ACS Publications. Most Trusted. Most Cited. Most Read
[18F]Galacto-RGD:  Synthesis, Radiolabeling, Metabolic Stability, and Radiation Dose Estimates
My Activity
    Article

    [18F]Galacto-RGD:  Synthesis, Radiolabeling, Metabolic Stability, and Radiation Dose Estimates
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Nuclear Medicine, Technische Universität München, 81675 München, Germany, and Institute of Organic Chemistry and Biochemistry, Technische Universität München, 85747 Garching, Germany
    Other Access Options

    Bioconjugate Chemistry

    Cite this: Bioconjugate Chem. 2004, 15, 1, 61–69
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bc034170n
    Published December 13, 2003
    Copyright © 2004 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    It has been demonstrated in various murine tumor models that radiolabeled RGD-peptides can be used for noninvasive determination of αvβ3 integrin expression. Introduction of sugar moieties improved the pharmacokinetic properties of these peptides and led to tracer with good tumor-to-background ratios. Here we describe the synthesis, radiolabeling, and the metabolic stability of a glycosylated RGD-peptide ([18F]Galacto-RGD) and give first radiation dose estimates for this tracer. The peptide was assembled on a solid support using Fmoc-protocols and cyclized under high dilution conditions. It was conjugated with a sugar amino acid, which can be synthesized via a four-step synthesis starting from pentaacetyl-protected galactose. For radiolabeling of the glycopeptide, 4-nitrophenyl-2-[18F]fluoropropionate was used. This prosthetic group allowed synthesis of [18F]Galacto-RGD with a maximum decay-corrected radiochemical yield of up to 85% and radiochemical purity >98%. The overall radiochemical yield was 29 ± 5% with a total reaction time including final HPLC preparation of 200 ± 18 min. The metabolic stability of [18F]Galacto-RGD was determined in mouse blood and liver, kidney, and tumor homogenates 2 h after tracer injection. The average fraction of intact tracer in these organs was approximately 87%, 76%, 69%, and 87%, respectively, indicating high in vivo stability of the radiolabeled glycopeptide. The expected radiation dose to humans after injection of [18F]Galacto-RGD has been estimated on the basis of dynamic PET studies with New Zealand white rabbits. According to the residence times in these animals the effective dose was calculated using the MIRDOSE 3.0 program as 2.2 × 10-2 mGy/MBq. In conclusion, [18F]Galacto-RGD can be synthesized in high radiochemical yields and radiochemical purity. Despite the time-consuming synthesis of the prosthetic group 185 MBq of [18F]Galacto-RGD, a sufficient dose for patient studies, can be produced starting with approximately 2.2 GBq of [18F]flouride. Moreover, the fast excretion, the suitable metabolic stability and the low estimated radiation dose allow to evaluate this tracer in human studies.

    Copyright © 2004 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     To whom requests for reprints should be addressed, at Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, D-81675 München, Germany. Phone:  +49-89-41406332; FAX:  +49-89-41404841. E-mail:  [email protected].

     Department of Nuclear Medicine.

    §

     Institute of Organic Chemistry and Biochemistry.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 268 publications.

    1. Zuojie Li, Qing Ruan, Yuhao Jiang, Qianna Wang, Guangxing Yin, Junhong Feng, Junbo Zhang. Current Status and Perspectives of Novel Radiopharmaceuticals with Heterologous Dual-targeted Functions: 2013–2023. Journal of Medicinal Chemistry 2024, 67 (24) , 21644-21670. https://doi.org/10.1021/acs.jmedchem.4c01608
    2. Albertus W. Hensbergen, Danny M. van Willigen, Mick M. Welling, Felicia A. van der Wijk, Clarize M. de Korne, Matthias N. van Oosterom, Margret Schottelius, Hans-Jürgen Wester, Tessa Buckle, Fijs W. B. van Leeuwen. Click Chemistry in the Design and Production of Hybrid Tracers. ACS Omega 2019, 4 (7) , 12438-12448. https://doi.org/10.1021/acsomega.9b01484
    3. Krishan Kumar, Arijit Ghosh. 18F-AlF Labeled Peptide and Protein Conjugates as Positron Emission Tomography Imaging Pharmaceuticals. Bioconjugate Chemistry 2018, 29 (4) , 953-975. https://doi.org/10.1021/acs.bioconjchem.7b00817
