Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Polyoxazoline: Chemistry, Properties, and Applications in Drug Delivery
My Activity

Figure 1Loading Img
    Article

    Polyoxazoline: Chemistry, Properties, and Applications in Drug Delivery
    Click to copy article linkArticle link copied!

    View Author Information
    Serina Therapeutics, Inc., 601 Genome Way, Huntsville, Alabama 35806, United States
    § Department of Pharmaceutical Sciences, University of Padua, Via F. Marzolo 5, 35131 Padua, Italy
    Other Access Options

    Bioconjugate Chemistry

    Cite this: Bioconjugate Chem. 2011, 22, 5, 976–986
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bc200049d
    Published April 1, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Polyoxazoline polymers with methyl (PMOZ), ethyl (PEOZ), and propyl (PPOZ) side chains were prepared by the living cationic polymerization method and purified by ion-exchange chromatography. The following properties of polyoxazoline (POZ) were measured: apparent hydrodynamic radius by aqueous size-exclusion chromatography, relative lipophilicity by reverse-phase chromatography, and viscosity by cone–plate viscometry. The PEOZ polymers of different molecular weights were first functionalized and then conjugated to model biomolecules such as bovine serum albumin, catalase, ribonuclease, uricase, and insulin. The conjugates of catalase, uricase, and ribonuclease were tested for in vitro activity using substrate-specific reaction methods. The conjugates of insulin were tested for glucose lowering activity by injection to naïve Sprague–Dawley rats. The conjugates of BSA were injected into New Zealand white rabbits and serum samples were collected periodically and tested for antibodies to BSA. The safety of POZ was also determined by acute and chronic dosing to rats. The results showed that linear polymers of POZ with molecular weights of 1 to 40 kDa can easily be made with polydispersity values below 1.10. Chromatography results showed that PMOZ and PEOZ have a hydrodynamic volume slightly lower than PEG; PEOZ is more lipophilic than PMOZ and PEG; and PEOZ is significantly less viscous than PEG especially at the higher molecular weights. When PEOZ was attached to the enzymes catalase, ribonuclease, and uricase, the in vitro activity of the resultant bioconjugates depended on the extent of protein modification. POZ conjugates of insulin lowered blood glucose levels for a period of 8 h when compared to 2 h for insulin alone. PEOZ, like PEG, was also able to successfully attenuate the immunogenic properties of BSA. The POZ polymers (10 and 20 kDa) are safe when administered intravenously to rats, and the maximum tolerated dose (MTD) was greater than 2 g/kg. Blood counts, serum chemistry, organ weights, and the histopathology of key organs were normal. These results conclude that POZ has the desired drug delivery properties for a new biopolymer.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 367 publications.

    1. Marek Pribus, Luboš Jankovič, Valériá Bizovská Kureková, Martin Barlog, Jana Madejová. Intercalation Characteristics of Montmorillonite Modified with Poly(2-n-alkyl-2-oxazoline)s. Macromolecules 2024, 57 (17) , 8362-8373. https://doi.org/10.1021/acs.macromol.4c00291
    2. Hongyu Chen, Zhenyi Zhu, Kuncheng Lv, Yibo Qi, Xinghui Si, Sheng Ma, Wantong Song, Xuesi Chen. Uniform Polymeric Nanovaccine Platform for Improving the Availability and Efficacy of Neoantigen Peptides. Nano Letters 2024, 24 (33) , 10114-10123. https://doi.org/10.1021/acs.nanolett.4c02196
    3. Ronald Merckx, Vinita Dhaware, Meike Nicole Leiske, Karen De Clerck, Richard Hoogenboom. Reactive Nanofiber Networks from a Chemistry Perspective. Chemistry of Materials 2024, Article ASAP.
    4. Jean-Baptiste Masclef, Emmanuelle M. N. Acs, Jesko Koehnke, Joëlle Prunet, Bernhard V. K. J. Schmidt. PEGose Block Poly(lactic acid) Nanoparticles for Cargo Delivery. Macromolecules 2024, 57 (13) , 6013-6023. https://doi.org/10.1021/acs.macromol.4c00528
    5. Joseph A. Garcia, Ashley Vergara Mendez, Ellen M. Sletten. Biotin-Initiated Poly(oxazoline)s. Macromolecules 2024, 57 (13) , 6354-6361. https://doi.org/10.1021/acs.macromol.4c00324
    6. Xie He, Thomas J. Payne, Asuka Takanashi, Yunji Fang, Simran D. Kerai, Joshua P. Morrow, Hareth Al-Wassiti, Colin W. Pouton, Kristian Kempe. Tailored Monoacyl Poly(2-oxazoline)- and Poly(2-oxazine)-Lipids as PEG-Lipid Alternatives for Stabilization and Delivery of mRNA-Lipid Nanoparticles. Biomacromolecules 2024, 25 (7) , 4591-4603. https://doi.org/10.1021/acs.biomac.4c00651
    7. Anaïs Pitto-Barry. Polymeric Nanoparticles Containing Ruthenium Complexes for Biomedical Applications: A Mini-Review on Recent Developments. ACS Applied Polymer Materials 2024, Article ASAP.
