ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Targeted, Activatable, In Vivo Fluorescence Imaging of Prostate-Specific Membrane Antigen (PSMA) Positive Tumors Using the Quenched Humanized J591 Antibody–Indocyanine Green (ICG) Conjugate

View Author Information
Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda Maryland 20892, United States
Department of Urology, Weill Medical College of Cornell University, New York, New York 10065, United States
§ Department of Cancer Biology and Urological Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
Phone: 301-451-4220. Fax: 301-402-3191. E-mail: [email protected]
Cite this: Bioconjugate Chem. 2011, 22, 8, 1700–1705
Publication Date (Web):July 10, 2011
https://doi.org/10.1021/bc2002715
Copyright © 2011 American Chemical Society

    Article Views

    2796

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (3 MB)

    Abstract

    Abstract Image

    In patients with prostate cancer, a positive surgical margin is associated with an increased risk of cancer recurrence and poorer outcome, yet margin status cannot be determined during the surgery. An in vivo optical imaging probe that could identify the tumor margins during surgery could result in improved outcomes. The design of such a probe focuses on a highly specific targeting moiety and a near-infrared (NIR) fluorophore that is activated only when bound to the tumor. In this study, we successfully synthesized an activatable monoclonal antibody–fluorophore conjugate consisting of a humanized anti-Prostate-Specific Membrane Antigen (PSMA) antibody (J591) linked to an indocyanine green (ICG) derivative. Prior to binding to PSMA and cellular internalization, the conjugate yielded little light; however, after binding an 18-fold activation was observed permitting the specific detection of PSMA+ tumors up to 10 days after injection of a low dose (0.25 mg/kg) of the reagent. This agent demonstrates promise as a method to image the extent of prostate cancer in vivo and could assist with real-time resection of extracapsular extension of tumor and positive lymph nodes.

    Cited By

    This article is cited by 103 publications.

    1. Longfei Zhang, Xiaojing Shi, Yuying Li, Xiaojiang Duan, Zeyu Zhang, Hualong Fu, Xing Yang, Jie Tian, Zhenhua Hu, Mengchao Cui. Visualizing Tumors in Real Time: A Highly Sensitive PSMA Probe for NIR-II Imaging and Intraoperative Tumor Resection. Journal of Medicinal Chemistry 2021, 64 (11) , 7735-7745. https://doi.org/10.1021/acs.jmedchem.1c00444
    2. Amal J. Sivaram, Andri Wardiana, Sheilajen Alcantara, Stefan E. Sonderegger, Nicholas L. Fletcher, Zachary H. Houston, Christopher B. Howard, Stephen M. Mahler, Cameron Alexander, Stephen J. Kent, Craig A. Bell, Kristofer J. Thurecht. Controlling the Biological Fate of Micellar Nanoparticles: Balancing Stealth and Targeting. ACS Nano 2020, 14 (10) , 13739-13753. https://doi.org/10.1021/acsnano.0c06033
    3. Minoru Kawatani, Kyoko Yamamoto, Daisuke Yamada, Mako Kamiya, Jimpei Miyakawa, Yu Miyama, Ryosuke Kojima, Teppei Morikawa, Haruki Kume, Yasuteru Urano. Fluorescence Detection of Prostate Cancer by an Activatable Fluorescence Probe for PSMA Carboxypeptidase Activity. Journal of the American Chemical Society 2019, 141 (26) , 10409-10416. https://doi.org/10.1021/jacs.9b04412
    4. Kara M. Harmatys, Marta Overchuk, Juan Chen, Lili Ding, Ying Chen, Martin G. Pomper, Gang Zheng. Tuning Pharmacokinetics to Improve Tumor Accumulation of a Prostate-Specific Membrane Antigen-Targeted Phototheranostic Agent. Bioconjugate Chemistry 2018, 29 (11) , 3746-3756. https://doi.org/10.1021/acs.bioconjchem.8b00636
    5. Yang Li, Yiguang Wang, Gang Huang, Jinming Gao. Cooperativity Principles in Self-Assembled Nanomedicine. Chemical Reviews 2018, 118 (11) , 5359-5391. https://doi.org/10.1021/acs.chemrev.8b00195
    6. Harikrishna Kommidi, Hua Guo, Fuad Nurili, Yogindra Vedvyas, Moonsoo M. Jin, Timothy D. McClure, Behfar Ehdaie, Haluk B. Sayman, Oguz Akin, Omer Aras, Richard Ting. 18F-Positron Emitting/Trimethine Cyanine-Fluorescent Contrast for Image-Guided Prostate Cancer Management. Journal of Medicinal Chemistry 2018, 61 (9) , 4256-4262. https://doi.org/10.1021/acs.jmedchem.8b00240
