ACS Publications. Most Trusted. Most Cited. Most Read
Coupling into the Base Pair Stack Is Necessary for DNA-Mediated Electrochemistry
My Activity

Figure 1Loading Img
    Article

    Coupling into the Base Pair Stack Is Necessary for DNA-Mediated Electrochemistry
    Click to copy article linkArticle link copied!

    View Author Information
    Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
    Other Access OptionsSupporting Information (2)

    Bioconjugate Chemistry

    Cite this: Bioconjugate Chem. 2007, 18, 5, 1434–1441
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bc0700483
    Published June 20, 2007
    Copyright © 2007 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    The electrochemistry of DNA films modified with different redox probes linked to DNA through saturated and conjugated tethers was investigated. Experiments feature two redox probes bound to DNA on two surfaces:  anthraquinone (AQ)-modified uridines incorporated into thiolated DNA on gold (Au) and 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO)-modified uridines in pyrene-labeled DNA on highly oriented pyrolytic graphite (HOPG). The electrochemistry of these labels when incorporated into DNA has been examined in DNA films containing both well matched and mismatched DNA. DNA-mediated electrochemistry is found to be effective for the TEMPO probe linked with an acetylene linker but not for a saturated TEMPO connected through an ethylenediamine linker. For the AQ probe, DNA-mediated electrochemistry is found with an acetylene linker to uridine but not with an alkyl chain to the 5‘ terminus of the oligonucleotide. Large electrochemical signals and effective discrimination of intervening base mismatches are achieved for the probes connected through the acetylene linkages, while probes connected through saturated linkages exhibit small electrochemical signals associated only with direct surface to probe charge transfer and poor mismatch discrimination. Thus DNA electrochemistry with these probes is dramatically influenced by the chemical nature of their linkage to DNA. These results highlight the importance of effective coupling into the π-stack for long-range DNA-mediated electrochemistry.

    Copyright © 2007 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     Author to whom correspondence should be addressed. E-mail:  [email protected].

    Supporting Information Available

    Click to copy section linkSection link copied!

    Figure S1 contains AFM characterization of DNA modified and bare HOPG. Figure S2 shows melting point determinations of DNA modified with ethynylanthraquinone and unmodified DNA composed of the same sequence. Figure S3 shows the correlation of the current displayed by DNA modified with ethynylanthraquinone as a function of scan rate. Figure S4 shows the peak splitting as compared to the log of scan rate. This material is available free of charge via the Internet at http://pubs.acs.org/BC.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 62 publications.