    4. Dominik Summer, Leo Grossrubatscher, Milos Petrik, Tereza Michalcikova, Zbynek Novy, Christine Rangger, Maximilian Klingler, Hubertus Haas, Piriya Kaeopookum, Elisabeth von Guggenberg, Roland Haubner, and Clemens Decristoforo . Developing Targeted Hybrid Imaging Probes by Chelator Scaffolding. Bioconjugate Chemistry 2017, 28 (6) , 1722-1733. https://doi.org/10.1021/acs.bioconjchem.7b00182
    5. Mohammad B. Haskali, Delphine Denoyer, Wayne Noonan, Carleen Culinane, Christine Rangger, Normand Pouliot, Roland Haubner, Peter D. Roselt, Rodney J. Hicks, and Craig A. Hutton . Sulfonation of Tyrosine as a Method To Improve Biodistribution of Peptide-Based Radiotracers: Novel 18F-Labeled Cyclic RGD Analogues. Molecular Pharmaceutics 2017, 14 (4) , 1169-1180. https://doi.org/10.1021/acs.molpharmaceut.6b01062
    6. Hye Lan Kim, Kalme Sachin, Hyeon Jin Jeong, Wonsil Choi, Hyun Soo Lee, and Dong Wook Kim . F-18 Labeled RGD Probes Based on Bioorthogonal Strain-Promoted Click Reaction for PET Imaging. ACS Medicinal Chemistry Letters 2015, 6 (4) , 402-407. https://doi.org/10.1021/ml500464f
    7. Susan Richter, Melinda Wuest, Cody N. Bergman, Jenilee D. Way, Stephanie Krieger, Buck E. Rogers, and Frank Wuest . Rerouting the Metabolic Pathway of 18F-Labeled Peptides: The Influence of Prosthetic Groups. Bioconjugate Chemistry 2015, 26 (2) , 201-212. https://doi.org/10.1021/bc500599m
    8. Lei Jiang, Richard H. Kimura, Xiaowei Ma, Yingfeng Tu, Zheng Miao, Bin Shen, Frederick T. Chin, Hongcheng Shi, Sanjiv Sam Gambhir, and Zhen Cheng . A Radiofluorinated Divalent Cystine Knot Peptide for Tumor PET Imaging. Molecular Pharmaceutics 2014, 11 (11) , 3885-3892. https://doi.org/10.1021/mp500018s
    9. Yong Yang, Shundong Ji, and Shuang Liu . Impact of Multiple Negative Charges on Blood Clearance and Biodistribution Characteristics of 99mTc-Labeled Dimeric Cyclic RGD Peptides. Bioconjugate Chemistry 2014, 25 (9) , 1720-1729. https://doi.org/10.1021/bc500309r
    10. Ji-Ae Park, Yong Jin Lee, Ji Woong Lee, Kyo Chul Lee, Gwang il An, Kyeong Min Kim, Byung il Kim, Tae-Jeong Kim, and Jung Young Kim . Cyclic RGD Peptides Incorporating Cycloalkanes: Synthesis and Evaluation as PET Radiotracers for Tumor Imaging. ACS Medicinal Chemistry Letters 2014, 5 (9) , 979-982. https://doi.org/10.1021/ml500135t
    11. Jakub Šimeček, Johannes Notni, Tobias G. Kapp, Horst Kessler, and Hans-Jürgen Wester . Benefits of NOPO As Chelator in Gallium-68 Peptides, Exemplified by Preclinical Characterization of 68Ga-NOPO–c(RGDfK). Molecular Pharmaceutics 2014, 11 (5) , 1687-1695. https://doi.org/10.1021/mp5000746
    12. Simone Maschauer, Roland Haubner, Torsten Kuwert, and Olaf Prante . 18F-Glyco-RGD Peptides for PET Imaging of Integrin Expression: Efficient Radiosynthesis by Click Chemistry and Modulation of Biodistribution by Glycosylation. Molecular Pharmaceutics 2014, 11 (2) , 505-515. https://doi.org/10.1021/mp4004817
    13. Shundong Ji, Andrzej Czerwinski, Yang Zhou, Guoqiang Shao, Francisco Valenzuela, Paweł Sowiński, Satendra Chauhan, Michael Pennington, and Shuang Liu . 99mTc-Galacto-RGD2: A Novel 99mTc-Labeled Cyclic RGD Peptide Dimer Useful for Tumor Imaging. Molecular Pharmaceutics 2013, 10 (9) , 3304-3314. https://doi.org/10.1021/mp400085d
    14. Jongho Jeon, Bin Shen, Liqin Xiong, Zheng Miao, Kyung Hyun Lee, Jianghong Rao, and Frederick T. Chin . Efficient Method for Site-Specific 18F-Labeling of Biomolecules Using the Rapid Condensation Reaction between 2-Cyanobenzothiazole and Cysteine. Bioconjugate Chemistry 2012, 23 (9) , 1902-1908. https://doi.org/10.1021/bc300273m
    15. Oliver Demmer, Ingrid Dijkgraaf, Udo Schumacher, Luciana Marinelli, Sandro Cosconati, Eleni Gourni, Hans-Jürgen Wester, and Horst Kessler . Design, Synthesis, and Functionalization of Dimeric Peptides Targeting Chemokine Receptor CXCR4. Journal of Medicinal Chemistry 2011, 54 (21) , 7648-7662. https://doi.org/10.1021/jm2009716
    16. Michelle T. Ma, Oliver C. Neels, Delphine Denoyer, Peter Roselt, John A. Karas, Denis B. Scanlon, Jonathan M. White, Rodney J. Hicks, and Paul S. Donnelly . Gallium-68 Complex of a Macrobicyclic Cage Amine Chelator Tethered to Two Integrin-Targeting Peptides for Diagnostic Tumor Imaging. Bioconjugate Chemistry 2011, 22 (10) , 2093-2103. https://doi.org/10.1021/bc200319q
    17. Gang Ren, Shuanlong Liu, Hongguang Liu, Zheng Miao, and Zhen Cheng . Radiofluorinated Rhenium Cyclized α-MSH Analogues for PET Imaging of Melanocortin Receptor 1. Bioconjugate Chemistry 2010, 21 (12) , 2355-2360. https://doi.org/10.1021/bc100391a