    7. Takao Yogo, Keitaro Umezawa, Mako Kamiya, Rumi Hino, and Yasuteru Urano . Development of an Activatable Fluorescent Probe for Prostate Cancer Imaging. Bioconjugate Chemistry 2017, 28 (8) , 2069-2076. https://doi.org/10.1021/acs.bioconjchem.7b00233
    8. Yang Zhou, Young-Seung Kim, Diane E. Milenic, Kwamena E. Baidoo, and Martin W. Brechbiel . In Vitro and In Vivo Analysis of Indocyanine Green-Labeled Panitumumab for Optical Imaging—A Cautionary Tale. Bioconjugate Chemistry 2014, 25 (10) , 1801-1810. https://doi.org/10.1021/bc500312w
    9. Rira Watanabe, Kazuhide Sato, Hirofumi Hanaoka, Toshiko Harada, Takahito Nakajima, Insook Kim, Chang H. Paik, Anna M. Wu, Peter L. Choyke, and Hisataka Kobayashi . Minibody-Indocyanine Green Based Activatable Optical Imaging Probes: The Role of Short Polyethylene Glycol Linkers. ACS Medicinal Chemistry Letters 2014, 5 (4) , 411-415. https://doi.org/10.1021/ml400533y
    10. Charity Wayua and Philip S. Low . Evaluation of a Cholecystokinin 2 Receptor-Targeted Near-Infrared Dye for Fluorescence-Guided Surgery of Cancer. Molecular Pharmaceutics 2014, 11 (2) , 468-476. https://doi.org/10.1021/mp400429h
    11. Kohei Sano, Takahito Nakajima, Kiminori Miyazaki, Yuya Ohuchi, Takashi Ikegami, Peter L. Choyke, and Hisataka Kobayashi . Short PEG-Linkers Improve the Performance of Targeted, Activatable Monoclonal Antibody-Indocyanine Green Optical Imaging Probes. Bioconjugate Chemistry 2013, 24 (5) , 811-816. https://doi.org/10.1021/bc400050k
    12. Ying Chen, Mrudula Pullambhatla, Sangeeta R. Banerjee., Youngjoo Byun, Marigo Stathis, Camilo Rojas, Barbara S. Slusher, Ronnie C. Mease, and Martin G. Pomper . Synthesis and Biological Evaluation of Low Molecular Weight Fluorescent Imaging Agents for the Prostate-Specific Membrane Antigen. Bioconjugate Chemistry 2012, 23 (12) , 2377-2385. https://doi.org/10.1021/bc3003919
    13. Hyunjung Yi, Debadyuti Ghosh, Moon-Ho Ham, Jifa Qi, Paul W. Barone, Michael S. Strano, and Angela M. Belcher . M13 Phage-Functionalized Single-Walled Carbon Nanotubes As Nanoprobes for Second Near-Infrared Window Fluorescence Imaging of Targeted Tumors. Nano Letters 2012, 12 (3) , 1176-1183. https://doi.org/10.1021/nl2031663
    14. Xifang Yang, Sang-Cuo Nao, Chuankai Lin, Lingtan Kong, Jing Wang, Chung-Nga Ko, Jinbiao Liu, Dik-Lung Ma, Chung-Hang Leung, Wanhe Wang. A cell-impermeable luminogenic probe for near-infrared imaging of prostate-specific membrane antigen in prostate cancer microenvironments. European Journal of Medicinal Chemistry 2023, 259 , 115659. https://doi.org/10.1016/j.ejmech.2023.115659
    15. Lang Zhou, Lunan Liu, Muammar Ali Chang, Chao Ma, Weiqiang Chen, Pengyu Chen. Spatiotemporal dissection of tumor microenvironment via in situ sensing and monitoring in tumor-on-a-chip. Biosensors and Bioelectronics 2023, 225 , 115064. https://doi.org/10.1016/j.bios.2023.115064
    16. Anusha Muralidhar, Hemanth K. Potluri, Tanya Jaiswal, Douglas G. McNeel. Targeted Radiation and Immune Therapies—Advances and Opportunities for the Treatment of Prostate Cancer. Pharmaceutics 2023, 15 (1) , 252. https://doi.org/10.3390/pharmaceutics15010252
    17. Donghua Xie, Di Gu, Ming Lei, Cong Cai, Wen Zhong, Defeng Qi, Wenqi Wu, Guohua Zeng, Yongda Liu. The application of indocyanine green in guiding prostate cancer treatment. Asian Journal of Urology 2023, 10 (1) , 1-8. https://doi.org/10.1016/j.ajur.2021.07.004
    18. Yimin Chen, Yuying Li, Xi Gao, Mengchao Cui. Squaraine dye based prostate-specific membrane antigen probes for near-infrared fluorescence imaging of prostate cancer. Dyes and Pigments 2023, 208 , 110822. https://doi.org/10.1016/j.dyepig.2022.110822
    19. Mena Asha Krishnan, Amit Pandit, Rajesh Sharma, Venkatesh Chelvam. Imaging of prostate cancer: optimizing affinity to prostate specific membrane antigen by spacer modifications in a tumor spheroid model. Journal of Biomolecular Structure and Dynamics 2022, 40 (20) , 9909-9930. https://doi.org/10.1080/07391102.2021.1936642