    8. Johanna K. Elter, Veronika Liščáková, Oliver Moravec, Martina Vragović, Marcela Filipová, Petr Štěpánek, Pavel Šácha, Martin Hrubý. Solid-Phase Synthesis as a Tool to Create Exactly Defined, Branched Polymer Vectors for Cell Membrane Targeting. Macromolecules 2024, 57 (3) , 1050-1071. https://doi.org/10.1021/acs.macromol.3c02600
    9. Taiga Yamada, Marika Ishimaru, Takuma Shoji, Hirotaka Tomiyasu, Ryota Tochinai, Kazuaki Taguchi, Teruyuki Komatsu. Polyoxazoline-Conjugated l-Asparaginase: An Antibody-Production-Free Therapeutic Agent for Acute Lymphoblastic Leukemia. ACS Applied Bio Materials 2023, 6 (12) , 5789-5797. https://doi.org/10.1021/acsabm.3c00888
    10. Taha Behroozi Kohlan, Asu Ece Atespare, Mehmet Yildiz, Yusuf Ziya Menceloglu, Serkan Unal, Bekir Dizman. Amphiphilic Polyoxazoline Copolymer–Imidazole Complexes as Tailorable Thermal Latent Curing Agents for One-Component Epoxy Resins. ACS Omega 2023, 8 (49) , 47173-47186. https://doi.org/10.1021/acsomega.3c07177
    11. Wataru Okamoto, Yuuki Hiwatashi, Tatsuhiro Kobayashi, Yoshitsugu Morita, Hiroto Onozawa, Masayuki Iwazaki, Mitsutomo Kohno, Hirotaka Tomiyasu, Ryota Tochinai, Radostina Georgieva, Hans Bäumler, Teruyuki Komatsu. Poly(2-ethyl-2-oxazoline)-Conjugated Hemoglobins as a Red Blood Cell Substitute. ACS Applied Bio Materials 2023, 6 (8) , 3330-3340. https://doi.org/10.1021/acsabm.3c00392
    12. Gia Storti, Rebekah Jauhola-Straight, James R. Hannigan, Alexander Sidorenko. Design of Amphiphilic, Biodegradable Functionalized Polyoxazoline Hybrid-Block Graft Copolymers Using Click Reactions. Macromolecules 2023, 56 (10) , 3538-3549. https://doi.org/10.1021/acs.macromol.3c00256
    13. Taha Behroozi Kohlan, Asu Ece Atespare, Mehmet Yildiz, Yusuf Ziya Menceloglu, Serkan Unal, Bekir Dizman. Synthesis and Structure–Property Relationship of Amphiphilic Poly(2-ethyl-co-2-(alkyl/aryl)-2-oxazoline) Copolymers. ACS Omega 2022, 7 (44) , 40067-40077. https://doi.org/10.1021/acsomega.2c04809
    14. Leanne M. Stafast, Christine Weber, Maren T. Kuchenbrod, Stephanie Hoeppener, Mira Behnke, Stephanie Schubert, Klea Mehmetaj, Adrian T. Press, Michael Bauer, Ulrich S. Schubert. Poly(2-oxazoline) Homopolymers and Diblock Copolymers Containing Retinoate ω-End Groups. ACS Applied Polymer Materials 2022, 4 (5) , 3417-3425. https://doi.org/10.1021/acsapm.2c00037
    15. Michał Cegłowski, Yoshi W. Marien, Sander Smeets, Lieselot De Smet, Dagmar R. D’hooge, Grzegorz Schroeder, Richard Hoogenboom. Molecularly Imprinted Polymers with Enhanced Selectivity Based on 4-(Aminomethyl)pyridine-Functionalized Poly(2-oxazoline)s for Detecting Hazardous Herbicide Contaminants. Chemistry of Materials 2022, 34 (1) , 84-96. https://doi.org/10.1021/acs.chemmater.1c02813
    16. Tomos E. Morgan, Christopher A. Wootton, Bryan Marzullo, Johanna Paris, Andrew Kerr, Sean H. Ellacott, Maria A. van Agthoven, Mark P. Barrow, Anthony W. T. Bristow, Sebastien Perrier, Peter B. O’Connor. Characterization Across a Dispersity: Polymer Mass Spectrometry in the Second Dimension. Journal of the American Society for Mass Spectrometry 2021, 32 (8) , 2153-2161. https://doi.org/10.1021/jasms.1c00106
    17. Chiara Pelosi, Celia Duce, Frederik R. Wurm, Maria R. Tinè. Effect of Polymer Hydrophilicity and Molar Mass on the Properties of the Protein in Protein–Polymer Conjugates: The Case of PPEylated Myoglobin. Biomacromolecules 2021, 22 (5) , 1932-1943. https://doi.org/10.1021/acs.biomac.1c00058
    18. Tim R. Dargaville, Damien G. Harkin, Jong-Ryul Park, Amanda Cavalcanti, Eleonore C. L. Bolle, Flavia Medeiros Savi, Brooke L. Farrugia, Bryn D. Monnery, Yann Bernhard, Joachim F. R. Van Guyse, Annelore Podevyn, Richard Hoogenboom. Poly(2-allylamidopropyl-2-oxazoline)-Based Hydrogels: From Accelerated Gelation Kinetics to In Vivo Compatibility in a Murine Subdermal Implant Model. Biomacromolecules 2021, 22 (4) , 1590-1599. https://doi.org/10.1021/acs.biomac.1c00046
    19. Sean H. Ellacott, Carlos Sanchez-Cano, Edward D.H. Mansfield, Julia Y. Rho, Ji-Inn Song, Raoul Peltier, Sébastien Perrier. Comparative Study of the Cellular Uptake and Intracellular Behavior of a Library of Cyclic Peptide–Polymer Nanotubes with Different Self-Assembling Properties. Biomacromolecules 2021, 22 (2) , 710-722. https://doi.org/10.1021/acs.biomac.0c01512