    1. David Kodr, Mayreli Ortiz, Veronika Sýkorová, Cansu Pinar Yenice, Zbigniew J. Lesnikowski, Ciara K. O’Sullivan, Michal Hocek. Normalized Multipotential Redox Coding of DNA Bases for Determination of Total Nucleotide Composition. Analytical Chemistry 2023, 95 (34) , 12586-12589. https://doi.org/10.1021/acs.analchem.3c02023
    2. David Kodr, Cansu Pinar Yenice, Anna Simonova, Dijana Pavlović Saftić, Radek Pohl, Veronika Sýkorová, Mayreli Ortiz, Ludĕk Havran, Miroslav Fojta, Zbigniew J. Lesnikowski, Ciara K. O’Sullivan, Michal Hocek. Carborane- or Metallacarborane-Linked Nucleotides for Redox Labeling. Orthogonal Multipotential Coding of all Four DNA Bases for Electrochemical Analysis and Sequencing. Journal of the American Chemical Society 2021, 143 (18) , 7124-7134. https://doi.org/10.1021/jacs.1c02222
    3. Ivan Magriñá, Mayreli Ortiz, Anna Simonova, Michal Hocek, Ciara K. O’ Sullivan, Robert J. Forster. Ferrocene-Containing DNA Monolayers: Influence of Electrostatics on the Electron Transfer Dynamics. Langmuir 2021, 37 (11) , 3359-3369. https://doi.org/10.1021/acs.langmuir.0c03485
    4. John M. Abendroth, Dominik M. Stemer, Brian P. Bloom, Partha Roy, Ron Naaman, David H. Waldeck, Paul S. Weiss, Prakash Chandra Mondal. Spin Selectivity in Photoinduced Charge-Transfer Mediated by Chiral Molecules. ACS Nano 2019, 13 (5) , 4928-4946. https://doi.org/10.1021/acsnano.9b01876
    5. Philippe Dauphin-Ducharme, Netzahualcóyotl Arroyo-Currás, Kevin W. Plaxco. High-Precision Electrochemical Measurements of the Guanine-, Mismatch-, and Length-Dependence of Electron Transfer from Electrode-Bound DNA Are Consistent with a Contact-Mediated Mechanism. Journal of the American Chemical Society 2019, 141 (3) , 1304-1311. https://doi.org/10.1021/jacs.8b11341
    6. John M. Abendroth, Nako Nakatsuka, Matthew Ye, Dokyun Kim, Eric E. Fullerton, Anne M. Andrews, and Paul S. Weiss . Analyzing Spin Selectivity in DNA-Mediated Charge Transfer via Fluorescence Microscopy. ACS Nano 2017, 11 (7) , 7516-7526. https://doi.org/10.1021/acsnano.7b04165
    7. Shuguang Xuan, Zhenyu Meng, Xiangyang Wu, Jiun-Ru Wong, Gitali Devi, Edwin Kok Lee Yeow, and Fangwei Shao . Efficient DNA-Mediated Electron Transport in Ionic Liquids. ACS Sustainable Chemistry & Engineering 2016, 4 (12) , 6703-6711. https://doi.org/10.1021/acssuschemeng.6b01605
    8. Chris H. Wohlgamuth, Marc A. McWilliams, Amir Mazaheripour, Anthony M. Burke, Kuo-Yao Lin, Linh Doan, Jason D. Slinker, and Alon A. Gorodetsky . Electrochemistry of DNA Monolayers Modified With a Perylenediimide Base Surrogate. The Journal of Physical Chemistry C 2014, 118 (50) , 29084-29090. https://doi.org/10.1021/jp5041508
    9. David D. Ordinario, Anthony M. Burke, Long Phan, Jonah-Micah Jocson, Hanfei Wang, Mary N. Dickson, and Alon A. Gorodetsky . Sequence Specific Detection of Restriction Enzymes at DNA-Modified Carbon Nanotube Field Effect Transistors. Analytical Chemistry 2014, 86 (17) , 8628-8633. https://doi.org/10.1021/ac501441d
    10. Catrina G. Pheeney and Jacqueline K. Barton . Intraduplex DNA-Mediated Electrochemistry of Covalently Tethered Redox-Active Reporters. Journal of the American Chemical Society 2013, 135 (40) , 14944-14947. https://doi.org/10.1021/ja408135g
    11. Chris H. Wohlgamuth, Marc A. McWilliams, and Jason D. Slinker . DNA as a Molecular Wire: Distance and Sequence Dependence. Analytical Chemistry 2013, 85 (18) , 8634-8640. https://doi.org/10.1021/ac401229q