    18. Daniela Arosio, Leonardo Manzoni, Elena M. V. Araldi, Andrea Caprini, Eugenia Monferini and Carlo Scolastico. Functionalized Cyclic RGD Peptidomimetics: Conjugable ligands for αvβ3 Receptor Imaging. Bioconjugate Chemistry 2009, 20 (8) , 1611-1617. https://doi.org/10.1021/bc900155j
    19. Marion de Jong, Wout A. P. Breeman, Dik J. Kwekkeboom, Roelf Valkema and Eric P. Krenning. Tumor Imaging and Therapy Using Radiolabeled Somatostatin Analogues. Accounts of Chemical Research 2009, 42 (7) , 873-880. https://doi.org/10.1021/ar800188e
    20. Valerie Humblet, Preeti Misra, Kumar R. Bhushan, Khaled Nasr, Yao-Sen Ko, Takashi Tsukamoto, Nadine Pannier, John V. Frangioni and Wolfgang Maison. Multivalent Scaffolds for Affinity Maturation of Small Molecule Cell Surface Binders and Their Application to Prostate Tumor Targeting. Journal of Medicinal Chemistry 2009, 52 (2) , 544-550. https://doi.org/10.1021/jm801033c
    21. Suresh K. Pandey, Munawwar Sajjad, Yihui Chen, Xiang Zheng, Rutao Yao, Joseph R. Missert, Carrie Batt, Hani A. Nabi, Allan R. Oseroff and Ravindra K. Pandey. Comparative Positron-Emission Tomography (PET) Imaging and Phototherapeutic Potential of 124I- Labeled Methyl- 3-(1′-iodobenzyloxyethyl)pyropheophorbide-a vs the Corresponding Glucose and Galactose Conjugates. Journal of Medicinal Chemistry 2009, 52 (2) , 445-455. https://doi.org/10.1021/jm8012213
    22. Sven H. Hausner, Jan Marik, M. Karen J. Gagnon and Julie L. Sutcliffe. In Vivo Positron Emission Tomography (PET) Imaging with an αvβ6 Specific Peptide Radiolabeled using 18F-“Click” Chemistry: Evaluation and Comparison with the Corresponding 4-[18F]Fluorobenzoyl- and 2-[18F]Fluoropropionyl-Peptides. Journal of Medicinal Chemistry 2008, 51 (19) , 5901-5904. https://doi.org/10.1021/jm800608s
    23. Richard Ting, Curtis Harwig, Ulrich auf dem Keller, Siobhan McCormick, Pamela Austin, Christopher M. Overall, Michael J. Adam, Thomas J. Ruth and David M. Perrin . Toward [18F]-Labeled Aryltrifluoroborate Radiotracers: In Vivo Positron Emission Tomography Imaging of Stable Aryltrifluoroborate Clearance in Mice. Journal of the American Chemical Society 2008, 130 (36) , 12045-12055. https://doi.org/10.1021/ja802734t
    24. Dag Erlend Olberg, Ole Kristian Hjelstuen, Magne Solbakken, Joseph Arukwe, Hege Karlsen and Alan Cuthbertson . A Novel Prosthetic Group for Site-Selective Labeling of Peptides for Positron Emission Tomography. Bioconjugate Chemistry 2008, 19 (6) , 1301-1308. https://doi.org/10.1021/bc800007h
    25. Matthias Glaser, Matthew Morrison, Magne Solbakken, Joseph Arukwe, Hege Karlsen, Unni Wiggen, Sue Champion, Grete Mørk Kindberg and Alan Cuthbertson . Radiosynthesis and Biodistribution of Cyclic RGD Peptides Conjugated with Novel [18F]Fluorinated Aldehyde-Containing Prosthetic Groups. Bioconjugate Chemistry 2008, 19 (4) , 951-957. https://doi.org/10.1021/bc700472w
    26. Bing Jia, Zhaofei Liu, Jiyun Shi, Zilin Yu, Zhi Yang, Huiyun Zhao, Zhengjie He, Shuang Liu and Fan Wang . Linker Effects on Biological Properties of 111In-Labeled DTPA Conjugates of a Cyclic RGDfK Dimer. Bioconjugate Chemistry 2008, 19 (1) , 201-210. https://doi.org/10.1021/bc7002988
    27. Zi-Bo Li, Zhanhong Wu, Kai Chen, Frederick T. Chin and Xiaoyuan Chen . Click Chemistry for 18F-Labeling of RGD Peptides and microPET Imaging of Tumor Integrin αvβ3 Expression. Bioconjugate Chemistry 2007, 18 (6) , 1987-1994. https://doi.org/10.1021/bc700226v
    28. Thomas D. Harris,, Edward Cheesman,, Anthony R. Harris,, Richard Sachleben,, D. Scott Edwards,, Shuang Liu,, Judit Bartis,, Charles Ellars,, Dave Onthank,, Padmaja Yalamanchili,, Stuart Heminway,, Paula Silva,, Simon Robinson,, Joel Lazewatsky,, Milind Rajopadhye, and, John Barrett. Radiolabeled Divalent Peptidomimetic Vitronectin Receptor Antagonists as Potential Tumor Radiotherapeutic and Imaging Agents. Bioconjugate Chemistry 2007, 18 (4) , 1266-1279. https://doi.org/10.1021/bc070002+
    29. Olaf Prante,, Jürgen Einsiedel,, Roland Haubner,, Peter Gmeiner,, Hans-Jürgen Wester,, Torsten Kuwert, and, Simone Maschauer. 3,4,6-Tri-O-acetyl-2-deoxy-2-[18F]fluoroglucopyranosyl Phenylthiosulfonate:  A Thiol-Reactive Agent for the Chemoselective 18F-Glycosylation of Peptides. Bioconjugate Chemistry 2007, 18 (1) , 254-262. https://doi.org/10.1021/bc060340v