    20. Rachael A. Day, Daniel A. Estabrook, Carolyn Wu, John O. Chapman, Alyssa J. Togle, Ellen M. Sletten. Systematic Study of Perfluorocarbon Nanoemulsions Stabilized by Polymer Amphiphiles. ACS Applied Materials & Interfaces 2020, 12 (35) , 38887-38898. https://doi.org/10.1021/acsami.0c07206
    21. James Humphries, David Pizzi, Stefan E. Sonderegger, Nicholas L. Fletcher, Zachary H. Houston, Craig A. Bell, Kristian Kempe, Kristofer J. Thurecht. Hyperbranched Poly(2-oxazoline)s and Poly(ethylene glycol): A Structure–Activity Comparison of Biodistribution. Biomacromolecules 2020, 21 (8) , 3318-3331. https://doi.org/10.1021/acs.biomac.0c00765
    22. Eeseul Shin, Chanoong Lim, Uk Jung Kang, Minseong Kim, Jinwoo Park, Dongseok Kim, Woojin Choi, Jinkee Hong, Chunggi Baig, Dong Woog Lee, Byeong-Su Kim. Mussel-Inspired Copolyether Loop with Superior Antifouling Behavior. Macromolecules 2020, 53 (9) , 3551-3562. https://doi.org/10.1021/acs.macromol.0c00481
    23. Xin Wang, Nikos Hadjichristidis. Organocatalytic Ring-Opening Polymerization of N-Acylated-1,4-oxazepan-7-ones Toward Well-Defined Poly(ester amide)s: Biodegradable Alternatives to Poly(2-oxazoline)s. ACS Macro Letters 2020, 9 (4) , 464-470. https://doi.org/10.1021/acsmacrolett.0c00040
    24. Arnab Rudra, Junwei Li, Rameen Shakur, Sachin Bhagchandani, Robert Langer. Trends in Therapeutic Conjugates: Bench to Clinic. Bioconjugate Chemistry 2020, 31 (3) , 462-473. https://doi.org/10.1021/acs.bioconjchem.9b00828
    25. Norlaily Ahmad, Burcu Colak, Martin John Gibbs, De-Wen Zhang, Julien E. Gautrot, Michael Watkinson, C. Remzi Becer, Steffi Krause. Peptide Cross-Linked Poly(2-oxazoline) as a Sensor Material for the Detection of Proteases with a Quartz Crystal Microbalance. Biomacromolecules 2019, 20 (7) , 2506-2514. https://doi.org/10.1021/acs.biomac.9b00245
    26. Yingqin Hou, Hua Lu. Protein PEPylation: A New Paradigm of Protein–Polymer Conjugation. Bioconjugate Chemistry 2019, 30 (6) , 1604-1616. https://doi.org/10.1021/acs.bioconjchem.9b00236
    27. Ondrej Sedlacek, Kathleen Lava, Bart Verbraeken, Sabah Kasmi, Bruno G. De Geest, Richard Hoogenboom. Unexpected Reactivity Switch in the Statistical Copolymerization of 2-Oxazolines and 2-Oxazines Enabling the One-Step Synthesis of Amphiphilic Gradient Copolymers. Journal of the American Chemical Society 2019, 141 (24) , 9617-9622. https://doi.org/10.1021/jacs.9b02607
    28. Francisco J. Arraez, Xiaowen Xu, Paul H. M. Van Steenberge, Valentin-Victor Jerca, Richard Hoogenboom, Dagmar R. D’hooge. Macropropagation Rate Coefficients and Branching Levels in Cationic Ring-Opening Polymerization of 2-Ethyl-2-oxazoline through Prediction of Size Exclusion Chromatography Data. Macromolecules 2019, 52 (11) , 4067-4078. https://doi.org/10.1021/acs.macromol.9b00544
    29. Kohei Sano, Ling Bao, Natsuka Suzuno, Kento Kannaka, Toshihide Yamasaki, Masayuki Munekane, Takahiro Mukai. Development of Cancer-Targeted Single Photon Emission Computed Tomography/Fluorescence Dual Imaging Probe Based on Polyoxazoline. ACS Applied Polymer Materials 2019, 1 (5) , 953-958. https://doi.org/10.1021/acsapm.8b00238
    30. Manta Roy, Carolus H. R. M. Wilsens, Nils Leoné, Sanjay Rastogi. Use of Bis(pyrrolidone)-Based Dicarboxylic Acids in Poly(ester–amide)-Based Thermosets: Synthesis, Characterization, and Potential Route for Their Chemical Recycling. ACS Sustainable Chemistry & Engineering 2019, 7 (9) , 8842-8852. https://doi.org/10.1021/acssuschemeng.9b00850
    31. Mohammad Divandari, Lucca Trachsel, Wenqing Yan, Jan-Georg Rosenboom, Nicholas D. Spencer, Marcy Zenobi-Wong, Giulia Morgese, Shivaprakash N. Ramakrishna, Edmondo M. Benetti. Surface Density Variation within Cyclic Polymer Brushes Reveals Topology Effects on Their Nanotribological and Biopassive Properties. ACS Macro Letters 2018, 7 (12) , 1455-1460. https://doi.org/10.1021/acsmacrolett.8b00847
    32. Somdeb Jana, Yajnaseni Biswas, Md. Anas, Anupam Saha, Tarun K. Mandal. Poly[oligo(2-ethyl-2-oxazoline)acrylate]-Based Poly(ionic liquid) Random Copolymers with Coexistent and Tunable Lower Critical Solution Temperature- and Upper Critical Solution Temperature-Type Phase Transitions. Langmuir 2018, 34 (42) , 12653-12663. https://doi.org/10.1021/acs.langmuir.8b03022