    12. Chris H. Wohlgamuth, Marc A. McWilliams, and Jason D. Slinker . Temperature Dependence of Electrochemical DNA Charge Transport: Influence of a Mismatch. Analytical Chemistry 2013, 85 (3) , 1462-1467. https://doi.org/10.1021/ac302508f
    13. Alireza Abi and Elena E. Ferapontova . Unmediated by DNA Electron Transfer in Redox-Labeled DNA Duplexes End-Tethered to Gold Electrodes. Journal of the American Chemical Society 2012, 134 (35) , 14499-14507. https://doi.org/10.1021/ja304864w
    14. Emil Paleček and Martin Bartošík . Electrochemistry of Nucleic Acids. Chemical Reviews 2012, 112 (6) , 3427-3481. https://doi.org/10.1021/cr200303p
    15. Catrina G. Pheeney and Jacqueline K. Barton . DNA Electrochemistry with Tethered Methylene Blue. Langmuir 2012, 28 (17) , 7063-7070. https://doi.org/10.1021/la300566x
    16. Elaheh Farjami, Lilia Clima, Kurt Gothelf, and Elena E. Ferapontova . “Off−On” Electrochemical Hairpin-DNA-Based Genosensor for Cancer Diagnostics. Analytical Chemistry 2011, 83 (5) , 1594-1602. https://doi.org/10.1021/ac1032929
    17. Joseph C. Genereux and Jacqueline K. Barton. Mechanisms for DNA Charge Transport. Chemical Reviews 2010, 110 (3) , 1642-1662. https://doi.org/10.1021/cr900228f
    18. Jason D. Slinker, Natalie B. Muren, Alon A. Gorodetsky and Jacqueline K. Barton. Multiplexed DNA-Modified Electrodes. Journal of the American Chemical Society 2010, 132 (8) , 2769-2774. https://doi.org/10.1021/ja909915m
    19. Joseph C. Genereux, Amie K. Boal and Jacqueline K. Barton. DNA-Mediated Charge Transport in Redox Sensing and Signaling. Journal of the American Chemical Society 2010, 132 (3) , 891-905. https://doi.org/10.1021/ja907669c
    20. Reham A. I. Abou-Elkhair, Dabney W. Dixon and Thomas L. Netzel. Synthesis and Electrochemical Evaluation of Conjugates between 2′-Deoxyadenosine and Modified Anthraquinone: Probes for Hole-Transfer Studies in DNA. The Journal of Organic Chemistry 2009, 74 (13) , 4712-4719. https://doi.org/10.1021/jo900306g
    21. Francesco Ricci, Andrew J. Bonham, Aaron C. Mason, Norbert O. Reich and Kevin W. Plaxco . Reagentless, Electrochemical Approach for the Specific Detection of Double- and Single-Stranded DNA Binding Proteins. Analytical Chemistry 2009, 81 (4) , 1608-1614. https://doi.org/10.1021/ac802365x
    22. Alon A. Gorodetsky, Marisa C. Buzzeo and Jacqueline K. Barton. DNA-Mediated Electrochemistry. Bioconjugate Chemistry 2008, 19 (12) , 2285-2296. https://doi.org/10.1021/bc8003149
    23. Alon A. Gorodetsky, William J. Hammond, Michael G. Hill, Krzysztof Slowinski and Jacqueline K. Barton. Scanning Electrochemical Microscopy of DNA Monolayers Modified with Nile Blue. Langmuir 2008, 24 (24) , 14282-14288. https://doi.org/10.1021/la8029243
    24. Marisa C. Buzzeo and Jacqueline K. Barton. Redmond Red as a Redox Probe for the DNA-Mediated Detection of Abasic Sites. Bioconjugate Chemistry 2008, 19 (11) , 2110-2112. https://doi.org/10.1021/bc800339y
    25. Fabien Boussicault, and Marc Robert, . Electron Transfer in DNA and in DNA-Related Biological Processes. Electrochemical Insights. Chemical Reviews 2008, 108 (7) , 2622-2645. https://doi.org/10.1021/cr0680787
    26. Agnès Anne and Christophe Demaille. Electron Transport by Molecular Motion of redox-DNA Strands: Unexpectedly Slow Rotational Dynamics of 20-mer ds-DNA Chains End-Grafted onto Surfaces via C6 Linkers. Journal of the American Chemical Society 2008, 130 (30) , 9812-9823. https://doi.org/10.1021/ja801074m