    30. Thomas D. Harris,, Shirley Kalogeropoulos,, Tiffany Nguyen,, Gregory Dwyer,, D. Scott Edwards,, Shuang Liu,, Judit Bartis,, Charles Ellars,, Dave Onthank,, Padmaja Yalamanchili,, Stuart Heminway,, Simon Robinson,, Joel Lazewatsky, and, John Barrett. Structure−Activity Relationships of 111In- and 99mTc-Labeled Quinolin-4-one Peptidomimetics as Ligands for the Vitronectin Receptor:  Potential Tumor Imaging Agents. Bioconjugate Chemistry 2006, 17 (5) , 1294-1313. https://doi.org/10.1021/bc060063s
    31. Jan Marik,, Sven H. Hausner,, Lauren A. Fix,, M. Karen J. Gagnon, and, Julie L. Sutcliffe. Solid-Phase Synthesis of 2-[18F]Fluoropropionyl Peptides. Bioconjugate Chemistry 2006, 17 (4) , 1017-1021. https://doi.org/10.1021/bc0600564
    32. Yunpeng Ye,, Sharon Bloch,, Baogang Xu, and, Samuel Achilefu. Design, Synthesis, and Evaluation of Near Infrared Fluorescent Multimeric RGD Peptides for Targeting Tumors. Journal of Medicinal Chemistry 2006, 49 (7) , 2268-2275. https://doi.org/10.1021/jm050947h
    33. Zhen Cheng,, Yun Wu,, Zhengming Xiong,, Sanjiv Sam Gambhir, and, Xiaoyuan Chen. Near-Infrared Fluorescent RGD Peptides for Optical Imaging of Integrin αvβ3 Expression in Living Mice. Bioconjugate Chemistry 2005, 16 (6) , 1433-1441. https://doi.org/10.1021/bc0501698
    34. Xiaoyuan Chen,, Carmen Plasencia,, Yingping Hou, and, Nouri Neamati. Synthesis and Biological Evaluation of Dimeric RGD Peptide−Paclitaxel Conjugate as a Model for Integrin-Targeted Drug Delivery. Journal of Medicinal Chemistry 2005, 48 (4) , 1098-1106. https://doi.org/10.1021/jm049165z
    35. Ute Reuning, Vincenzo Maria D’Amore, Kairbaan Hodivala-Dilke, Luciana Marinelli, Horst Kessler. Importance of integrin transmembrane helical interactions for antagonistic versus agonistic ligand behavior: Consequences for medical applications. Bioorganic Chemistry 2025, 156 , 108193. https://doi.org/10.1016/j.bioorg.2025.108193
    36. Stephan G. Nekolla, Christoph Rischpler, Takahiro Higuchi. Preclinical Imaging of Cardiovascular Disesase. Seminars in Nuclear Medicine 2023, 53 (5) , 586-598. https://doi.org/10.1053/j.semnuclmed.2023.04.004
    37. Soumen Das, Sudeep Sahu, Avik Chakraborty, K.K. Kamaleshwaran, Trupti Upadhye Bannore, Archana Damle, Rubel Chakravarty, Sudipta Chakraborty. A robust lyophilized kit for convenient one-step formulation of [68Ga]Ga-DOTA-E−[c(RGDfK)]2 in hospital radiopharmacy for clinical PET imaging. Applied Radiation and Isotopes 2023, 196 , 110725. https://doi.org/10.1016/j.apradiso.2023.110725
    38. Ryan A. Davis, Tanushree Ganguly, Sven H. Hausner, Julie L. Sutcliffe. Peptides as Vectors for Radiopharmaceutical Therapy. 2023, 275-295. https://doi.org/10.1007/978-3-031-39005-0_13
    39. Matthieu Dietz, Christel H. Kamani, Vincent Dunet, Stephane Fournier, Vladimir Rubimbura, Nathalie Testart Dardel, Ana Schaefer, Mario Jreige, Sarah Boughdad, Marie Nicod Lalonde, Niklaus Schaefer, Nathan Mewton, John O. Prior, Giorgio Treglia. Overview of the RGD-Based PET Agents Use in Patients With Cardiovascular Diseases: A Systematic Review. Frontiers in Medicine 2022, 9 https://doi.org/10.3389/fmed.2022.887508
    40. Laetitia Vercellino, Dorine de Jong, Laurent Dercle, Benoit Hosten, Brian Braumuller, Jeeban Paul Das, Aileen Deng, Antoine Moya-Plana, Camry A’Keen, Randy Yeh, Pascal Merlet, Barouyr Baroudjian, Mary M. Salvatore, Kathleen M. Capaccione. Translating Molecules into Imaging—The Development of New PET Tracers for Patients with Melanoma. Diagnostics 2022, 12 (5) , 1116. https://doi.org/10.3390/diagnostics12051116
    41. Outi Keinänen, Aaron G. Nash, Samantha M. Sarrett, Mirkka Sarparanta, Jason S. Lewis, Brian M. Zeglis. Novel Positron-Emitting Radiopharmaceuticals. 2022, 169-216. https://doi.org/10.1007/978-3-031-05494-5_87
    42. James R. Ballinger. 18F-Galacto-RGD. 2022, 24-25. https://doi.org/10.1007/978-3-031-10271-4_12
    43. Outi Keinänen, Aaron G. Nash, Samantha M. Sarrett, Mirkka Sarparanta, Jason S. Lewis, Brian M. Zeglis. Novel Positron-Emitting Radiopharmaceuticals. 2022, 1-48. https://doi.org/10.1007/978-3-319-26067-9_87-3
    44. Andrew J. Hall, Mohammad B. Haskali. Radiolabelled Peptides: Optimal Candidates for Theranostic Application in Oncology. Australian Journal of Chemistry 2022, 75 (2) , 34-54. https://doi.org/10.1071/CH21118