    20. Jeremy V. Smedley, Rachele M. Bochart, Miranda Fischer, Heidi Funderburgh, Vanessa Kelly, Hugh Crank, Kim Armantrout, Oriene Shiel, Mitchell Robertson‐LeVay, Nikki Sternberger, Brian Schmaling, Sheila Roberts, Vicki Sekiguchi, Michael Reusz, Tiah Schwartz, Kimberly A. Meyer, Gabriela Webb, Roxanne M. Gilbride, Nicholas Dambrauskas, Daniela Andrade, Matthew Wood, Caralyn Labriola, Michael Axthelm, Nina Derby, Ben Varco‐Merth, Yoshinori Fukazawa, Scott Hansen, Jonah B. Sacha, Donald L. Sodora, D. Noah Sather. Optimization and use of near infrared imaging to guide lymph node collection in rhesus macaques ( Macaca mulatta ). Journal of Medical Primatology 2022, 51 (5) , 270-277. https://doi.org/10.1111/jmp.12605
    21. Qin Xue, Jingliang Zhang, Jianhua Jiao, Weijun Qin, Xiaojian Yang. Photodynamic therapy for prostate cancer: Recent advances, challenges and opportunities. Frontiers in Oncology 2022, 12 https://doi.org/10.3389/fonc.2022.980239
    22. Yixuan Wu, Jeeun Kang, Wojciech G. Lesniak, Ala Lisok, Haichong K. Zhang, Russell H. Taylor, Martin G. Pomper, Emad M. Boctor. System-level optimization in spectroscopic photoacoustic imaging of prostate cancer. Photoacoustics 2022, 27 , 100378. https://doi.org/10.1016/j.pacs.2022.100378
    23. He Wang, Zhangxin He, Xiao-Ang Liu, Yuhua Huang, Jianquan Hou, Weijie Zhang, Dan Ding. Advances in Prostate‐Specific Membrane Antigen (PSMA)‐Targeted Phototheranostics of Prostate Cancer. Small Structures 2022, 3 (8) https://doi.org/10.1002/sstr.202200036
    24. Falguni Basuli, Tim E. Phelps, Xiang Zhang, Carolyn C. Woodroofe, Jyoti Roy, Peter L. Choyke, Rolf E. Swenson, Elaine M. Jagoda. Fluorine-18 Labeled Urea-Based Ligands Targeting Prostate-Specific Membrane Antigen (PSMA) with Increased Tumor and Decreased Renal Uptake. Pharmaceuticals 2022, 15 (5) , 597. https://doi.org/10.3390/ph15050597
    25. Haoxi Zhou, Yu Gao, Yachao Liu, Yitian Wu, Yan Fang, Baojun Wang, Baixuan Xu. Targeted fluorescent imaging of a novel FITC-labeled PSMA ligand in prostate cancer. Amino Acids 2022, 54 (1) , 147-155. https://doi.org/10.1007/s00726-021-03102-8
    26. Tessa Buckle, Danny M. van Willigen, Mick M. Welling, Fijs W.B. van Leeuwen. Pre-clinical development of fluorescent tracers and translation towards clinical application. 2022, 644-661. https://doi.org/10.1016/B978-0-12-822960-6.00045-4
    27. Noemi B. Declerck, Lukasz Mateusiak, Sophie Hernot. Design and Validation of Site-Specifically Labeled Single-Domain Antibody-Based Tracers for in Vivo Fluorescence Imaging and Image-Guided Surgery. 2022, 395-407. https://doi.org/10.1007/978-1-0716-2075-5_20
    28. Jingming Zhang, Anastasia Rakhimbekova, Xiaojiang Duan, Qingqing Yin, Catherine A. Foss, Yan Fan, Yangyang Xu, Xuesong Li, Xuekang Cai, Zsofia Kutil, Pengyuan Wang, Zhi Yang, Ning Zhang, Martin G. Pomper, Yiguang Wang, Cyril Bařinka, Xing Yang. A prostate-specific membrane antigen activated molecular rotor for real-time fluorescence imaging. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-25746-6
    29. Stanislav A. Petrov, Nikolay Y. Zyk, Aleksei E. Machulkin, Elena K. Beloglazkina, Alexander G. Majouga. PSMA-targeted low-molecular double conjugates for diagnostics and therapy. European Journal of Medicinal Chemistry 2021, 225 , 113752. https://doi.org/10.1016/j.ejmech.2021.113752
    30. Jyoti Roy, Margaret E. White, Falguni Basuli, Ana Christina L. Opina, Karen Wong, Morgan Riba, Anita T. Ton, Xiang Zhang, Keith H. Jansson, Elijah Edmondson, Donna Butcher, Frank I. Lin, Peter L. Choyke, Kathleen Kelly, Elaine M. Jagoda. Monitoring PSMA Responses to ADT in Prostate Cancer Patient-Derived Xenograft Mouse Models Using [18F]DCFPyL PET Imaging. Molecular Imaging and Biology 2021, 23 (5) , 745-755. https://doi.org/10.1007/s11307-021-01605-0
    31. Ronnie C Mease, Choongmo Kang, Vivek Kumar, Sangeeta Ray, IL Minn, Mary Brummet, Kathleen Gabrielson, Yutian Feng, Andrew Park, Ana Kiess, George Sgouros, Ganesan Vaidyanathan, Michael Zalutsky, Martin G. Pomper. An improved 211 At-labeled agent for PSMA-targeted alpha therapy. Journal of Nuclear Medicine 2021, , jnumed.121.262098. https://doi.org/10.2967/jnumed.121.262098