    27. Benjamin Elias,, Fangwei Shao, and, Jacqueline K. Barton. Charge Migration along the DNA Duplex:  Hole versus Electron Transport. Journal of the American Chemical Society 2008, 130 (4) , 1152-1153. https://doi.org/10.1021/ja710358p
    28. Fangwei Shao and, Jacqueline K. Barton. Long-Range Electron and Hole Transport through DNA with Tethered Cyclometalated Iridium(III) Complexes. Journal of the American Chemical Society 2007, 129 (47) , 14733-14738. https://doi.org/10.1021/ja0752437
    29. Е. V. Suprun, S. A. Khmeleva, K. G. Ptitsyn, L. K. Kurbatov, S. P. Radko. Artificial modified nucleotides for the electrochemical detection of nucleic acid amplification products. Zhurnal Analiticheskoi Khimii 2025, 79 (7) , 679-701. https://doi.org/10.31857/S0044450224070014
    30. E. V. Suprun, S. A. Khmeleva, K. G. Ptitsyn, L. K. Kurbatov, S. P. Radko. Artificial Modified Nucleotides for the Electrochemical Detection of Nucleic Acid Amplification Products. Journal of Analytical Chemistry 2024, 79 (7) , 831-847. https://doi.org/10.1134/S1061934824700217
    31. Yesurajan Allwin Richard, Sebastinbaskar Aniu Lincy, Shakkthivel Piraman, Venkataraman Dharuman. Label-free electrochemical detection of cancer biomarkers DNA and anti-p53 at tin oxide quantum dot-gold-DNA nanoparticle modified electrode. Bioelectrochemistry 2023, 150 , 108371. https://doi.org/10.1016/j.bioelechem.2023.108371
    32. Zhiyong Zheng, Soo Hyeon Kim, Arnaud Chovin, Nicolas Clement, Christophe Demaille. Electrochemical response of surface-attached redox DNA governed by low activation energy electron transfer kinetics. Chemical Science 2023, 14 (13) , 3652-3660. https://doi.org/10.1039/D3SC00320E
    33. Mina Safarzadeh, Ahmed Suhail, Jagriti Sethi, Anas Sattar, David Jenkins, Genhua Pan. A Label-Free DNA-Immunosensor Based on Aminated rGO Electrode for the Quantification of DNA Methylation. Nanomaterials 2021, 11 (4) , 985. https://doi.org/10.3390/nano11040985
    34. Sarah A. Goodchild, Rachel Gao, Daniel P. Shenton, Alastair J. S. McIntosh, Tom Brown, Philip N. Bartlett. Direct Detection and Discrimination of Nucleotide Polymorphisms Using Anthraquinone Labeled DNA Probes. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.00381
    35. Martin Trotter, Nadine Borst, Roland Thewes, Felix von Stetten. Review: Electrochemical DNA sensing – Principles, commercial systems, and applications. Biosensors and Bioelectronics 2020, 154 , 112069. https://doi.org/10.1016/j.bios.2020.112069
    36. Anna Simonova, Ivan Magriñá, Veronika Sýkorová, Radek Pohl, Mayreli Ortiz, Luděk Havran, Miroslav Fojta, Ciara K. O'Sullivan, Michal Hocek. Tuning of Oxidation Potential of Ferrocene for Ratiometric Redox Labeling and Coding of Nucleotides and DNA. Chemistry – A European Journal 2020, 26 (6) , 1286-1291. https://doi.org/10.1002/chem.201904700
    37. Lingling Zhang, Cui Ye, Guohua Zhou, Weizhen Chen, Xuyao Xu, Zhiguo Li. Effect of Surface Pretreatment on Electron Transfer of Methylene Blue Covalently Labeled Double-Stranded DNA Self-Assembled Monolayers on Gold. International Journal of Electrochemical Science 2017, 12 (7) , 6763-6778. https://doi.org/10.20964/2017.07.40