    45. Katja Steiger, Neil Gerard Quigley, Tanja Groll, Frauke Richter, Maximilian Alexander Zierke, Ambros Johannes Beer, Wilko Weichert, Markus Schwaiger, Susanne Kossatz, Johannes Notni. There is a world beyond αvβ3-integrin: Multimeric ligands for imaging of the integrin subtypes αvβ6, αvβ8, αvβ3, and α5β1 by positron emission tomography. EJNMMI Research 2021, 11 (1) https://doi.org/10.1186/s13550-021-00842-2
    46. Sandip S. Shinde, Simone Maschauer, Olaf Prante. Sweetening Pharmaceutical Radiochemistry by 18F-Fluoroglycosylation: Recent Progress and Future Prospects. Pharmaceuticals 2021, 14 (11) , 1175. https://doi.org/10.3390/ph14111175
    47. Maaz B.J. Syed, Alexander J. Fletcher, Rachael O. Forsythe, Jakub Kaczynski, David E. Newby, Marc R. Dweck, Edwin J. R. van Beek. Emerging techniques in atherosclerosis imaging. Digital Diagnostics 2021, 2 (3) , 386-409. https://doi.org/10.17816/DD71633
    48. Shashank Pandey, Gaurav Malviya, Magdalena Chottova Dvorakova. Role of Peptides in Diagnostics. International Journal of Molecular Sciences 2021, 22 (16) , 8828. https://doi.org/10.3390/ijms22168828
    49. Barbara Gyuricza, Judit Szabó, Viktória Arató, Dániel Szücs, Adrienn Vágner, Dezső Szikra, Anikó Fekete. Synthesis of Novel, Dual-Targeting 68Ga-NODAGA-LacN-E[c(RGDfK)]2 Glycopeptide as a PET Imaging Agent for Cancer Diagnosis. Pharmaceutics 2021, 13 (6) , 796. https://doi.org/10.3390/pharmaceutics13060796
    50. Thomas Ebenhan, Janke Kleynhans, Jan Rijn Zeevaart, Jae Min Jeong, Mike Sathekge. Non-oncological applications of RGD-based single-photon emission tomography and positron emission tomography agents. European Journal of Nuclear Medicine and Molecular Imaging 2021, 48 (5) , 1414-1433. https://doi.org/10.1007/s00259-020-04975-9
    51. Marcus R. Makowski, Christoph Rischpler, Ullrich Ebersberger, Alexandra Keithahn, Markus Kasel, Ellen Hoffmann, Tienush Rassaf, Horst Kessler, Hans-Jürgen Wester, Stephan G. Nekolla, Markus Schwaiger, Ambros J. Beer. Multiparametric PET and MRI of myocardial damage after myocardial infarction: correlation of integrin αvβ3 expression and myocardial blood flow. European Journal of Nuclear Medicine and Molecular Imaging 2021, 48 (4) , 1070-1080. https://doi.org/10.1007/s00259-020-05034-z
    52. Beatrice Stefanie Ludwig, Stefano Tomassi, Salvatore Di Maro, Francesco Saverio Di Leva, Anke Benge, Florian Reichart, Markus Nieberler, Fritz E. Kühn, Horst Kessler, Luciana Marinelli, Ute Reuning, Susanne Kossatz. The organometallic ferrocene exhibits amplified anti-tumor activity by targeted delivery via highly selective ligands to αvβ3, αvβ6, or α5β1 integrins. Biomaterials 2021, 271 , 120754. https://doi.org/10.1016/j.biomaterials.2021.120754
    53. Abiodun Ayo, Pirjo Laakkonen. Peptide-Based Strategies for Targeted Tumor Treatment and Imaging. Pharmaceutics 2021, 13 (4) , 481. https://doi.org/10.3390/pharmaceutics13040481
    54. Floriane Mangin, Charlotte Collet, Valérie Jouan-Hureaux, Fatiha Maskali, Emilie Roeder, Julien Pierson, Katalin Selmeczi, Pierre-Yves Marie, Cédric Boura, Nadia Pellegrini-Moïse, Sandrine Lamandé-Langle. Synthesis of a DOTA- C -glyco bifunctional chelating agent and preliminary in vitro and in vivo study of [ 68 Ga]Ga-DOTA- C -glyco-RGD. RSC Advances 2021, 11 (13) , 7672-7681. https://doi.org/10.1039/D0RA09274F
    55. Susan Notohamiprodjo, Zohreh Varasteh, Ambros J. Beer, Gang Niu, Xiaoyuan (Shawn) Chen, Wolfgang Weber, Markus Schwaiger. Tumor Vasculature. 2021, 831-867. https://doi.org/10.1016/B978-0-12-816386-3.00090-9
    56. Hidefumi Mukai, Yasuyoshi Watanabe. Review: PET imaging with macro- and middle-sized molecular probes. Nuclear Medicine and Biology 2021, 92 , 156-170. https://doi.org/10.1016/j.nucmedbio.2020.06.007
    57. Nasrin Abbasi Gharibkandi, J. Michael Conlon, Seyed Jalal Hosseinimehr. Strategies for improving stability and pharmacokinetic characteristics of radiolabeled peptides for imaging and therapy. Peptides 2020, 133 , 170385. https://doi.org/10.1016/j.peptides.2020.170385
    58. Mark W. Majewski, Disha M. Gandhi, Trudy Holyst, Zhengli Wang, Irene Hernandez, Ricardo Rosas, Jieqing Zhu, Hartmut Weiler, Chris Dockendorff. Synthesis and initial pharmacology of dual-targeting ligands for putative complexes of integrin αVβ3 and PAR2. RSC Medicinal Chemistry 2020, 11 (8) , 940-949. https://doi.org/10.1039/D0MD00098A
    59. Mohammad B. Haskali, Ashleigh L. Farnsworth, Peter D. Roselt, Craig A. Hutton. 4-Nitrophenyl activated esters are superior synthons for indirect radiofluorination of biomolecules. RSC Medicinal Chemistry 2020, 11 (8) , 919-922. https://doi.org/10.1039/D0MD00140F