    33. Tomos E. Morgan, Sean H. Ellacott, Christopher A. Wootton, Mark P. Barrow, Anthony W. T. Bristow, Sebastien Perrier, Peter B. O’Connor. Coupling Electron Capture Dissociation and the Modified Kendrick Mass Defect for Sequencing of a Poly(2-ethyl-2-oxazoline) Polymer. Analytical Chemistry 2018, 90 (19) , 11710-11715. https://doi.org/10.1021/acs.analchem.8b03591
    34. Kohei Sano, Yuko Kanada, Katsushi Takahashi, Ning Ding, Kengo Kanazaki, Takahiro Mukai, Masahiro Ono, Hideo Saji. Enhanced Delivery of Radiolabeled Polyoxazoline into Tumors via Self-Aggregation under Hyperthermic Conditions. Molecular Pharmaceutics 2018, 15 (9) , 3997-4003. https://doi.org/10.1021/acs.molpharmaceut.8b00441
    35. Pei Tang, Stefania di Cio, Wen Wang, Julien E. Gautrot. Surface-Initiated Poly(oligo(2-alkyl-2-oxazoline)methacrylate) Brushes. Langmuir 2018, 34 (34) , 10019-10027. https://doi.org/10.1021/acs.langmuir.8b01682
    36. Michał Cegłowski, Richard Hoogenboom. Molecularly Imprinted Poly(2-oxazoline) Based on Cross-Linking by Direct Amidation of Methyl Ester Side Chains. Macromolecules 2018, 51 (16) , 6468-6475. https://doi.org/10.1021/acs.macromol.8b01068
    37. Regina Tavano, Luca Gabrielli, Elisa Lubian, Chiara Fedeli, Silvia Visentin, Patrizia Polverino De Laureto, Giorgio Arrigoni, Alessandra Geffner-Smith, Fangfang Chen, Dmitri Simberg, Giulia Morgese, Edmondo M. Benetti, Linping Wu, Seyed Moein Moghimi, Fabrizio Mancin, Emanuele Papini. C1q-Mediated Complement Activation and C3 Opsonization Trigger Recognition of Stealth Poly(2-methyl-2-oxazoline)-Coated Silica Nanoparticles by Human Phagocytes. ACS Nano 2018, 12 (6) , 5834-5847. https://doi.org/10.1021/acsnano.8b01806
    38. Weizhi Chen, Sensen Zhou, Lei Ge, Wei Wu, Xiqun Jiang. Translatable High Drug Loading Drug Delivery Systems Based on Biocompatible Polymer Nanocarriers. Biomacromolecules 2018, 19 (6) , 1732-1745. https://doi.org/10.1021/acs.biomac.8b00218
    39. Mandy Grube, Meike N. Leiske, Ulrich S. Schubert, Ivo Nischang. POx as an Alternative to PEG? A Hydrodynamic and Light Scattering Study. Macromolecules 2018, 51 (5) , 1905-1916. https://doi.org/10.1021/acs.macromol.7b02665
    40. Matteo Romio, Giulia Morgese, Lucca Trachsel, Samuel Babity, Cristina Paradisi, Davide Brambilla, and Edmondo M. Benetti . Poly(2-oxazoline)–Pterostilbene Block Copolymer Nanoparticles for Dual-Anticancer Drug Delivery. Biomacromolecules 2018, 19 (1) , 103-111. https://doi.org/10.1021/acs.biomac.7b01279
    41. Jiyuan Yang, Rui Zhang, Huaizhong Pan, Yuling Li, Yixin Fang, Libin Zhang, and Jindřich Kopeček . Backbone Degradable N-(2-Hydroxypropyl)methacrylamide Copolymer Conjugates with Gemcitabine and Paclitaxel: Impact of Molecular Weight on Activity toward Human Ovarian Carcinoma Xenografts. Molecular Pharmaceutics 2017, 14 (5) , 1384-1394. https://doi.org/10.1021/acs.molpharmaceut.6b01005
    42. Gaëlle Le Fer, Clémence Le Cœur, Jean-Michel Guigner, Catherine Amiel, and Gisèle Volet . Biocompatible Soft Nanoparticles with Multiple Morphologies Obtained from Nanoprecipitation of Amphiphilic Graft Copolymers in a Backbone-Selective Solvent. Langmuir 2017, 33 (11) , 2849-2860. https://doi.org/10.1021/acs.langmuir.7b00471
    43. Yang Liu, Juneyoung Lee, Kathryn M. Mansfield, Jeong Hoon Ko, Sahar Sallam, Chrys Wesdemiotis, and Heather D. Maynard . Trehalose Glycopolymer Enhances Both Solution Stability and Pharmacokinetics of a Therapeutic Protein. Bioconjugate Chemistry 2017, 28 (3) , 836-845. https://doi.org/10.1021/acs.bioconjchem.6b00659
    44. Tessa Lühmann, Marcel Schmidt, Meike N. Leiske, Valerie Spieler, Tobias C. Majdanski, Mandy Grube, Matthias Hartlieb, Ivo Nischang, Stephanie Schubert, Ulrich S. Schubert, and Lorenz Meinel . Site-Specific POxylation of Interleukin-4. ACS Biomaterials Science & Engineering 2017, 3 (3) , 304-312. https://doi.org/10.1021/acsbiomaterials.6b00578