    32. E. Walker, S.M. Turaga, X. Wang, R. Gopalakrishnan, S. Shukla, J.P. Basilion, J.D. Lathia. Development of near-infrared imaging agents for detection of junction adhesion molecule-A protein. Translational Oncology 2021, 14 (3) , 101007. https://doi.org/10.1016/j.tranon.2020.101007
    33. Stephanie Schipmann, Walter Stummer. Fluorescence-Guided Resections: A Binary Approach to Surgery. 2021, 159-182. https://doi.org/10.1007/978-3-030-49100-0_13
    34. Jianhua Jiao, Jingliang Zhang, Fa Yang, Wei Song, Donghui Han, Weihong Wen, Weijun Qin. Quicker, deeper and stronger imaging: A review of tumor-targeted, near-infrared fluorescent dyes for fluorescence guided surgery in the preclinical and clinical stages. European Journal of Pharmaceutics and Biopharmaceutics 2020, 152 , 123-143. https://doi.org/10.1016/j.ejpb.2020.05.002
    35. Mohammed Attia, Joanna Cao, Ruth Chan, Jian Ling, Jing Yong Ye. Optical properties of indocyanine green under ultrasound treatment. Journal of Photochemistry and Photobiology 2020, 2 , 100005. https://doi.org/10.1016/j.jpap.2020.100005
    36. Qiyu Liu, Xiaobo Zhou, Wei Feng, Tao Pu, Xiaoping Li, Fuyou Li, Yu Kang, Xiaoyan Zhang, Congjian Xu. Gonadotropin-Releasing Hormone Receptor-Targeted Near-Infrared Fluorescence Probe for Specific Recognition and Localization of Peritoneal Metastases of Ovarian Cancer. Frontiers in Oncology 2020, 10 https://doi.org/10.3389/fonc.2020.00266
    37. Tadanobu Nagaya, Yu A. Nakamura, Peter L. Choyke, Hisataka Kobayashi. Current and new fluorescent probes for fluorescence-guided surgery. 2020, 75-114. https://doi.org/10.1016/B978-0-12-812576-2.00006-9
    38. Asmaysinh Gharia, Efthymios P. Papageorgiou, Simeon Giverts, Catherine Park, Mekhail Anwar. Signal to Noise Ratio as a Cross-Platform Metric for Intraoperative Fluorescence Imaging. Molecular Imaging 2020, 19 , 153601212091369. https://doi.org/10.1177/1536012120913693
    39. Andrea Picchetto, Barbara Seeliger, Stefania La Rocca, Manuel Barberio, Giancarlo D’Ambrosio, Jacques Marescaux, Michele Diana. Fluoreszenzgesteuerte Detektion von Lymphknotenmetastasen bei gastrointestinalen Tumoren. Der Chirurg 2019, 90 (11) , 891-898. https://doi.org/10.1007/s00104-019-01039-z
    40. Nayeon Choi, Han-Sin Jeong. Precision surgery for cancer: a new surgical concept in individual tumor biology-based image-guided surgery. Precision and Future Medicine 2019, 3 (3) , 116-123. https://doi.org/10.23838/pfm.2019.00072
    41. Jongdoo Lim, Bing Guan, Kien Nham, Guiyang Hao, Xiankai Sun, Eric E. Simanek. Tumor Uptake of Triazine Dendrimers Decorated with Four, Sixteen, and Sixty-Four PSMA-Targeted Ligands: Passive versus Active Tumor Targeting. Biomolecules 2019, 9 (9) , 421. https://doi.org/10.3390/biom9090421
    42. Hyosuk Kim, Gijung Kwak, Kwangmeyung Kim, Hong Yeol Yoon, Ick Chan Kwon. Theranostic designs of biomaterials for precision medicine in cancer therapy. Biomaterials 2019, 213 , 119207. https://doi.org/10.1016/j.biomaterials.2019.05.018
    43. Pieterjan Debie, Sophie Hernot. Emerging Fluorescent Molecular Tracers to Guide Intra-Operative Surgical Decision-Making. Frontiers in Pharmacology 2019, 10 https://doi.org/10.3389/fphar.2019.00510
    44. Ram A. Pathak, Ashok K. Hemal. Intraoperative ICG-fluorescence imaging for robotic-assisted urologic surgery: current status and review of literature. International Urology and Nephrology 2019, 51 (5) , 765-771. https://doi.org/10.1007/s11255-019-02126-0
    45. Derrick J. Feenstra, Muharrem Seleci, Nora Denk, Sascha Fauser, Faye M. Drawnel, Ashwath Jayagopal. Indocyanine green molecular angiography of choroidal neovascularization. Experimental Eye Research 2019, 180 , 122-128. https://doi.org/10.1016/j.exer.2018.12.016
    46. Sumith A. Kularatne, Mini Thomas, Carrie H. Myers, Pravin Gagare, Ananda K. Kanduluru, Christa J. Crian, Brandy N. Cichocki. Evaluation of Novel Prostate-Specific Membrane Antigen-Targeted Near-Infrared Imaging Agent for Fluorescence-Guided Surgery of Prostate Cancer. Clinical Cancer Research 2019, 25 (1) , 177-187. https://doi.org/10.1158/1078-0432.CCR-18-0803