    38. Manvi Tak, Vinay Gupta, Monika Tomar. An electrochemical DNA biosensor based on Ni doped ZnO thin film for meningitis detection. Journal of Electroanalytical Chemistry 2017, 792 , 8-14. https://doi.org/10.1016/j.jelechem.2017.03.032
    39. Limin Xiang, Julio L. Palma, Yueqi Li, Vladimiro Mujica, Mark A. Ratner, Nongjian Tao. Gate-controlled conductance switching in DNA. Nature Communications 2017, 8 (1) https://doi.org/10.1038/ncomms14471
    40. Anna Simonova, Luděk Havran, Radek Pohl, Miroslav Fojta, Michal Hocek. Phenothiazine-linked nucleosides and nucleotides for redox labelling of DNA. Organic & Biomolecular Chemistry 2017, 15 (33) , 6984-6996. https://doi.org/10.1039/C7OB01439B
    41. Elizabeth O'Brien, Rebekah M. B. Silva, Jacqueline K. Barton. Redox Signaling through DNA. Israel Journal of Chemistry 2016, 56 (9-10) , 705-723. https://doi.org/10.1002/ijch.201600022
    42. Nasrin Moradi, Abolhassan Noori, Masoud A. Mehrgardi, Mir F. Mousavi. Scanning Electrochemical Microscopy for Electrochemical Detection of Single‐base Mismatches by Tagging Ferrocenecarboxylic Acid as a Redox Probe to DNA. Electroanalysis 2016, 28 (4) , 823-832. https://doi.org/10.1002/elan.201500598
    43. Anna R. Arnold, Michael A. Grodick, Jacqueline K. Barton. DNA Charge Transport: from Chemical Principles to the Cell. Cell Chemical Biology 2016, 23 (1) , 183-197. https://doi.org/10.1016/j.chembiol.2015.11.010
    44. Mohtashim Hassan Shamsi, Heinz-Bernhard Kraatz. Electrochemical signature of mismatch in overhang DNA films: a scanning electrochemical microscopic study. The Analyst 2013, 138 (12) , 3538. https://doi.org/10.1039/c3an36810f
    45. Laleh Enayati Ahangar, Masoud A. Mehrgardi. Nanoporous gold electrode as a platform for the construction of an electrochemical DNA hybridization biosensor. Biosensors and Bioelectronics 2012, 38 (1) , 252-257. https://doi.org/10.1016/j.bios.2012.05.040
    46. Abdolkarim Abbaspour, Abolhassan Noori. Electrochemical detection of individual single nucleotide polymorphisms using monobase-modified apoferritin-encapsulated nanoparticles. Biosensors and Bioelectronics 2012, 37 (1) , 11-18. https://doi.org/10.1016/j.bios.2012.04.017
    47. M.B. Gholivand, S. Kashanian, H. Peyman. DNA-binding, DNA cleavage and cytotoxicity studies of two anthraquinone derivatives. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2012, 87 , 232-240. https://doi.org/10.1016/j.saa.2011.11.045
    48. Natalie B. Muren, Eric D. Olmon, Jacqueline K. Barton. Solution, surface, and single molecule platforms for the study of DNA-mediated charge transport. Physical Chemistry Chemical Physics 2012, 14 (40) , 13754. https://doi.org/10.1039/c2cp41602f
    49. Jana Balintová, Radek Pohl, Petra Horáková, Pavlína Vidláková, Luděk Havran, Miroslav Fojta, Michal Hocek. Anthraquinone as a Redox Label for DNA: Synthesis, Enzymatic Incorporation, and Electrochemistry of Anthraquinone‐Modified Nucleosides, Nucleotides, and DNA. Chemistry – A European Journal 2011, 17 (50) , 14063-14073. https://doi.org/10.1002/chem.201101883
    50. Makiko Tanaka, Ryota Kozakai, Yoshio Saito, Isao Saito. Stabilization of DNA duplex by 2-substituted adenine as a minor groove modifier. Bioorganic & Medicinal Chemistry Letters 2011, 21 (23) , 7021-7024. https://doi.org/10.1016/j.bmcl.2011.09.104
    51. M.B. Gholivand, S. Kashanian, H. Peyman, H. Roshanfekr. DNA-binding study of anthraquinone derivatives using Chemometrics methods. European Journal of Medicinal Chemistry 2011, 46 (7) , 2630-2638. https://doi.org/10.1016/j.ejmech.2011.03.034