    60. Drishty Satpati, Kusum Vats, Rohit Sharma, Haladhar Dev Sarma, Ashutosh Dash. 68 Ga‐labeling of internalizing RGD (iRGD) peptide functionalized with DOTAGA and NODAGA chelators. Journal of Peptide Science 2020, 26 (3) https://doi.org/10.1002/psc.3241
    61. Christine Rangger, Roland Haubner. Radiolabelled Peptides for Positron Emission Tomography and Endoradiotherapy in Oncology. Pharmaceuticals 2020, 13 (2) , 22. https://doi.org/10.3390/ph13020022
    62. Charlotte Collet, Timothé Vucko, Julen Ariztia, Gilles Karcher, Nadia Pellegrini-Moïse, Sandrine Lamandé-Langle. Fully automated radiosynthesis of [ 18 F]fluoro- C -glyco-c(RGDfC): exploiting all the abilities of the AllInOne synthesizer. Reaction Chemistry & Engineering 2019, 4 (12) , 2088-2098. https://doi.org/10.1039/C9RE00303G
    63. Mohammad B. Haskali, Delphine Denoyer, Peter D. Roselt, Rodney J. Hicks, Craig A. Hutton. Radiosynthesis and preliminary in vivo evaluation of 18 F-labelled glycosylated duramycin peptides for imaging of phosphatidylethanolamine during apoptosis. MedChemComm 2019, 10 (11) , 1930-1934. https://doi.org/10.1039/C9MD00354A
    64. Maaz BJ Syed, Alexander J Fletcher, Rachael O Forsythe, Jakub Kaczynski, David E Newby, Marc R Dweck, Edwin JR van Beek. Emerging techniques in atherosclerosis imaging. The British Journal of Radiology 2019, 92 (1103) , 20180309. https://doi.org/10.1259/bjr.20180309
    65. Sudipta Chakraborty, Soumen Das, Rubel Chakravarty, Haladhar Dev Sarma, Rakhee Vatsa, Jaya Shukla, Bhagwant Rai Mittal, Ashutosh Dash. An improved kit formulation for one‐pot synthesis of [ 99m Tc]Tc‐HYNIC‐E[c(RGDfK)] 2 for routine clinical use in cancer imaging. Journal of Labelled Compounds and Radiopharmaceuticals 2019, 62 (12) , 823-834. https://doi.org/10.1002/jlcr.3786
    66. Timothé Vucko, Nicolas Pétry, François Dehez, Alexandrine Lambert, Antonio Monari, Cécile Lakomy, Patrick Lacolley, Véronique Regnault, Charlotte Collet, Gilles Karcher, Nadia Pellegrini-Moïse, Sandrine Lamandé-Langle. C-glyco“RGD” as αIIbβ3 and αvβ integrin ligands for imaging applications: Synthesis, in vitro evaluation and molecular modeling. Bioorganic & Medicinal Chemistry 2019, 27 (18) , 4101-4109. https://doi.org/10.1016/j.bmc.2019.07.039
    67. Begoña Lavin Plaza, Iakovos Theodoulou, Imran Rashid, Reza Hajhosseiny, Alkystis Phinikaridou, Rene M. Botnar. Molecular Imaging in Ischemic Heart Disease. Current Cardiovascular Imaging Reports 2019, 12 (7) https://doi.org/10.1007/s12410-019-9500-x
    68. Zbynek Novy, Jana Stepankova, Michaela Hola, Dominika Flasarova, Miroslav Popper, Milos Petrik. Preclinical Evaluation of Radiolabeled Peptides for PET Imaging of Glioblastoma Multiforme. Molecules 2019, 24 (13) , 2496. https://doi.org/10.3390/molecules24132496
    69. Ryan A. Davis, Chris Drake, Robin C. Ippisch, Melissa Moore, Julie L. Sutcliffe. Fully automated peptide radiolabeling from [ 18 F]fluoride. RSC Advances 2019, 9 (15) , 8638-8649. https://doi.org/10.1039/C8RA10541C
    70. Tianxin Miao, Rachael A. Floreani, Gang Liu, Xiaoyuan Chen. Nanotheranostics-Based Imaging for Cancer Treatment Monitoring. 2019, 395-428. https://doi.org/10.1007/978-3-030-01775-0_16
    71. Simon Specklin, Fabien Caillé, Mélanie Roche, Bertrand Kuhnast. Fluorine-18 radiolabeling of biologics. 2019, 425-458. https://doi.org/10.1016/B978-0-12-812733-9.00012-X
    72. Maaz B.J. Syed, Mhairi Doris, Marc Dweck, Rachael Forsythe, David E. Newby. Imaging vascular calcification. 2019, 203-246. https://doi.org/10.1016/B978-0-12-816389-4.00009-8
    73. Jing Zhao, Yu-liang Wang, Xin-bei Li, Si-yuan Gao, Shao-yu Liu, Yu-kun Song, Jing-yan Wang, Ying Xiong, Hui Ma, Li Jiang, Zhi-yun Yang, Gang-hua Tang, Jian-ping Chu. Radiosynthesis and Preliminary Biological Evaluation of 18 F-Fluoropropionyl-Chlorotoxin as a Potential PET Tracer for Glioma Imaging. Contrast Media & Molecular Imaging 2018, 2018 , 1-9. https://doi.org/10.1155/2018/8439162
    74. Outi Keinänen, Denisa Partelová, Osku Alanen, Maxim Antopolsky, Mirkka Sarparanta, Anu J. Airaksinen. Efficient cartridge purification for producing high molar activity [18F]fluoro-glycoconjugates via oxime formation. Nuclear Medicine and Biology 2018, 67 , 27-35. https://doi.org/10.1016/j.nucmedbio.2018.10.001
