.1016/j.ab.2006.10.008
- Nicole C. Silvester, G. R. Bushell, Debra J. Searles, Christopher L. Brown. Effect of terminal amino acids on the stability and specificity of PNA–DNA hybridisation. Org. Biomol. Chem. 2007, 5
(6)
, 917-923. https://doi.org/10.1039/B615567G
- Tim Kersebohm, Srec̀ko I. Kirin, Nils Metzler-Nolte. Insertion of an internal dipeptide into PNA oligomers: Thermal melting studies and further functionalization. Bioorganic & Medicinal Chemistry Letters 2006, 16
(11)
, 2964-2968. https://doi.org/10.1016/j.bmcl.2006.02.071
- Kristin E. Bullok, Seth T. Gammon, Stefania Violini, Andrew M. Prantner, Victor M. Villalobos, Vijay Sharma, David Piwnica-Worms. Permeation Peptide Conjugates for In Vivo Molecular Imaging Applications. Molecular Imaging 2006, 5
(1)
, 7290.2006.00001. https://doi.org/10.2310/7290.2006.00001
- Ferenc Hudecz, Zoltán Bánóczi, Gabriella Csík. Medium‐sized peptides as built in carriers for biologically active compounds. Medicinal Research Reviews 2005, 25
(6)
, 679-736. https://doi.org/10.1002/med.20034
- Boon Chin Heng, Yun Han Hong, Tong Cao. Modulating gene expression in stem cells without recombinant DNA and permanent genetic modification. Cell and Tissue Research 2005, 321
(2)
, 147-150. https://doi.org/10.1007/s00441-005-1152-2
- Michael Chorev. . Peptide Science 2005, 67. https://doi.org/10.1002/bip.20219
- B. Kuhnast, F. Hinnen, R. Hamzavi, R. Boisgard, B. Tavitian, P. E. Nielsen, F. Dollé. Fluorine‐18 labelling of PNAs functionalized at their pseudo‐peptidic backbone for imaging studies with PET. Journal of Labelled Compounds and Radiopharmaceuticals 2005, 48
(1)
, 51-61. https://doi.org/10.1002/jlcr.895
- David S. Urch. 28 Radiochemistry. Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem. 2004, 100 , 593-609. https://doi.org/10.1039/B312106M
- Sanjeev Shangary, Christopher L. Oliver, Daniel E. Johnson. The Intrinsic (Mitochondrial) Death Pathway and New Cancer Therapeutics: Bcl-2 Family in Focus. , 107-135. https://doi.org/10.1007/0-387-23695-3_5