    52. Jason D. Slinker, Natalie B. Muren, Sara E. Renfrew, Jacqueline K. Barton. DNA charge transport over 34 nm. Nature Chemistry 2011, 3 (3) , 228-233. https://doi.org/10.1038/nchem.982
    53. Navid Nasirizadeh, Hamid R. Zare, Mohammad Hossein Pournaghi-Azar, Mohammad Saeid Hejazi. Introduction of hematoxylin as an electroactive label for DNA biosensors and its employment in detection of target DNA sequence and single-base mismatch in human papilloma virus corresponding to oligonucleotide. Biosensors and Bioelectronics 2011, 26 (5) , 2638-2644. https://doi.org/10.1016/j.bios.2010.11.026
    54. Piotr M. Diakowski, Heinz-Bernhard Kraatz. Towards the electrochemical identification of species. Chem. Commun. 2011, 47 (5) , 1431-1433. https://doi.org/10.1039/C0CC03940C
    55. A. V. Ustinov, I. A. Stepanova, V. V. Dubnyakova, T. S. Zatsepin, E. V. Nozhevnikova, V. A. Korshun. Modification of nucleic acids using [3 + 2]-dipolar cycloaddition of azides and alkynes. Russian Journal of Bioorganic Chemistry 2010, 36 (4) , 401-445. https://doi.org/10.1134/S1068162010040011
    56. H. Holden Thorp, Julie M. Sullivan. Principles and Applications of Electrochemical Oxidation of Nucleic Acids. 2009, 357-387. https://doi.org/10.1002/9780470526279.ch12
    57. Reona Ikeda, Sakie Kobayashi, Junya Chiba, Masahiko Inouye. Detection of Mismatched Duplexes by Synchronizing the Pulse Potential Frequency with the Dynamics of Ferrocene/Isoquinoline Conjugate‐Connected DNA Probes Immobilized onto Electrodes. Chemistry – A European Journal 2009, 15 (19) , 4822-4828. https://doi.org/10.1002/chem.200802729
    58. Emil Paleček. Fifty Years of Nucleic Acid Electrochemistry. Electroanalysis 2009, 21 (3-5) , 239-251. https://doi.org/10.1002/elan.200804416
    59. Milan Vrábel, Petra Horáková, Hana Pivoňková, Lubica Kalachova, Hana Černocká, Hana Cahová, Radek Pohl, Peter Šebest, Luděk Havran, Michal Hocek, Miroslav Fojta. Base‐Modified DNA Labeled by [Ru(bpy) 3 ] 2+ and [Os(bpy) 3 ] 2+ Complexes: Construction by Polymerase Incorporation of Modified Nucleoside Triphosphates, Electrochemical and Luminescent Properties, and Applications. Chemistry – A European Journal 2009, 15 (5) , 1144-1154. https://doi.org/10.1002/chem.200801538
    60. Mikkel F. Jacobsen, Elena E. Ferapontova, Kurt V. Gothelf. Synthesis and electrochemical studies of an anthraquinone-conjugated nucleoside and derived oligonucleotides. Organic & Biomolecular Chemistry 2009, 7 (5) , 905. https://doi.org/10.1039/b816820b
    61. Nicolas Bouquin, Vladimir L. Malinovskii, Robert Häner. Anthraquinones as Artificial DNA Building Blocks. European Journal of Organic Chemistry 2008, 2008 (13) , 2213-2219. https://doi.org/10.1002/ejoc.200800080
    62. Alon A. Gorodetsky, Lars E. P. Dietrich, Paul E. Lee, Bruce Demple, Dianne K. Newman, Jacqueline K. Barton. DNA binding shifts the redox potential of the transcription factor SoxR. Proceedings of the National Academy of Sciences 2008, 105 (10) , 3684-3689. https://doi.org/10.1073/pnas.0800093105

    Bioconjugate Chemistry

    Cite this: Bioconjugate Chem. 2007, 18, 5, 1434–1441
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bc0700483
    Published June 20, 2007
    Copyright © 2007 American Chemical Society

    Article Views

    1518

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.