    75. Sibel Isal, Julien Pierson, Laetitia Imbert, Alexandra Clement, Charlotte Collet, Sophie Pinel, Nicolas Veran, Aurélie Reinhard, Sylvain Poussier, Guillaume Gauchotte, Steeven Frezier, Gilles Karcher, Pierre-Yves Marie, Fatiha Maskali. PET imaging of 68Ga-NODAGA-RGD, as compared with 18F-fluorodeoxyglucose, in experimental rodent models of engrafted glioblastoma. EJNMMI Research 2018, 8 (1) https://doi.org/10.1186/s13550-018-0405-5
    76. Tilman Läppchen, Jason P. Holland, Yvonne Kiefer, Mark D. Bartholomä. Preparation and preclinical evaluation of a 68Ga-labelled c(RGDfK) conjugate comprising the bifunctional chelator NODIA-Me. EJNMMI Radiopharmacy and Chemistry 2018, 3 (1) https://doi.org/10.1186/s41181-018-0043-2
    77. Yoo Sung Song, Joong Hyun Kim, Byung Chul Lee, Jae Ho Jung, Hyun Soo Park, Sang Eun Kim. Biodistribution and Internal Radiation Dosimetry of 99m Tc-IDA-D-[c(RGDfK)] 2 (BIK-505), a Novel SPECT Radiotracer for the Imaging of Integrin α v β 3 Expression. Cancer Biotherapy and Radiopharmaceuticals 2018, 33 (9) , 396-402. https://doi.org/10.1089/cbr.2018.2505
    78. Frederic Debordeaux, Lucie Chansel-Debordeaux, Jean-Baptiste Pinaquy, Philippe Fernandez, Jurgen Schulz. What about αvβ3 integrins in molecular imaging in oncology?. Nuclear Medicine and Biology 2018, 62-63 , 31-46. https://doi.org/10.1016/j.nucmedbio.2018.04.006
    79. Daniel Curley, Begoña Lavin Plaza, Ajay M. Shah, René M. Botnar. Molecular imaging of cardiac remodelling after myocardial infarction. Basic Research in Cardiology 2018, 113 (2) https://doi.org/10.1007/s00395-018-0668-z
    80. Mohammad B. Haskali, Peter D. Roselt, Rodney J. Hicks, Craig A. Hutton. Automated preparation of 2‐[ 18 F]fluoropropionate labeled peptides using a flexible, multi‐stage synthesis platform (iPHASE Flexlab). Journal of Labelled Compounds and Radiopharmaceuticals 2018, 61 (2) , 61-67. https://doi.org/10.1002/jlcr.3580
    81. Barbara Claro, Margarida Bastos, Rebeca Garcia-Fandino. Design and applications of cyclic peptides. 2018, 87-129. https://doi.org/10.1016/B978-0-08-100736-5.00004-1
    82. Jamila Hedhli, Andrzej Czerwinski, Matthew Schuelke, Agata Płoska, Paweł Sowinski, Lukas La Hood, Spencer B. Mamer, John A. Cole, Paulina Czaplewska, Maciej Banach, Iwona T. Dobrucki, Leszek Kalinowski, Princess Imoukhuede, Lawrence W. Dobrucki. Synthesis, Chemical Characterization and Multiscale Biological Evaluation of a Dimeric-cRGD Peptide for Targeted Imaging of α V β 3 Integrin Activity. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-03224-8
    83. Silvano Gnesin, Periklis Mitsakis, Francesco Cicone, Emmanuel Deshayes, Vincent Dunet, Augusto F. Gallino, Marek Kosinski, Sébastien Baechler, Franz Buchegger, David Viertl, John O. Prior. First in-human radiation dosimetry of 68Ga-NODAGA-RGDyK. EJNMMI Research 2017, 7 (1) https://doi.org/10.1186/s13550-017-0288-x
    84. Shuanglong Liu, Ivetta Vorobyova, Ryan Park, Peter S. Conti. Biodistribution and Radiation Dosimetry of the Integrin Marker 64Cu-BaBaSar-RGD2 Determined from Whole-Body PET/CT in a Non-human Primate. Frontiers in Physics 2017, 5 https://doi.org/10.3389/fphy.2017.00054
    85. Yoo Sung Song, Hyun Soo Park, Byung Chul Lee, Jae Ho Jung, Ho-Young Lee, Sang Eun Kim. Imaging of Integrin α v β 3 Expression in Lung Cancers and Brain Tumors Using Single-Photon Emission Computed Tomography with a Novel Radiotracer 99m Tc-IDA-D-[c(RGDfK)] 2. Cancer Biotherapy and Radiopharmaceuticals 2017, 32 (8) , 288-296. https://doi.org/10.1089/cbr.2017.2233
    86. Ralf Schirrmacher, Björn Wängler, Justin Bailey, Vadim Bernard-Gauthier, Esther Schirrmacher, Carmen Wängler. Small Prosthetic Groups in 18 F-Radiochemistry: Useful Auxiliaries for the Design of 18 F-PET Tracers. Seminars in Nuclear Medicine 2017, 47 (5) , 474-492. https://doi.org/10.1053/j.semnuclmed.2017.07.001
    87. Falguni Basuli, Xiang Zhang, Carolyn C. Woodroofe, Elaine M. Jagoda, Peter L. Choyke, Rolf E. Swenson. Fast indirect fluorine-18 labeling of protein/peptide using the useful 6-fluoronicotinic acid-2,3,5,6-tetrafluorophenyl prosthetic group: A method comparable to direct fluorination. Journal of Labelled Compounds and Radiopharmaceuticals 2017, 60 (3) , 168-175. https://doi.org/10.1002/jlcr.3487
    88. Xiaolian Sun, Yesen Li, Ting Liu, Zijing Li, Xianzhong Zhang, Xiaoyuan Chen. Peptide-based imaging agents for cancer detection. Advanced Drug Delivery Reviews 2017, 110-111 , 38-51. https://doi.org/10.1016/j.addr.2016.06.007
    89. Mirkka Sarparanta, Dustin W. Demoin, Brendon E. Cook, Jason S. Lewis, Brian M. Zeglis. Novel Positron-Emitting Radiopharmaceuticals. 2017, 129-171. https://doi.org/10.1007/978-3-319-26236-9_87
    90. Richard Fjellaksel, Marc Boomgaren, Rune Sundset, Ira H. Haraldsen, Jørn H. Hansen, Patrick J. Riss. Small molecule piperazinyl-benzimidazole antagonists of the gonadotropin-releasing hormone (GnRH) receptor. MedChemComm 2017, 8 (10) , 1965-1969. https://doi.org/10.1039/C7MD00320J
    91. M. Elgland, P. Nordeman, T. Fyrner, G. Antoni, K. Peter R. Nilsson, P. Konradsson. β-Configured clickable [ 18 F]FDGs as novel 18 F-fluoroglycosylation tools for PET. New Journal of Chemistry 2017, 41 (18) , 10231-10236. https://doi.org/10.1039/C7NJ00716G
    92. Didier J. Colin, James A. H. Inkster, Stéphane Germain, Yann Seimbille. Preclinical validations of [18F]FPyPEGCBT-c(RGDfK): a 18F-labelled RGD peptide prepared by ligation of 2-cyanobenzothiazole and 1,2-aminothiol to image angiogenesis. EJNMMI Radiopharmacy and Chemistry 2017, 1 (1) https://doi.org/10.1186/s41181-016-0019-z
    93. Roland Haubner, Armin Finkenstedt, Armin Stegmayr, Christine Rangger, Clemens Decristoforo, Heinz Zoller, Irene J. Virgolini. [68Ga]NODAGA-RGD – Metabolic stability, biodistribution, and dosimetry data from patients with hepatocellular carcinoma and liver cirrhosis. European Journal of Nuclear Medicine and Molecular Imaging 2016, 43 (11) , 2005-2013. https://doi.org/10.1007/s00259-016-3396-3
    94. Chuangyan Zhai, Gerben M. Franssen, Milos Petrik, Peter Laverman, Dominik Summer, Christine Rangger, Roland Haubner, Hubertus Haas, Clemens Decristoforo. Comparison of Ga-68-Labeled Fusarinine C-Based Multivalent RGD Conjugates and [68Ga]NODAGA-RGD—In Vivo Imaging Studies in Human Xenograft Tumors. Molecular Imaging and Biology 2016, 18 (5) , 758-767. https://doi.org/10.1007/s11307-016-0931-3
    95. Ji Woong Lee, Yong Jin Lee, Un Chol Shin, Suhng Wook Kim, Byung Il Kim, Kyo Chul Lee, Jung Young Kim, Ji-Ae Park. Improved Pharmacokinetics Following PEGylation and Dimerization of a c(RGD-ACH-K) Conjugate Used for Tumor Positron Emission Tomography Imaging. Cancer Biotherapy and Radiopharmaceuticals 2016, 31 (8) , 295-301. https://doi.org/10.1089/cbr.2016.2036
    96. Stephanie Doll, Karen Woolum, Krishan Kumar. Radiolabeling of a cyclic RGD (cyclo Arg-Gly-Asp-d-Tyr-Lys) peptide using sodium hypochlorite as an oxidizing agent. Journal of Labelled Compounds and Radiopharmaceuticals 2016, 59 (11) , 462-466. https://doi.org/10.1002/jlcr.3431
    97. Ji Woong Lee, Ji-Ae Park, Yong Jin Lee, Un Chol Shin, Suhng Wook Kim, Byung Il Kim, Sang Moo Lim, Gwang Il An, Jung Young Kim, Kyo Chul Lee. New Glucocyclic RGD Dimers for Positron Emission Tomography Imaging of Tumor Integrin Receptors. Cancer Biotherapy and Radiopharmaceuticals 2016, 31 (6) , 209-216. https://doi.org/10.1089/cbr.2016.2015
    98. Ambros J. Beer, Sarah M. Schwarzenböck, Niko Zantl, Michael Souvatzoglou, Tobias Maurer, Petra Watzlowik, Horst Kessler, Hans-Jürgen Wester, Markus Schwaiger, Bernd Joachim Krause. Non-invasive assessment of inter-and intrapatient variability of integrin expression in metastasized prostate cancer by PET. Oncotarget 2016, 7 (19) , 28151-28159. https://doi.org/10.18632/oncotarget.8611
    99. Calogero D’Alessandria, Karolin Pohle, Florian Rechenmacher, Stefanie Neubauer, Johannes Notni, Hans-Jürgen Wester, Markus Schwaiger, Horst Kessler, Ambros J. Beer. In vivo biokinetic and metabolic characterization of the 68Ga-labelled α5β1-selective peptidomimetic FR366. European Journal of Nuclear Medicine and Molecular Imaging 2016, 43 (5) , 953-963. https://doi.org/10.1007/s00259-015-3218-z
    100. Hui Zhang, Ning Liu, Song Gao, Xudong Hu, Wei Zhao, Rongjie Tao, Zhaoqiu Chen, Jinsong Zheng, Xiaorong Sun, Liang Xu, Wanhu Li, Jinming Yu, Shuanghu Yuan. Can an 18 F-ALF-NOTA-PRGD2 PET/CT Scan Predict Treatment Sensitivity to Concurrent Chemoradiotherapy in Patients with Newly Diagnosed Glioblastoma?. Journal of Nuclear Medicine 2016, 57 (4) , 524-529. https://doi.org/10.2967/jnumed.115.165514
    Load more citations

    Bioconjugate Chemistry

    Cite this: Bioconjugate Chem. 2004, 15, 1, 61–69
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bc034170n
    Published December 13, 2003
    Copyright © 2004 American Chemical Society

    Article Views

    3508

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.