    45. Hongbo Feng, Mohammad Changez, Kunlun Hong, Jimmy W. Mays, and Nam-Goo Kang . 2-Isopropenyl-2-oxazoline: Well-Defined Homopolymers and Block Copolymers via Living Anionic Polymerization. Macromolecules 2017, 50 (1) , 54-62. https://doi.org/10.1021/acs.macromol.6b02084
    46. Mathias Glassner, Luca Palmieri, Bryn D. Monnery, Thomas Verbrugghen, Steven Deleye, Sigrid Stroobants, Steven Staelens, Leonie wyffels, and Richard Hoogenboom . The Label Matters: μPET Imaging of the Biodistribution of Low Molar Mass 89Zr and 18F-Labeled Poly(2-ethyl-2-oxazoline). Biomacromolecules 2017, 18 (1) , 96-102. https://doi.org/10.1021/acs.biomac.6b01392
    47. Tobias Steinbach and Frederik R. Wurm . Degradable Polyphosphoester-Protein Conjugates: “PPEylation” of Proteins. Biomacromolecules 2016, 17 (10) , 3338-3346. https://doi.org/10.1021/acs.biomac.6b01107
    48. Tim R. Dargaville, Kathleen Lava, Bart Verbraeken, and Richard Hoogenboom . Unexpected Switching of the Photogelation Chemistry When Cross-Linking Poly(2-oxazoline) Copolymers. Macromolecules 2016, 49 (13) , 4774-4783. https://doi.org/10.1021/acs.macromol.6b00167
    49. Alex A. Cavallaro, Melanie N Macgregor-Ramiasa, and Krasimir Vasilev . Antibiofouling Properties of Plasma-Deposited Oxazoline-Based Thin Films. ACS Applied Materials & Interfaces 2016, 8 (10) , 6354-6362. https://doi.org/10.1021/acsami.6b00330
    50. Benedikt S. Soller, Stephan Salzinger, and Bernhard Rieger . Rare Earth Metal-Mediated Precision Polymerization of Vinylphosphonates and Conjugated Nitrogen-Containing Vinyl Monomers. Chemical Reviews 2016, 116 (4) , 1993-2022. https://doi.org/10.1021/acs.chemrev.5b00313
    51. Somdeb Jana, Anupam Saha, Tapas K. Paira, and Tarun K. Mandal . Synthesis and Self-Aggregation of Poly(2-ethyl-2-oxazoline)-Based Photocleavable Block Copolymer: Micelle, Compound Micelle, Reverse Micelle, and Dye Encapsulation/Release. The Journal of Physical Chemistry B 2016, 120 (4) , 813-824. https://doi.org/10.1021/acs.jpcb.5b10019
    52. Paul H. M. Van Steenberge, Bart Verbraeken, Marie-Françoise Reyniers, Richard Hoogenboom, and Dagmar R. D’hooge . Model-Based Visualization and Understanding of Monomer Sequence Formation in Gradient Copoly(2-oxazoline)s On the basis of 2-Methyl-2-oxazoline and 2-Phenyl-2-oxazoline. Macromolecules 2015, 48 (21) , 7765-7773. https://doi.org/10.1021/acs.macromol.5b01642
    53. Olga Koshkina, Thomas Lang, Raphael Thiermann, Dominic Docter, Roland H. Stauber, Christian Secker, Helmut Schlaad, Steffen Weidner, Benjamin Mohr, Michael Maskos, and Annabelle Bertin . Temperature-Triggered Protein Adsorption on Polymer-Coated Nanoparticles in Serum. Langmuir 2015, 31 (32) , 8873-8881. https://doi.org/10.1021/acs.langmuir.5b00537
    54. Dominik Witzigmann, Dalin Wu, Susanne H. Schenk, Vimalkumar Balasubramanian, Wolfgang Meier, and Jörg Huwyler . Biocompatible Polymer–Peptide Hybrid-Based DNA Nanoparticles for Gene Delivery. ACS Applied Materials & Interfaces 2015, 7 (19) , 10446-10456. https://doi.org/10.1021/acsami.5b01684
    55. Mitja Platen, Evelien Mathieu, Steffen Lück, René Schubel, Rainer Jordan, and Sophie Pautot . Poly(2-oxazoline)-Based Microgel Particles for Neuronal Cell Culture. Biomacromolecules 2015, 16 (5) , 1516-1524. https://doi.org/10.1021/bm501879h
    56. Giulia Morgese, Valerio Causin, Michele Maggini, Stefano Corrà, Silvia Gross, and Edmondo M. Benetti . Ultrastable Suspensions of Polyoxazoline-Functionalized ZnO Single Nanocrystals. Chemistry of Materials 2015, 27 (8) , 2957-2964. https://doi.org/10.1021/acs.chemmater.5b00252
    57. Michael Schmitz, Matthias Kuhlmann, Oliver Reimann, Christian P. R. Hackenberger, and Jürgen Groll . Side-Chain Cysteine-Functionalized Poly(2-oxazoline)s for Multiple Peptide Conjugation by Native Chemical Ligation. Biomacromolecules 2015, 16 (4) , 1088-1094. https://doi.org/10.1021/bm501697t
    58. Camille Legros, Anne-Laure Wirotius, Marie-Claire De Pauw-Gillet, Kam Chiu Tam, Daniel Taton, and Sébastien Lecommandoux . Poly(2-oxazoline)-Based Nanogels as Biocompatible Pseudopolypeptide Nanoparticles. Biomacromolecules 2015, 16 (1) , 183-191. https://doi.org/10.1021/bm501393q
    59. Emma M. Pelegri-O’Day, En-Wei Lin, and Heather D. Maynard . Therapeutic Protein–Polymer Conjugates: Advancing Beyond PEGylation. Journal of the American Chemical Society 2014, 136 (41) , 14323-14332. https://doi.org/10.1021/ja504390x