    47. S. Hameed, Z. Dai. Near-infrared fluorescence probes for surgical navigation. Materials Today Chemistry 2018, 10 , 90-103. https://doi.org/10.1016/j.mtchem.2018.07.005
    48. Rong Yan, Jie Chen, Jianhao Wang, Jiaming Rao, Xuancheng Du, Yongming Liu, Leshuai Zhang, Lin Qiu, Bo Liu, Yuan‐Di Zhao, Pengju Jiang, Chunying Chen, Yong‐Qiang Li. A NanoFlare‐Based Strategy for In Situ Tumor Margin Demarcation and Neoadjuvant Gene/Photothermal Therapy. Small 2018, 14 (50) https://doi.org/10.1002/smll.201802745
    49. Andrea K. Miyahira, Kenneth J. Pienta, Michael J. Morris, Neil H. Bander, Richard P. Baum, Wolfgang P. Fendler, William Goeckeler, Michael A. Gorin, Hartwig Hennekes, Martin G. Pomper, Oliver Sartor, Scott T. Tagawa, Scott Williams, Howard R. Soule. Meeting report from the Prostate Cancer Foundation PSMA‐directed radionuclide scientific working group. The Prostate 2018, 78 (11) , 775-789. https://doi.org/10.1002/pros.23642
    50. Xieyi Zhang, Takahito Nakajima, Mai Kim, Aiko Yamaguchi, Oyunbold Lamid-Ochir, Huong Nguyen-Thu, Anu Bhattarai, Hirofumi Hanaoka, Yoshito Tsushima, . Activatable fluorescence detection of epidermal growth factor receptor positive mediastinal lymph nodes in murine lung cancer model. PLOS ONE 2018, 13 (6) , e0198224. https://doi.org/10.1371/journal.pone.0198224
    51. Brian W. Pogue, Timothy C. Zhu, Vasilis Ntziachristos, Keith D. Paulsen, Brian C. Wilson, Joshua Pfefer, Robert J. Nordstrom, Maritoni Litorja, Heidrun Wabnitz, Yu Chen, Sylvain Gioux, Bruce J. Tromberg, Arjun G. Yodh. Fluorescence‐guided surgery and intervention — An AAPM emerging technology blue paper. Medical Physics 2018, 45 (6) , 2681-2688. https://doi.org/10.1002/mp.12909
    52. Ann-Christin Baranski, Martin Schäfer, Ulrike Bauder-Wüst, Mareike Roscher, Jana Schmidt, Esther Stenau, Tobias Simpfendörfer, Dogu Teber, Lena Maier-Hein, Boris Hadaschik, Uwe Haberkorn, Matthias Eder, Klaus Kopka. PSMA-11–Derived Dual-Labeled PSMA Inhibitors for Preoperative PET Imaging and Precise Fluorescence-Guided Surgery of Prostate Cancer. Journal of Nuclear Medicine 2018, 59 (4) , 639-645. https://doi.org/10.2967/jnumed.117.201293
    53. Chensu Wang, Zhaohui Wang, Tian Zhao, Yang Li, Gang Huang, Baran D. Sumer, Jinming Gao. Optical molecular imaging for tumor detection and image-guided surgery. Biomaterials 2018, 157 , 62-75. https://doi.org/10.1016/j.biomaterials.2017.12.002
    54. Xiaopeng Yuan, Mingjuan Yang, Xiang Chen, Xuhua Zhang, Shrey Sukhadia, Najia Musolino, Huijing Bao, Tingtao Chen, Chen Xu, Qirui Wang, Stephen Santoro, Daniel Ricklin, Jia Hu, Ruihe Lin, Wei Yang, Zhijun Li, Weijun Qin, Aizhi Zhao, Nathalie Scholler, George Coukos. Correction to: Characterization of the first fully human anti-TEM1 scFv in models of solid tumor imaging and immunotoxin-based therapy. Cancer Immunology, Immunotherapy 2018, 67 (2) , 329-339. https://doi.org/10.1007/s00262-017-2101-0
    55. Anojan Navaratnam, Haidar Abdul-Muhsin, Mitchell Humphreys. Updates in Urologic Robot Assisted Surgery. F1000Research 2018, 7 , 1948. https://doi.org/10.12688/f1000research.15480.1
    56. Tadanobu Nagaya, Yu A. Nakamura, Peter L. Choyke, Hisataka Kobayashi. Fluorescence-Guided Surgery. Frontiers in Oncology 2017, 7 https://doi.org/10.3389/fonc.2017.00314
    57. Michael V. Green, Jurgen Seidel, Mark R. Williams, Karen J. Wong, Anita Ton, Falguni Basuli, Peter L. Choyke, Elaine M. Jagoda. Comparison of planar, PET and well-counter measurements of total tumor radioactivity in a mouse xenograft model. Nuclear Medicine and Biology 2017, 53 , 29-36. https://doi.org/10.1016/j.nucmedbio.2017.06.004
    58. Leilei Xia, Ryan Zeh, Jack Mizelle, Andrew Newton, Jarrod Predina, Shuming Nie, Sunil Singhal, Thomas J. Guzzo. Near-infrared Intraoperative Molecular Imaging Can Identify Metastatic Lymph Nodes in Prostate Cancer. Urology 2017, 106 , 133-138. https://doi.org/10.1016/j.urology.2017.04.020