    60. Anna Bogomolova, Sergey K. Filippov, Larysa Starovoytova, Borislav Angelov, Petr Konarev, Ondrej Sedlacek, Martin Hruby, and Petr Stepanek . Study of Complex Thermosensitive Amphiphilic Polyoxazolines and Their Interaction with Ionic Surfactants. Are Hydrophobic, Thermosensitive, and Hydrophilic Moieties Equally Important?. The Journal of Physical Chemistry B 2014, 118 (18) , 4940-4950. https://doi.org/10.1021/jp5011296
    61. Anita Schulz, Sebastian Jaksch, Rene Schubel, Erik Wegener, Zhenyu Di, Yingchao Han, Annette Meister, Jörg Kressler, Alexander V. Kabanov, Robert Luxenhofer, Christine M. Papadakis, and Rainer Jordan . Drug-Induced Morphology Switch in Drug Delivery Systems Based on Poly(2-oxazoline)s. ACS Nano 2014, 8 (3) , 2686-2696. https://doi.org/10.1021/nn406388t
    62. Michael J. Isaacman, Eleonora M. Corigliano, and Luke S. Theogarajan . Stealth Polymeric Vesicles via Metal-Free Click Coupling. Biomacromolecules 2013, 14 (9) , 2996-3000. https://doi.org/10.1021/bm400940h
    63. Ning Zhang, Stephan Salzinger, Benedikt S. Soller, and Bernhard Rieger . Rare Earth Metal-Mediated Group-Transfer Polymerization: From Defined Polymer Microstructures to High-Precision Nano-Scaled Objects. Journal of the American Chemical Society 2013, 135 (24) , 8810-8813. https://doi.org/10.1021/ja4036175
    64. Jing Tong, Xiang Yi, Robert Luxenhofer, William A. Banks, Rainer Jordan, Matthew C. Zimmerman, and Alexander V. Kabanov . Conjugates of Superoxide Dismutase 1 with Amphiphilic Poly(2-oxazoline) Block Copolymers for Enhanced Brain Delivery: Synthesis, Characterization and Evaluation in Vitro and in Vivo. Molecular Pharmaceutics 2013, 10 (1) , 360-377. https://doi.org/10.1021/mp300496x
    65. Michael J. Isaacman Luke Theogarajan . Poly(oxazoline) Block Copolymers for Biomedical Applications. 2013, 53-68. https://doi.org/10.1021/bk-2013-1135.ch005
    66. S. S. Halacheva, J. Penfold, and R. K. Thomas . Adsorption of the Linear Poly(ethyleneimine) Precursor Poly(2-ethyl-2-oxazoline) and Sodium Dodecyl Sulfate Mixtures at the Air–Water Interface: The Impact of Modification of the Poly(ethyleneimine) Functionality. Langmuir 2012, 28 (50) , 17331-17338. https://doi.org/10.1021/la303926c
    67. Yingchao Han, Zhijian He, Anita Schulz, Tatiana K. Bronich, Rainer Jordan, Robert Luxenhofer, and Alexander V. Kabanov . Synergistic Combinations of Multiple Chemotherapeutic Agents in High Capacity Poly(2-oxazoline) Micelles. Molecular Pharmaceutics 2012, 9 (8) , 2302-2313. https://doi.org/10.1021/mp300159u
    68. Yukiteru Katsumoto, Aki Tsuchiizu, XingPing Qiu, and Françoise M. Winnik . Dissecting the Mechanism of the Heat-Induced Phase Separation and Crystallization of Poly(2-isopropyl-2-oxazoline) in Water through Vibrational Spectroscopy and Molecular Orbital Calculations. Macromolecules 2012, 45 (8) , 3531-3541. https://doi.org/10.1021/ma300252e
    69. Alex Bunker, Josef Kehrein. Molecular Modeling in Drug Delivery: Polymer Protective Coatings as Case Study. 2024, 104-198. https://doi.org/10.1002/9781119987260.ch5
    70. Dmitri Simberg, S. Moein Moghimi. Anti-Poly(ethylene glycol) (PEG) Antibodies: From Where Are We Coming and Where Are We Going. Journal of Nanotheranostics 2024, 5 (3) , 99-103. https://doi.org/10.3390/jnt5030007
    71. Christopher T Zoppo, J Mocco, Nathan W Manning, Alexei A Bogdanov, Matthew J Gounis. Surface modification of neurovascular stents: from bench to patient. Journal of NeuroInterventional Surgery 2024, 16 (9) , 908-913. https://doi.org/10.1136/jnis-2023-020620
    72. Julien Alex, Christine Weber, Carlos Guerrero-Sanchez, Ulrich S. Schubert. Recent developments in synthetic approaches for macromolecular prodrugs. Progress in Polymer Science 2024, 155 , 101855. https://doi.org/10.1016/j.progpolymsci.2024.101855
    73. Kelly Mint, Joshua P. Morrow, Nicole M. Warne, Xie He, David Pizzi, Shaffiq Zainal Osman Shah, Gregory K. Pierens, Nicholas L. Fletcher, Craig A. Bell, Kristofer J. Thurecht, Kristian Kempe. Comparison of the hydrophilicity of water-soluble poly(2-alkyl-2-oxazoline)s, poly(2-alkyl-2-oxazine)s and poly(2,4-dialkyl-2-oxazoline)s. Polymer Chemistry 2024, 15 (26) , 2662-2676. https://doi.org/10.1039/D4PY00332B
    74. Joachim F. R. Van Guyse, Saed Abbasi, Kazuko Toh, Zlata Nagorna, Junjie Li, Anjaneyulu Dirisala, Sabina Quader, Satoshi Uchida, Kazunori Kataoka. Facile Generation of Heterotelechelic Poly(2‐Oxazoline)s Towards Accelerated Exploration of Poly(2‐Oxazoline)‐Based Nanomedicine. Angewandte Chemie International Edition 2024, 63 (27) https://doi.org/10.1002/anie.202404972
    75. Joachim F. R. Van Guyse, Saed Abbasi, Kazuko Toh, Zlata Nagorna, Junjie Li, Anjaneyulu Dirisala, Sabina Quader, Satoshi Uchida, Kazunori Kataoka. Facile Generation of Heterotelechelic Poly(2‐Oxazoline)s Towards Accelerated Exploration of Poly(2‐Oxazoline)‐Based Nanomedicine. Angewandte Chemie 2024, 136 (27) https://doi.org/10.1002/ange.202404972
    76. Avinash Chettri, Leonid I. Kaberov, Niklas Klosterhalfen, Sandunika Perera, Mohammed Jamshied, Felix H. Schacher, Benjamin Dietzek‐Ivanšić. Poly(2‐Oxazoline) Amphiphilicity Tunes the Excited‐State Proton Transfer of Pyrenol‐Based Polyphotoacids. Chemistry – A European Journal 2024, 25 https://doi.org/10.1002/chem.202401047
    77. Janesha Krishnan, Praveena Poomalai, Ashwin Ravichandran, Aishwarya Reddy, Raman Sureshkumar. A Concise Review on Effect of PEGylation on the Properties of Lipid-Based Nanoparticles. ASSAY and Drug Development Technologies 2024, 29 https://doi.org/10.1089/adt.2024.015
    78. Peter Ohlemüller, Rupert Konradi. Photoactivatable poly(2-oxazoline)s enable antifouling hydrogel membrane coatings. European Polymer Journal 2024, 213 , 113097. https://doi.org/10.1016/j.eurpolymj.2024.113097
    79. Thomas Brossier, Michel Habib, Belkacem Tarek Benkhaled, Gael Volpi, Vincent Lapinte, Sebastien Blanquer. 4D printing of hydrogels based on poly(oxazoline) and poly(acrylamide) copolymers by stereolithography. Materials Advances 2024, 5 (7) , 2750-2758. https://doi.org/10.1039/D3MA00665D
    80. Morgane Morel, Mathieu Madau, Didier Le Cerf, Virginie Dulong, Anne-Claire Groo, Aurélie Malzert-Fréon, Luc Picton. Injectable polyoxazoline grafted hyaluronic acid thermoresponsive hydrogels for biomedical applications. Journal of Materials Chemistry B 2024, 12 (11) , 2807-2817. https://doi.org/10.1039/D3TB02108D
    81. Alejandro J. Da Silva Sanchez, David Loughrey, Elisa Schrader Echeverri, Sebastian G. Huayamares, Afsane Radmand, Kalina Paunovska, Marine Hatit, Karen E. Tiegreen, Philip J. Santangelo, James E. Dahlman. Substituting Poly(ethylene glycol) Lipids with Poly(2‐ethyl‐2‐oxazoline) Lipids Improves Lipid Nanoparticle Repeat Dosing. Advanced Healthcare Materials 2024, 7 https://doi.org/10.1002/adhm.202304033
    82. Sherif A. Gaballa, Taro Shimizu, Hidenori Ando, Haruka Takata, Sherif E. Emam, Eslam Ramadan, Youssef W. Naguib, Fatma M. Mady, Khaled A. Khaled, Tatsuhiro Ishida. Treatment-induced and Pre-existing Anti-peg Antibodies: Prevalence, Clinical Implications, and Future Perspectives. Journal of Pharmaceutical Sciences 2024, 113 (3) , 555-578. https://doi.org/10.1016/j.xphs.2023.11.001
    83. Abdelfattah Amari, Mohamed Boujelbene, Fatima Moayad Sami, Noureddine Elboughdiri, Chandrakant Sonawane, Sujay Raghavendra Naganna, Saad Sh. Sammen. Innovative Solutions for Water Treatment: Unveiling the Potential of Polyoxazoline Polymer Activated Carbon Composite for Efficient Elimination of Lead Ions. Water 2024, 16 (3) , 466. https://doi.org/10.3390/w16030466
    84. Ongun Mehmet Saka, Zeynep Busra Bolat, Dilek Telci, Fikrettin Sahin, Sevgi Gulyuz, Umut Ugur Ozkose, Ozgur Yilmaz, Asuman Bozkir. Development of peptide‐18‐targeted nanoliposome formulations with an alternative stealth coating copolymer for targeting breast cancer AU565 cell line. Polymers for Advanced Technologies 2024, 35 (1) https://doi.org/10.1002/pat.6235
    85. Wataru Okamoto, Tomone Usui, Mai Hasegawa, Tatsuhiro Kobayashi, Junya Fujisawa, Kazuaki Taguchi, Kazuaki Matsumoto, Mitsutomo Kohno, Masayuki Iwazaki, Shotaro Shimano, Itsuma Nagao, Hiroto Toyoda, Naoki Matsumura, Hirotaka Tomiyasu, Ryota Tochinai, Teruyuki Komatsu. Polyoxazoline-conjugated porcine serum albumin as an artificial plasma expander for dogs. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-35999-4