    59. Sai Kiran Sharma, Jacob Pourat, Dalya Abdel-Atti, Sean D. Carlin, Alessandra Piersigilli, Alexander J. Bankovich, Eric E. Gardner, Omar Hamdy, Kumiko Isse, Sheila Bheddah, Joseph Sandoval, Kristen M. Cunanan, Eric B. Johansen, Viola Allaj, Vikram Sisodiya, David Liu, Brian M. Zeglis, Charles M. Rudin, Scott J. Dylla, John T. Poirier, Jason S. Lewis. Noninvasive Interrogation of DLL3 Expression in Metastatic Small Cell Lung Cancer. Cancer Research 2017, 77 (14) , 3931-3941. https://doi.org/10.1158/0008-5472.CAN-17-0299
    60. Andrey O. Morozov, Yuri G. Alyaev, Leonid M. Rapoport, Dmitrii G. Tsarichenko, Eugene A. Bezrukov, Denis V. Butnaru, Eugene S. Sirota. Near-Infrared Fluorescence with Indocyanine Green for Diagnostics in Urology: Initial Experience. Urologia Journal 2017, 84 (3) , 197-202. https://doi.org/10.5301/uj.5000235
    61. Ray R. Zhang, Alexandra B. Schroeder, Joseph J. Grudzinski, Eben L. Rosenthal, Jason M. Warram, Anatoly N. Pinchuk, Kevin W. Eliceiri, John S. Kuo, Jamey P. Weichert. Beyond the margins: real-time detection of cancer using targeted fluorophores. Nature Reviews Clinical Oncology 2017, 14 (6) , 347-364. https://doi.org/10.1038/nrclinonc.2016.212
    62. Aimen Zlitni, Melissa Yin, Nancy Janzen, Samit Chatterjee, Ala Lisok, Kathleen L. Gabrielson, Sridhar Nimmagadda, Martin G. Pomper, F. Stuart Foster, John F. Valliant, . Development of prostate specific membrane antigen targeted ultrasound microbubbles using bioorthogonal chemistry. PLOS ONE 2017, 12 (5) , e0176958. https://doi.org/10.1371/journal.pone.0176958
    63. Zora Nováková, Catherine A. Foss, Benjamin T. Copeland, Volker Morath, Petra Baranová, Barbora Havlínová, Arne Skerra, Martin G. Pomper, Cyril Barinka. Novel Monoclonal Antibodies Recognizing Human Prostate‐Specific Membrane Antigen (PSMA) as Research and Theranostic Tools. The Prostate 2017, 77 (7) , 749-764. https://doi.org/10.1002/pros.23311
    64. Ashanul Haque, Md. Serajul Haque Faizi, Jahangir Ahmad Rather, Muhammad S. Khan. Next generation NIR fluorophores for tumor imaging and fluorescence-guided surgery: A review. Bioorganic & Medicinal Chemistry 2017, 25 (7) , 2017-2034. https://doi.org/10.1016/j.bmc.2017.02.061
    65. Xiaopeng Yuan, Mingjuan Yang, Xiang Chen, Xuhua Zhang, Shrey Sukhadia, Najia Musolino, Huijing Bao, Tingtao Chen, Chen Xu, Qirui Wang, Stephen Santoro, Daniel Ricklin, Jia Hu, Ruihe Lin, Wei Yang, Zhijun Li, Weijun Qin, Aizhi Zhao. Characterization of the first fully human anti-TEM1 scFv in models of solid tumor imaging and immunotoxin-based therapy. Cancer Immunology, Immunotherapy 2017, 66 (3) , 367-378. https://doi.org/10.1007/s00262-016-1937-z
    66. Ying Chen, Samit Chatterjee, Ala Lisok, Il Minn, Mrudula Pullambhatla, Bryan Wharram, Yuchuan Wang, Jiefu Jin, Zaver M. Bhujwalla, Sridhar Nimmagadda, Ronnie C. Mease, Martin G. Pomper. A PSMA-targeted theranostic agent for photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology 2017, 167 , 111-116. https://doi.org/10.1016/j.jphotobiol.2016.12.018
    67. Kai Bao, Jeong Heon Lee, Homan Kang, G. Kate Park, Georges El Fakhri, Hak Soo Choi. PSMA-targeted contrast agents for intraoperative imaging of prostate cancer,. Chemical Communications 2017, 53 (10) , 1611-1614. https://doi.org/10.1039/C6CC09781B
    68. Min Gao, Fabiao Yu, Changjun Lv, Jaebum Choo, Lingxin Chen. Fluorescent chemical probes for accurate tumor diagnosis and targeting therapy. Chemical Society Reviews 2017, 46 (8) , 2237-2271. https://doi.org/10.1039/C6CS00908E
    69. Tian Zhao, Gang Huang, Yang Li, Shunchun Yang, Saleh Ramezani, Zhiqiang Lin, Yiguang Wang, Xinpeng Ma, Zhiqun Zeng, Min Luo, Esther de Boer, Xian-Jin Xie, Joel Thibodeaux, Rolf A. Brekken, Xiankai Sun, Baran D. Sumer, Jinming Gao. A transistor-like pH nanoprobe for tumour detection and image-guided surgery. Nature Biomedical Engineering 2017, 1 (1) https://doi.org/10.1038/s41551-016-0006
    70. Anthony S. Bates, Vipul R. Patel. Applications of indocyanine green in robotic urology. Journal of Robotic Surgery 2016, 10 (4) , 357-359. https://doi.org/10.1007/s11701-016-0641-5
    71. Daniel P. Nguyen, Philipp M. Huber, Tobias A. Metzger, Vera Genitsch, Hans H. Schudel, George N. Thalmann. A Specific Mapping Study Using Fluorescence Sentinel Lymph Node Detection in Patients with Intermediate- and High-risk Prostate Cancer Undergoing Extended Pelvic Lymph Node Dissection. European Urology 2016, 70 (5) , 734-737. https://doi.org/10.1016/j.eururo.2016.01.034