    86. Yi Jie Eng, Tuan Minh Nguyen, He-Kuan Luo, Julian M. W. Chan. Antifouling polymers for nanomedicine and surfaces: recent advances. Nanoscale 2023, 15 (38) , 15472-15512. https://doi.org/10.1039/D3NR03164K
    87. Natkritta Hueppe, Frederik R. Wurm, Katharina Landfester. Nanocarriers with Multiple Cargo Load—A Comprehensive Preparation Guideline Using Orthogonal Strategies. Macromolecular Rapid Communications 2023, 44 (16) https://doi.org/10.1002/marc.202200611
    88. Chan Ho Shin, Kyeong-Im Hong, Jeong Heon Lee, Woo-Dong Jang. Multimodal stimuli-responsive rhodamine-bearing telechelic poly(2-isopropyl-2-oxazoline). Journal of Molecular Liquids 2023, 382 , 121865. https://doi.org/10.1016/j.molliq.2023.121865
    89. Marina Placci, Marina I. Giannotti, Silvia Muro. Polymer-based drug delivery systems under investigation for enzyme replacement and other therapies of lysosomal storage disorders. Advanced Drug Delivery Reviews 2023, 197 , 114683. https://doi.org/10.1016/j.addr.2022.114683
    90. Cagri Turan, Ipek Terzioglu, Dilara Gundogdu, Irem Erel-Goktepe. Synthesis of poly(2-isopropyl-2-oxazoline)-b-poly(2-phenyl-2-oxazoline)-b-poly(2-isopropyl-2-oxazoline) and its self-assembly into polymersomes: Temperature-dependent aqueous solution behavior. Materials Today Communications 2023, 35 , 106094. https://doi.org/10.1016/j.mtcomm.2023.106094
    91. Carola Haslinger, Anna Zahoranová, Stefan Baudis. Synthesis of coumarin-containing poly(2-oxazoline)s and light-induced crosslinking for hydrogel formation. Monatshefte für Chemie - Chemical Monthly 2023, 154 (5) , 459-471. https://doi.org/10.1007/s00706-022-03013-8
    92. Sean A. Dilliard, Daniel J. Siegwart. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nature Reviews Materials 2023, 8 (4) , 282-300. https://doi.org/10.1038/s41578-022-00529-7
    93. Marcos Heredero, Ana Beloqui. Enzyme‐Polymer Conjugates for Tuning, Enhancing, and Expanding Biocatalytic Activity. ChemBioChem 2023, 24 (4) https://doi.org/10.1002/cbic.202200611
    94. Liuxin Yang, Faming Wang, Pengfei Ren, Tianzhu Zhang, Qianli Zhang. Poly(2-oxazoline)s: synthesis and biomedical applications. Macromolecular Research 2023, 4 https://doi.org/10.1007/s13233-023-00116-x
    95. Valentin Bardoula, Loïc Leclercq, Richard Hoogenboom, Véronique Nardello-Rataj. Amphiphilic nonionic block and gradient copoly(2-oxazoline)s based on 2-methyl-2-oxazoline and 2-phenyl-2-oxazoline as efficient stabilizers for the formulation of tailor-made emulsions. Journal of Colloid and Interface Science 2023, 632 , 223-236. https://doi.org/10.1016/j.jcis.2022.11.018
    96. Emily Holz, Martine Darwish, Devin B. Tesar, Whitney Shatz-Binder. A Review of Protein- and Peptide-Based Chemical Conjugates: Past, Present, and Future. Pharmaceutics 2023, 15 (2) , 600. https://doi.org/10.3390/pharmaceutics15020600
    97. Leanne M. Stafast, Nora Engel, Helmar Görls, Christine Weber, Ulrich S. Schubert. End-functionalized diblock copolymers by mix and match of poly(2-oxazoline) and polyester building blocks. European Polymer Journal 2023, 184 , 111779. https://doi.org/10.1016/j.eurpolymj.2022.111779
    98. Xikuang Yao, Chao Qi, Changrui Sun, Fengwei Huo, Xiqun Jiang. Poly(ethylene glycol) alternatives in biomedical applications. Nano Today 2023, 48 , 101738. https://doi.org/10.1016/j.nantod.2022.101738
    99. Pravin P. Upare, Hyung Sub Shin, Jun Hak Lee, Byung Gyu Park. Development of Efficient Strategies for Physical Stimuli-Responsive Programmable Nanotherapeutics. 2023, 201-228. https://doi.org/10.1007/978-3-031-16084-4_9
    100. Neha Bajwa, Shipra Mahal, Preet Amol Singh, Kiran Jyoti, Pawan Dewangan, Jitender Madan, Ashish Baldi. Drug–polymer conjugates: Challenges, opportunities, and future prospects in clinical trials. 2023, 389-469. https://doi.org/10.1016/B978-0-323-91663-9.00011-4
    Load more citations

    Bioconjugate Chemistry

    Cite this: Bioconjugate Chem. 2011, 22, 5, 976–986
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bc200049d
    Published April 1, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    13k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.