    72. A. E. Machulkin, A. S. Garanina, O. A. Zhironkina, E. K. Beloglazkina, N. V. Zyk, A. G. Savchenko, V. E. Kotelyanskii, A. G. Mazhuga. Nanohybride Materials Based on Magnetite-Gold Nanoparticles for Diagnostics of Prostate Cancer: Synthesis and In Vitro Testing. Bulletin of Experimental Biology and Medicine 2016, 161 (5) , 706-710. https://doi.org/10.1007/s10517-016-3490-3
    73. Elena P. Porcu, Andrea Salis, Elisabetta Gavini, Giovanna Rassu, Marcello Maestri, Paolo Giunchedi. Indocyanine green delivery systems for tumour detection and treatments. Biotechnology Advances 2016, 34 (5) , 768-789. https://doi.org/10.1016/j.biotechadv.2016.04.001
    74. Hisataka Kobayashi, Peter L Choyke, Mikako Ogawa. Monoclonal antibody-based optical molecular imaging probes; considerations and caveats in chemistry, biology and pharmacology. Current Opinion in Chemical Biology 2016, 33 , 32-38. https://doi.org/10.1016/j.cbpa.2016.05.015
    75. Cristina Martelli, Alessia Lo Dico, Cecilia Diceglie, Giovanni Lucignani, Luisa Ottobrini. Optical imaging probes in oncology. Oncotarget 2016, 7 (30) , 48753-48787. https://doi.org/10.18632/oncotarget.9066
    76. Brian W. Pogue, Keith D. Paulsen, Kimberley S. Samkoe, Jonathan T. Elliott, Tayyaba Hasan, Theresa V. Strong, Daniel R. Draney, Joachim Feldwisch. Vision 20/20: Molecular‐guided surgical oncology based upon tumor metabolism or immunologic phenotype: Technological pathways for point of care imaging and intervention. Medical Physics 2016, 43 (6Part1) , 3143-3156. https://doi.org/10.1118/1.4951732
    77. Geoffrey A. Sonn, Andrew S. Behesnilian, Ziyue Karen Jiang, Kirstin A. Zettlitz, Eric J. Lepin, Laurent A. Bentolila, Scott M. Knowles, Daniel Lawrence, Anna M. Wu, Robert E. Reiter. Fluorescent Image–Guided Surgery with an Anti-Prostate Stem Cell Antigen (PSCA) Diabody Enables Targeted Resection of Mouse Prostate Cancer Xenografts in Real Time. Clinical Cancer Research 2016, 22 (6) , 1403-1412. https://doi.org/10.1158/1078-0432.CCR-15-0503
    78. Matteo Santoni, Marina Scarpelli, Roberta Mazzucchelli, Antonio Lopez-Beltran, Liang Cheng, Jonathan I. Epstein, Stefano Cascinu, Alberto Briganti, James W. Catto, Francesco Montorsi, Rodolfo Montironi. Current Histopathologic and Molecular Characterisations of Prostate Cancer: Towards Individualised Prognosis and Therapies. European Urology 2016, 69 (2) , 186-190. https://doi.org/10.1016/j.eururo.2015.05.041
    79. Yasuhiro Magata. Small animal imaging studies and their prospects. Folia Pharmacologica Japonica 2016, 147 (3) , 161-167. https://doi.org/10.1254/fpj.147.161
    80. Jonathan T. Elliott, Alisha V. Dsouza, Scott C. Davis, Jonathan D. Olson, Keith D. Paulsen, David W. Roberts, Brian W. Pogue. Review of fluorescence guided surgery visualization and overlay techniques. Biomedical Optics Express 2015, 6 (10) , 3765. https://doi.org/10.1364/BOE.6.003765
    81. Hebert Alberto Vargas, Jan Grimm, Olivio F. Donati, Evis Sala, Hedvig Hricak. Molecular imaging of prostate cancer: translating molecular biology approaches into the clinical realm. European Radiology 2015, 25 (5) , 1294-1302. https://doi.org/10.1007/s00330-014-3539-5
    82. Jonathan Sorger. Clinical Milestones for Optical Imaging. 2015, 133-143. https://doi.org/10.1007/978-1-4939-2326-7_10
    83. Rodolfo Montironi, Antonio Lopez-Beltran, Liang Cheng, Marina Scarpelli, Roberta Mazzucchelli, Francesco Montorsi. Re: Antibody-drug Conjugates Targeting Prostate-specific Membrane Antigen. European Urology 2014, 66 (6) , 1190-1193. https://doi.org/10.1016/j.eururo.2014.08.047
    84. Xinning Wang, Steve S. Huang, Warren D.W. Heston, Hong Guo, Bing-Cheng Wang, James P. Basilion. Development of Targeted Near-Infrared Imaging Agents for Prostate Cancer. Molecular Cancer Therapeutics 2014, 13 (11) , 2595-2606. https://doi.org/10.1158/1535-7163.MCT-14-0422
    85. Susanne Lütje, Mark Rijpkema, David M. Goldenberg, Catharina M. van Rij, Robert M. Sharkey, William J. McBride, Gerben M. Franssen, Cathelijne Frielink, Wijnand Helfrich, Wim J.G. Oyen, Otto C. Boerman. Pretargeted Dual-Modality Immuno-SPECT and Near-Infrared Fluorescence Imaging for Image-Guided Surgery of Prostate Cancer. Cancer Research 2014, 74 (21) , 6216-6223. https://doi.org/10.1158/0008-5472.CAN-14-0594
    86. Lihong Bu, Baozhong Shen, Zhen Cheng. Fluorescent imaging of cancerous tissues for targeted surgery. Advanced Drug Delivery Reviews 2014, 76 , 21-38. https://doi.org/10.1016/j.addr.2014.07.008
    87. Susanne Lütje, Mark Rijpkema, Gerben M. Franssen, Giulio Fracasso, Wijnand Helfrich, Annemarie Eek, Wim J. Oyen, Marco Colombatti, Otto C. Boerman. Dual-Modality Image-Guided Surgery of Prostate Cancer with a Radiolabeled Fluorescent Anti-PSMA Monoclonal Antibody. Journal of Nuclear Medicine 2014, 55 (6) , 995-1001. https://doi.org/10.2967/jnumed.114.138180
    88. Timon Hussain, Quyen T. Nguyen. Molecular imaging for cancer diagnosis and surgery. Advanced Drug Delivery Reviews 2014, 66 , 90-100. https://doi.org/10.1016/j.addr.2013.09.007
    89. K. Licha, U. Resch-Genger. Fluorescent Reporters and Optical Probes. 2014, 85-109. https://doi.org/10.1016/B978-0-444-53632-7.00402-0
    90. M.R. Longmire, P.L. Choyke, H. Kobayashi. Molecular Imaging Probes: Activatable and Sensing Probes. 2014, 53-61. https://doi.org/10.1016/B978-0-444-53632-7.00405-6
    91. Amanda K. Pearce, Barbara E. Rolfe, Pamela J. Russell, Brian W.-C. Tse, Andrew K. Whittaker, Adrian V. Fuchs, Kristofer J. Thurecht. Development of a polymer theranostic for prostate cancer. Polym. Chem. 2014, 5 (24) , 6932-6942. https://doi.org/10.1039/C4PY00999A
    92. Manal Y. Gabril, George M. Yousef. Molecular Testing in Prostate Cancer. 2014, 277-300. https://doi.org/10.1007/978-1-4899-8050-2_17
    93. Kristine E. Day, Lauren N. Beck, Nicholas L. Deep, Joy Kovar, Kurt R. Zinn, Eben L. Rosenthal. Fluorescently labeled therapeutic antibodies for detection of microscopic melanoma. The Laryngoscope 2013, 123 (11) , 2681-2689. https://doi.org/10.1002/lary.24102
    94. Quyen T. Nguyen, Roger Y. Tsien. Fluorescence-guided surgery with live molecular navigation — a new cutting edge. Nature Reviews Cancer 2013, 13 (9) , 653-662. https://doi.org/10.1038/nrc3566
    95. Xiaojian Yang, Chen Shao, Ruoxiang Wang, Chia-Yi Chu, Peizhen Hu, Viraj Master, Adeboye O. Osunkoya, Hyung L. Kim, Haiyen E. Zhau, Leland W.K. Chung. Optical Imaging of Kidney Cancer with Novel Near Infrared Heptamethine Carbocyanine Fluorescent Dyes. Journal of Urology 2013, 189 (2) , 702-710. https://doi.org/10.1016/j.juro.2012.09.056
    96. Joseph R. Osborne, Naveed H. Akhtar, Shankar Vallabhajosula, Alok Anand, Kofi Deh, Scott T. Tagawa. Prostate-specific membrane antigen-based imaging. Urologic Oncology: Seminars and Original Investigations 2013, 31 (2) , 144-154. https://doi.org/10.1016/j.urolonc.2012.04.016
    97. Humberto Laydner, Steve S. Huang, Warren D. Heston, Riccardo Autorino, Xinning Wang, Kelley M. Harsch, Cristina Magi-Galluzzi, Wahib Isac, Rakesh Khanna, Bo Hu, Pedro Escobar, Sricharan Chalikonda, Pravin K. Rao, Georges-Pascal Haber, Jihad H. Kaouk, Robert J. Stein. Robotic Real-time Near Infrared Targeted Fluorescence Imaging in a Murine Model of Prostate Cancer: A Feasibility Study. Urology 2013, 81 (2) , 451-457. https://doi.org/10.1016/j.urology.2012.02.075
    98. Jingguo Li, Hao Jiang, Zhiqiang Yu, Hongyan Xia, Gang Zou, Qijin Zhang, Yue Yu. Multifunctional Uniform Core–Shell Fe 3 O 4 @mSiO 2 Mesoporous Nanoparticles for Bimodal Imaging and Photothermal Therapy. Chemistry – An Asian Journal 2013, 8 (2) , 385-391. https://doi.org/10.1002/asia.201201033
    99. Antje Vollrath, Stephanie Schubert, Ulrich S. Schubert. Fluorescence imaging of cancer tissue based on metal-free polymeric nanoparticles – a review. Journal of Materials Chemistry B 2013, 1 (15) , 1994. https://doi.org/10.1039/c3tb20089b
    100. Stefania Staibano. Molecular Markers for Patient Selection and Stratification: Personalized Prognostic Predictive Models. 2013, 213-219. https://doi.org/10.1007/978-94-007-7149-9_13
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect