ACS Publications. Most Trusted. Most Cited. Most Read
Simplified NaCl Based 68Ga Concentration and Labeling Procedure for Rapid Synthesis of 68Ga Radiopharmaceuticals in High Radiochemical Purity
My Activity

Figure 1Loading Img
    ADDITION/CORRECTION. This article has been corrected. View the notice.
    Technical Note

    Simplified NaCl Based 68Ga Concentration and Labeling Procedure for Rapid Synthesis of 68Ga Radiopharmaceuticals in High Radiochemical Purity
    Click to copy article linkArticle link copied!

    View Author Information
    Zentralklinik Bad Berka, Department of Nuclear Medicine/PET Center, 99437 Bad Berka, Germany
    Friedrich Schiller University of Jena, Institute for Organic and Macromolecular Chemistry, Jena Center for Soft Matter (JCSM), 07743 Jena, Germany
    University of Iowa, Departments of Radiology and Radiation Oncology (Free Radical Radiation Biology Program), ML B180, 500 Newton Road, Iowa City, Iowa 52242, United States
    § Department of Nuclear Medicine, Erasmus MC Rotterdam, ’s Gravendijkwal 230, 3015CE Rotterdam, The Netherlands
    Other Access Options

    Bioconjugate Chemistry

    Cite this: Bioconjugate Chem. 2012, 23, 8, 1712–1717
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bc300103t
    Published July 4, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A simple sodium chloride (NaCl) based 68Ga eluate concentration and labeling method that enables rapid, high-efficiency labeling of DOTA conjugated peptides in high radiochemical purity is described. The method utilizes relatively few reagents and comprises minimal procedural steps. It is particularly well-suited for routine automated synthesis of clinical radiopharmaceuticals. For the 68Ga generator eluate concentration step, commercially available cation-exchange cartridges and 68Ga generators were used. The 68Ga generator eluate was collected by use of a strong cation exchange cartridge. 98% of the total activity of 68Ga was then eluted from the cation exchange cartridge with 0.5 mL of 5 M NaCl solution containing a small amount of 5.5 M HCl. After buffering with ammonium acetate, the eluate was used directly for radiolabeling of DOTATOC and DOTATATE. The 68Ga-labeled peptides were obtained in higher radiochemical purity compared to other commonly used procedures, with radiochemical yields greater than 80%. The presence of 68Ge could not be detected in the final product. The new method obviates the need for organic solvents, which eliminates the required quality control of the final product by gas chromatography, thereby reducing postsynthesis analytical effort significantly. The 68Ga-labeled products were used directly, with no subsequent purification steps, such as solid-phase extraction. The NaCl method was further evaluated using an automated fluid handling system and it routinely facilitates radiochemical yields in excess of 65% in less than 15 min, with radiochemical purity consistently greater than 99% for the preparation of 68Ga-DOTATOC.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 101 publications.

    1. Alexander Schmidtke, Tilman Läppchen, Christian Weinmann, Lorenz Bier-Schorr, Manfred Keller, Yvonne Kiefer, Jason P. Holland, and Mark D. Bartholomä . Gallium Complexation, Stability, and Bioconjugation of 1,4,7-Triazacyclononane Derived Chelators with Azaheterocyclic Arms. Inorganic Chemistry 2017, 56 (15) , 9097-9110. https://doi.org/10.1021/acs.inorgchem.7b01129
    2. Michelle T. Ma, Carleen Cullinane, Cinzia Imberti, Julia Baguña Torres, Samantha Y. A. Terry, Peter Roselt, Rodney J. Hicks, and Philip J. Blower . New Tris(hydroxypyridinone) Bifunctional Chelators Containing Isothiocyanate Groups Provide a Versatile Platform for Rapid One-Step Labeling and PET Imaging with 68Ga3+. Bioconjugate Chemistry 2016, 27 (2) , 309-318. https://doi.org/10.1021/acs.bioconjchem.5b00335
    3. Sebastian Martin, Lennard Wendlinger, Alexandra Litvinenko, Radmila Faizova, Margret Schottelius. Validation of a size exclusion method for concomitant purification and formulation of peptide radiopharmaceuticals. EJNMMI Radiopharmacy and Chemistry 2024, 9 (1) https://doi.org/10.1186/s41181-024-00254-2
    4. Sebastian Martin, Moritz-Valentin Schreck, Tobias Stemler, Stephan Maus, Florian Rosar, Caroline Burgard, Andrea Schaefer-Schuler, Samer Ezziddin, Mark D. Bartholomä. Development of a homotrimeric PSMA radioligand based on the NOTI chelating platform. EJNMMI Radiopharmacy and Chemistry 2024, 9 (1) https://doi.org/10.1186/s41181-024-00314-7
    5. Louis-Paul Paty, Simon Degueldre, Claire Provost, Camille Schmitt, Laura Trump, Julien Fouque, Charles Vriamont, Frank Valla, Thibault Gendron, Olivier Madar. Development of a versatile [68Ga]Ga-FAPI-46 automated synthesis suitable to multi-elutions of germanium-68/gallium-68 generators. Frontiers in Chemistry 2024, 12 https://doi.org/10.3389/fchem.2024.1411312
    6. Ivan E. Wang, Allen F. Brooks, Mara Clark, Luke J. Morrissette, Peter J.H. Scott. Improved purification of cyclotron [68Ga]GaCl3 for the production of 68Ga radiopharmaceuticals. Nuclear Medicine and Biology 2024, 130-131 , 108892. https://doi.org/10.1016/j.nucmedbio.2024.108892
    7. Dirk Müller, Alexander Fuchs, Yevgeniy Leshch, Peter Schulze, Michael Pröhl. High-Performance Radiopharmacy: The Base for Precision Oncology. 2024, 237-243. https://doi.org/10.1007/978-3-031-33533-4_24
    8. Thomas Daniel, Clara Balouzet Ravinet, Jérôme Clerc, Rui Batista, Yvan Mouraeff. Automated synthesis and quality control of [68Ga]Ga-PentixaFor using the Gaia/Luna Elysia-Raytest module for CXCR4 PET imaging. EJNMMI Radiopharmacy and Chemistry 2023, 8 (1) https://doi.org/10.1186/s41181-023-00187-2
    9. Anni Gålne, Olof Enqvist, Anna Sundlöv, Kristian Valind, David Minarik, Elin Trägårdh. AI-based quantification of whole-body tumour burden on somatostatin receptor PET/CT. European Journal of Hybrid Imaging 2023, 7 (1) https://doi.org/10.1186/s41824-023-00172-7
    10. Timofei Rusu, Matthieu Delion, Charlotte Pirot, Amaury Blin, Anita Rodenas, Jean-Noël Talbot, Nicolas Veran, Christophe Portal, Françoise Montravers, Jacques Cadranel, Aurélie Prignon. Fully automated radiolabeling of [68Ga]Ga-EMP100 targeting c-MET for PET-CT clinical imaging. EJNMMI Radiopharmacy and Chemistry 2023, 8 (1) https://doi.org/10.1186/s41181-023-00213-3
    11. Emma Jussing, Mélodie Ferrat, Mohammad M. Moein, Henrik Alfredéen, Tetyana Tegnebratt, Klas Bratteby, Erik Samén, Joachim Feldwisch, Renske Altena, Rimma Axelsson, Thuy A. Tran. Optimized, automated and cGMP-compliant synthesis of the HER2 targeting [68Ga]Ga-ABY-025 tracer. EJNMMI Radiopharmacy and Chemistry 2023, 8 (1) https://doi.org/10.1186/s41181-023-00226-y
    12. Hemantha Mallapura, Olga Ovdiichuk, Emma Jussing, Tran A. Thuy, Camille Piatkowski, Laurent Tanguy, Charlotte Collet-Defossez, Bengt Långström, Christer Halldin, Sangram Nag. Microfluidic-based production of [68Ga]Ga-FAPI-46 and [68Ga]Ga-DOTA-TOC using the cassette-based iMiDEV™ microfluidic radiosynthesizer. EJNMMI Radiopharmacy and Chemistry 2023, 8 (1) https://doi.org/10.1186/s41181-023-00229-9
    13. Martin Kraihammer, Elisabeth von Guggenberg, Anton Amadeus Hörmann, Michael Gabriel, Clemens Decristoforo. Automated production of [68Ga]Ga-DOTA-exendin-4 via fractionated radionuclide generator elution on a cassette based synthesis module. Nuclear Medicine and Biology 2023, 124-125 , 108381. https://doi.org/10.1016/j.nucmedbio.2023.108381
    14. Mengshi Li, Nicholas J. Baumhover, Dijie Liu, Brianna S. Cagle, Frédéric Boschetti, Guillaume Paulin, Dongyoul Lee, Zhiming Dai, Ephraim R. Obot, Brenna M. Marks, Ibrahim Okeil, Edwin A. Sagastume, Moustafa Gabr, F. Christopher Pigge, Frances L. Johnson, Michael K. Schultz. Preclinical Evaluation of a Lead Specific Chelator (PSC) Conjugated to Radiopeptides for 203Pb and 212Pb-Based Theranostics. Pharmaceutics 2023, 15 (2) , 414. https://doi.org/10.3390/pharmaceutics15020414
    15. Jieru Wang, Ruiqin Gao, Shiwei Cao, Zhi Qin, Mu Lin, Qinggang Huang, Zeen Yao. Production of medical isotope 68Ge based on a novel chromatography separation technique and assembling of 68Ge/68Ga generator. Applied Radiation and Isotopes 2023, 192 , 110599. https://doi.org/10.1016/j.apradiso.2022.110599
    16. Olga Ovdiichuk, Quentin Béen, Laurent Tanguy, Charlotte Collet. Synthesis of [ 68 Ga]Ga-PSMA-11 using the iMiDEV™ microfluidic platform. Reaction Chemistry & Engineering 2023, 126 https://doi.org/10.1039/D3RE00038A
    17. Huseyin Pehli̇vanoglu, Meltem Ocak, Sena Caglar-Andac. Development and validation of a UV-Radio-HPLC method to assess chemical and radiochemical purity of [68Ga] Ga-PSMA-11. Applied Radiation and Isotopes 2022, 190 , 110487. https://doi.org/10.1016/j.apradiso.2022.110487
    18. Julia Greiser, Thomas Winkens, Olga Perkas, Christian Kuehnel, Wolfgang Weigand, Martin Freesmeyer. Automated GMP Production and Preclinical Evaluation of [68Ga]Ga-TEoS-DAZA and [68Ga]Ga-TMoS-DAZA. Pharmaceutics 2022, 14 (12) , 2695. https://doi.org/10.3390/pharmaceutics14122695
    19. G. E. Kodina, A. O. Malysheva, A. A. Larenkov, A. B. Bruskin. Possible Impurities in Radiopharmaceuticals and Corresponding Test Methods. The Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. Regulatory Research and Medicine Evaluation 2022, 12 (3) , 244-262. https://doi.org/10.30895/1991-2919-2022-12-3-244-262
    20. Ala Amgheib, Ruisi Fu, Eric O. Aboagye. Positron Emission Tomography Probes for Imaging Cytotoxic Immune Cells. Pharmaceutics 2022, 14 (10) , 2040. https://doi.org/10.3390/pharmaceutics14102040
    21. Håkan Ohlsson, Anni Gålne, Elin Trägårdh, Marlene Malmström, Anna Sundlöv, Martin Almquist. Relationship between somatostatin receptor expressing tumour volume and health‐related quality of life in patients with metastatic GEP‐NET. Journal of Neuroendocrinology 2022, 34 (6) https://doi.org/10.1111/jne.13139
    22. Sertac Asa, Kerim Sonmezoglu, Lebriz Uslu-Besli, Onur Erdem Sahin, Emre Karayel, Huseyin Pehlivanoglu, Sait Sager, Levent Kabasakal, Meltem Ocak, Haluk B. Sayman. Evaluation of F-18 DOPA PET/CT in the detection of recurrent or metastatic medullary thyroid carcinoma: comparison with GA-68 DOTA-TATE PET/CT. Annals of Nuclear Medicine 2021, 35 (8) , 900-915. https://doi.org/10.1007/s12149-021-01627-2
    23. Egesta Lopci, Giovanni Lughezzani, Angelo Castello, Alberto Saita, Piergiuseppe Colombo, Rodolfo Hurle, Roberto Peschechera, Alessio Benetti, Silvia Zandegiacomo, Luisa Pasini, Paolo Casale, Diana Pietro, Giulio Bevilacqua, Luca Balzarini, Nicolò Maria Buffi, Giorgio Guazzoni, Massimo Lazzeri. Prospective Evaluation of 68Ga-labeled Prostate-specific Membrane Antigen Ligand Positron Emission Tomography/Computed Tomography in Primary Prostate Cancer Diagnosis. European Urology Focus 2021, 7 (4) , 764-771. https://doi.org/10.1016/j.euf.2020.03.004
    24. Silvia Migliari, Antonino Sammartano, Maura Scarlattei, Giorgio Baldari, Claudia Silva, Livia Ruffini. A Rapid and Specific HPLC Method to Determine Chemical and Radiochemical Purity of [68>Ga]Ga-DOTA-Pentixafor (PET) Tracer: Development and Validation. Current Radiopharmaceuticals 2021, 14 (2) , 121-130. https://doi.org/10.2174/1874471013666200929125102
    25. Gabriel Richard, Christophe Noll, Mélanie Archambault, Réjean Lebel, Luc Tremblay, Samia Ait‐Mohand, Brigitte Guérin, Denis P. Blondin, André C. Carpentier, Martin Lepage. Contribution of perfusion to the 11 C‐acetate signal in brown adipose tissue assessed by DCE‐MRI and 68 Ga‐DOTA PET in a rat model. Magnetic Resonance in Medicine 2021, 85 (3) , 1625-1642. https://doi.org/10.1002/mrm.28535
    26. Michael Meisenheimer, Yury Saenko, Elisabeth Eppard. Gallium-68: Radiolabeling of Radiopharmaceuticals for PET Imaging - A Lot to Consider. 2021https://doi.org/10.5772/intechopen.90615
    27. Mengshi Li, Edwin A. Sagastume, Dongyoul Lee, Daniel McAlister, Anthony J. DeGraffenreid, Keith R. Olewine, Stephen Graves, Roy Copping, Saed Mirzadeh, Brian E. Zimmerman, Roy H. Larsen, Frances L. Johnson, Michael K. Schultz. 203/212Pb Theranostic Radiopharmaceuticals for Image-guided Radionuclide Therapy for Cancer. Current Medicinal Chemistry 2020, 27 (41) , 7003-7031. https://doi.org/10.2174/0929867327999200727190423
    28. Céline Derwael, Olivier Lavergne, Pierre Lovinfosse, Vlad Nechifor, Mallory Salvé, David Waltregny, Roland Hustinx, Nadia Withofs. Interobserver agreement of [68Ga]Ga-PSMA-11 PET/CT images interpretation in men with newly diagnosed prostate cancer. EJNMMI Research 2020, 10 (1) https://doi.org/10.1186/s13550-020-0596-4
    29. Melissa E. Rodnick, Carina Sollert, Daniela Stark, Mara Clark, Andrew Katsifis, Brian G. Hockley, D. Christian Parr, Jens Frigell, Bradford D. Henderson, Monica Abghari-Gerst, Morand R. Piert, Michael J. Fulham, Stefan Eberl, Katherine Gagnon, Peter J. H. Scott. Cyclotron-based production of 68Ga, [68Ga]GaCl3, and [68Ga]Ga-PSMA-11 from a liquid target. EJNMMI Radiopharmacy and Chemistry 2020, 5 (1) https://doi.org/10.1186/s41181-020-00106-9
    30. Emma Jussing, Li Lu, Jonas Grafström, Tetyana Tegnebratt, Fabian Arnberg, Helena Wållberg Rosik, Anders Wennborg, Staffan Holmin, Joachim Feldwisch, Sharon Stone-Elander. [68Ga]ABY-028: an albumin-binding domain (ABD) protein-based imaging tracer for positron emission tomography (PET) studies of altered vascular permeability and predictions of albumin-drug conjugate transport. EJNMMI Research 2020, 10 (1) https://doi.org/10.1186/s13550-020-00694-2
    31. N. A. Mirzaev, A. P. Marinova, Kh. F. Mammadov, N. T. Temerbulatova, J. Kozempel, D. V. Filosofov. Sorption of Metal Ions on an Anion-Exchange Resin in an Ammonium Acetate Solution. Russian Journal of Physical Chemistry A 2020, 94 (6) , 1190-1194. https://doi.org/10.1134/S0036024420060175
    32. Axel Tjörnstrand, Olivera Casar‐Borota, Kerstin Heurling, Michael Schöll, Peter Gjertsson, Jakob Himmelman, Oleksiy Itsenko, Oskar Ragnarsson, Helena Filipsson Nyström. Lower 68 Ga‐DOTATOC uptake in nonfunctioning pituitary neuroendocrine tumours compared to normal pituitary gland—A proof‐of‐concept study. Clinical Endocrinology 2020, 92 (3) , 222-231. https://doi.org/10.1111/cen.14144
    33. Aiman H. Alnahwi, Sébastien Tremblay, Samia Ait-Mohand, Jean-François Beaudoin, Brigitte Guérin. Automated radiosynthesis of 68Ga for large-scale routine production using 68Zn pressed target. Applied Radiation and Isotopes 2020, 156 , 109014. https://doi.org/10.1016/j.apradiso.2019.109014
    34. Sung-Hee Jung, Jinho Moon, Jang-Guen Park, Jae Cheong Lim. Study on visualization of water mixing flows in a digester equipped with a vertical impeller by using radiotracers. Nuclear Engineering and Technology 2020, 52 (1) , 170-177. https://doi.org/10.1016/j.net.2019.07.012
    35. Jean-Philippe Sinnes, Johannes Nagel, Bradley P. Waldron, Theodosia Maina, Berthold A. Nock, Ralf K. Bergmann, Martin Ullrich, Jens Pietzsch, Michael Bachmann, Richard P. Baum, Frank Rösch. Instant kit preparation of 68Ga-radiopharmaceuticals via the hybrid chelator DATA: clinical translation of [68Ga]Ga-DATA-TOC. EJNMMI Research 2019, 9 (1) https://doi.org/10.1186/s13550-019-0516-7
    36. Michael Meisenheimer, Stefan Kürpig, Markus Essler, Elisabeth Eppard. Ethanol effects on 68Ga-radiolabelling efficacy and radiolysis in automated synthesis utilizing NaCl post-processing. EJNMMI Radiopharmacy and Chemistry 2019, 4 (1) https://doi.org/10.1186/s41181-019-0076-1
    37. Anni Gålne, Helen Almquist, Martin Almquist, Cecilia Hindorf, Tomas Ohlsson, Erik Nordenström, Anna Sundlöv, Elin Trägårdh. A Prospective Observational Study to Evaluate the Effects of Long-Acting Somatostatin Analogs on 68 Ga-DOTATATE Uptake in Patients with Neuroendocrine Tumors. Journal of Nuclear Medicine 2019, 60 (12) , 1717-1723. https://doi.org/10.2967/jnumed.119.226332
    38. Dmitrii Antuganov, Vasilii Timofeev, Ksenija Timofeeva, Yulija Antuganova, Yulia A. Kondratenko. Evaluation of Protic Ionic Liquids Based on Triethanolammonium and Tris(hydroxymethyl)methylammonium Salts as Buffers for 68 Ga‐Radiolabelling of PSMA‐HBED‐CC. ChemistrySelect 2019, 4 (43) , 12524-12527. https://doi.org/10.1002/slct.201902588
    39. Ruslan Cusnir, Andrew Cakebread, Margaret S. Cooper, Jennifer D. Young, Philip J. Blower, Michelle T. Ma. The effects of trace metal impurities on Ga-68-radiolabelling with a tris(3-hydroxy-1,6-dimethylpyridin-4-one) (THP) chelator. RSC Advances 2019, 9 (64) , 37214-37221. https://doi.org/10.1039/C9RA07723E
    40. A. Socan, M. Petrik, P. Kolenc Peitl, M. Krošelj, C. Rangger, Z. Novy, U. Svajger, T. Gmeiner, C. Decristoforo. On-cartridge preparation and evaluation of 68Ga-, 89Zr- and 64Cu-precursors for cell radiolabelling. Nuclear Medicine and Biology 2019, 71 , 23-31. https://doi.org/10.1016/j.nucmedbio.2019.04.001
    41. Segundo Francisco Garcia‐Arguello, Beatriz Lopez‐Lorenzo, Rafael Ruiz‐Cruces. Automated production of [ 68 Ga]Ga‐DOTANOC and [ 68 Ga]Ga‐PSMA‐11 using a TRACERlab FX FN synthesis module. Journal of Labelled Compounds and Radiopharmaceuticals 2019, 62 (3) , 146-153. https://doi.org/10.1002/jlcr.3706
    42. Ivan Ho Shon, Michael P. Gotsbacher, Jennifer Guille, Divesh Kumar, Rachel Codd, Philip Hogg. Preparation of a Dithiol-Reactive Probe for PET Imaging of Cell Death. 2019, 295-304. https://doi.org/10.1007/978-1-4939-9187-7_19
    43. Deidré Prince, Daniel Rossouw, Sietske Rubow. Optimization of a Labeling and Kit Preparation Method for Ga-68 Labeled DOTATATE, Using Cation Exchange Resin Purified Ga-68 Eluates Obtained from a Tin Dioxide 68Ge/68Ga Generator. Molecular Imaging and Biology 2018, 20 (6) , 1008-1014. https://doi.org/10.1007/s11307-018-1195-x
    44. Jose M Anton-Rodriguez, Georgios Krokos, Fotis Kotasidis, Marie-Claude Asselin, Olivia Morris, Peter Julyan, Anthony Archer, Julian C Matthews. Experimental validation of estimated spatially variant radioisotope-specific point spread functions using published positron range simulations and fluorine-18 measurements. Physics in Medicine & Biology 2018, 63 (24) , 24NT01. https://doi.org/10.1088/1361-6560/aaecb6
    45. Elisabeth Eppard, Ana de la Fuente, Nicole Mohr, Mareli Allmeroth, Rudolf Zentel, Matthias Miederer, Stefanie Pektor, Frank Rösch. Labeling of DOTA-conjugated HPMA-based polymers with trivalent metallic radionuclides for molecular imaging. EJNMMI Research 2018, 8 (1) https://doi.org/10.1186/s13550-018-0372-x
    46. Anchal Ghai, Baljinder Singh, Mengshi Li, Tamara A. Daniels, Richard Coelho, Kelly Orcutt, G. Leonard Watkins, Jeffrey P. Norenberg, Donna Cvet, Michael K. Schultz. Optimizing the radiosynthesis of [68Ga]DOTA-MLN6907 peptide containing three disulfide cyclization bonds – a GCC specific chelate for clinical radiopharmaceuticals. Applied Radiation and Isotopes 2018, 140 , 333-341. https://doi.org/10.1016/j.apradiso.2018.08.006
    47. Karin M. Nielsen, Nis P. Jørgensen, Majbritt H. Kyneb, Per Borghammer, Rikke L. Meyer, Trine R. Thomsen, Dirk Bender, Svend B. Jensen, Ole L. Nielsen, Aage K.O. Alstrup. Preclinical evaluation of potential infection‐imaging probe [ 68 Ga] Ga‐DOTA‐K‐A9 in sterile and infectious inflammation. Journal of Labelled Compounds and Radiopharmaceuticals 2018, 61 (10) , 780-795. https://doi.org/10.1002/jlcr.3640
    48. Egesta Lopci, Alberto Saita, Massimo Lazzeri, Giovanni Lughezzani, Piergiuseppe Colombo, Nicolò Maria Buffi, Rodolfo Hurle, Katia Marzo, Roberto Peschechera, Alessio Benetti, Silvia Zandegiacomo, Luisa Pasini, Giuliana Lista, Pasquale Cardone, Angelo Castello, Davide Maffei, Luca Balzarini, Arturo Chiti, Giorgio Guazzoni, Paolo Casale. 68 Ga-PSMA Positron Emission Tomography/Computerized Tomography for Primary Diagnosis of Prostate Cancer in Men with Contraindications to or Negative Multiparametric Magnetic Resonance Imaging: A Prospective Observational Study. Journal of Urology 2018, 200 (1) , 95-103. https://doi.org/10.1016/j.juro.2018.01.079
    49. Usha Pandey, Aruna Korde, Archana Mukherjee, Ajit Shinto, K.K. Kamaleswaran, Raghi P. Jose, Naresh Gamre, Ashutosh Dash. Clinical experience with indigenous kit-based preparation of 68Ga-DOTATOC using commercial 68Ge/68Ga generator. Applied Radiation and Isotopes 2018, 136 , 59-64. https://doi.org/10.1016/j.apradiso.2018.02.002
    50. Guillaume P. Nicolas, Seval Beykan, Hakim Bouterfa, Jens Kaufmann, Andreas Bauman, Michael Lassmann, Jean Claude Reubi, Jean E.F. Rivier, Helmut R. Maecke, Melpomeni Fani, Damian Wild. Safety, Biodistribution, and Radiation Dosimetry of 68 Ga-OPS202 in Patients with Gastroenteropancreatic Neuroendocrine Tumors: A Prospective Phase I Imaging Study. Journal of Nuclear Medicine 2018, 59 (6) , 909-914. https://doi.org/10.2967/jnumed.117.199737
    51. Richard P. Baum, Harshad R. Kulkarni, Aviral Singh, Daniel Kaemmerer, Dirk Mueller, Vikas Prasad, Merten Hommann, Franz C. Robiller, Karin Niepsch, Holger Franz, Arthur Jochems, Philippe Lambin, Dieter Hörsch. Results and adverse events of personalized peptide receptor radionuclide therapy with 90Yttrium and 177Lutetium in 1048 patients with neuroendocrine neoplasms. Oncotarget 2018, 9 (24) , 16932-16950. https://doi.org/10.18632/oncotarget.24524
    52. Saima Nawaz, Gregory E. D. Mullen, Kavitha Sunassee, Jayanta Bordoloi, Philip J. Blower, James R. Ballinger. Simple, mild, one-step labelling of proteins with gallium-68 using a tris(hydroxypyridinone) bifunctional chelator: a 68Ga-THP-scFv targeting the prostate-specific membrane antigen. EJNMMI Research 2017, 7 (1) https://doi.org/10.1186/s13550-017-0336-6
    53. Yusuf Menda, Thomas M. O’Dorisio, James R. Howe, Michael Schultz, Joseph S. Dillon, David Dick, G. Leonard Watkins, Timothy Ginader, David L. Bushnell, John J. Sunderland, Gideon K.D. Zamba, Michael Graham, M. Sue O’Dorisio. Localization of Unknown Primary Site with 68 Ga-DOTATOC PET/CT in Patients with Metastatic Neuroendocrine Tumor. Journal of Nuclear Medicine 2017, 58 (7) , 1054-1057. https://doi.org/10.2967/jnumed.116.180984
    54. Svend B. Jensen, Meeri Käkelä, Lars Jødal, Olli Moisio, Aage K.O. Alstrup, Sirpa Jalkanen, Anne Roivainen. Exploring the radiosynthesis and in vitro characteristics of [ 68 Ga]Ga‐DOTA‐Siglec‐9. Journal of Labelled Compounds and Radiopharmaceuticals 2017, 60 (9) , 439-449. https://doi.org/10.1002/jlcr.3525
    55. Christian Uprimny, Alexander Stephan Kroiss, Clemens Decristoforo, Josef Fritz, Elisabeth von Guggenberg, Dorota Kendler, Lorenza Scarpa, Gianpaolo di Santo, Llanos Geraldo Roig, Johanna Maffey-Steffan, Wolfgang Horninger, Irene Johanna Virgolini. 68Ga-PSMA-11 PET/CT in primary staging of prostate cancer: PSA and Gleason score predict the intensity of tracer accumulation in the primary tumour. European Journal of Nuclear Medicine and Molecular Imaging 2017, 44 (6) , 941-949. https://doi.org/10.1007/s00259-017-3631-6
    56. Christian Uprimny, Alexander Stephan Kroiss, Clemens Decristoforo, Josef Fritz, Boris Warwitz, Lorenza Scarpa, Llanos Geraldo Roig, Dorota Kendler, Elisabeth von Guggenberg, Jasmin Bektic, Wolfgang Horninger, Irene Johanna Virgolini. Early dynamic imaging in 68Ga- PSMA-11 PET/CT allows discrimination of urinary bladder activity and prostate cancer lesions. European Journal of Nuclear Medicine and Molecular Imaging 2017, 44 (5) , 765-775. https://doi.org/10.1007/s00259-016-3578-z
    57. D. Mueller, Harshad Kulkarni, Richard P. Baum, Andreas Odparlik. Rapid Synthesis of 68 Ga-labeled macroaggregated human serum albumin (MAA) for routine application in perfusion imaging using PET/CT. Applied Radiation and Isotopes 2017, 122 , 72-77. https://doi.org/10.1016/j.apradiso.2017.01.003
    58. Fabien Hyafil, Jaroslav Pelisek, Iina Laitinen, Margret Schottelius, Miriam Mohring, Yvonne Döring, Emiel P.C. van der Vorst, Michael Kallmayer, Katja Steiger, Andreas Poschenrieder, Johannes Notni, Johannes Fischer, Christine Baumgartner, Christoph Rischpler, Stephan G. Nekolla, Christian Weber, Hans-Henning Eckstein, Hans-Jürgen Wester, Markus Schwaiger. Imaging the Cytokine Receptor CXCR4 in Atherosclerotic Plaques with the Radiotracer 68 Ga-Pentixafor for PET. Journal of Nuclear Medicine 2017, 58 (3) , 499-506. https://doi.org/10.2967/jnumed.116.179663
    59. Thomas Ebenhan, Carl Wagener, Lauren E. Bambarger, Alvin S. Kalinda, Jan Rijn Zeevaart. Radiochemistry. 2017, 77-131. https://doi.org/10.1007/978-3-319-54592-9_4
    60. Johanna Seemann, Bradley Waldron, David Parker, Frank Roesch. DATATOC: a novel conjugate for kit-type 68Ga labelling of TOC at ambient temperature. EJNMMI Radiopharmacy and Chemistry 2017, 1 (1) https://doi.org/10.1186/s41181-016-0007-3
    61. Koki Hasegawa, Emi Kawachi, Yoshinari Uehara, Tsuyoshi Yoshida, Satoshi Imaizumi, Masahiro Ogawa, Shin‐ichiro Miura, Keijiro Saku. Improved 68 Ga‐labeling method using ethanol addition: Application to the α‐helical peptide DOTA‐FAMP. Journal of Labelled Compounds and Radiopharmaceuticals 2017, 60 (1) , 55-61. https://doi.org/10.1002/jlcr.3474
    62. Sankha Chattopadhyay, Md. Neyar Alam, Madhu Smita, Umesh Kumar, Sujata Saha Das, Luna Barua. A simple method for preparation of pure 68 Ga‐acetate precursor for formulation of radiopharmaceuticals: Physicochemical characteristics of the 68 Ga eluate of the SnO 2 based‐ 68 Ge/ 68 Ga column generator. Journal of Labelled Compounds and Radiopharmaceuticals 2017, 60 (1) , 62-68. https://doi.org/10.1002/jlcr.3475
    63. Karin M. Nielsen, Majbritt H. Kyneb, Aage K.O. Alstrup, Jakob J. Jensen, Dirk Bender, Henrik C. Schønheyder, Pia Afzelius, Ole L. Nielsen, Svend B. Jensen. 68 Ga-labeled phage-display selected peptides as tracers for positron emission tomography imaging of Staphylococcus aureus biofilm-associated infections: Selection, radiolabelling and preliminary biological evaluation. Nuclear Medicine and Biology 2016, 43 (10) , 593-605. https://doi.org/10.1016/j.nucmedbio.2016.07.002
    64. Dirk Mueller, Wouter A P Breeman, Ingo Klette, Michael Gottschaldt, Andreas Odparlik, Manfred Baehre, Izabela Tworowska, Michael K Schultz. Radiolabeling of DOTA-like conjugated peptides with generator-produced 68Ga and using NaCl-based cationic elution method. Nature Protocols 2016, 11 (6) , 1057-1066. https://doi.org/10.1038/nprot.2016.060
    65. Marlies Gijs, Sylvestre Dammicco, Corentin Warnier, An Aerts, Nathalie R.E.N Impens, Matthias D'Huyvetter, Marc Léonard, Sarah Baatout, André Luxen. Gallium‐68‐labelled NOTA‐oligonucleotides: an optimized method for their preparation. Journal of Labelled Compounds and Radiopharmaceuticals 2016, 59 (2) , 63-71. https://doi.org/10.1002/jlcr.3363
    66. Benjamin P. Burke, Johanna Seemann, Stephen J. Archibald. Advanced Chelator Design for Metal Complexes in Imaging Applications. 2016, 301-339. https://doi.org/10.1016/bs.adioch.2015.11.002
    67. Eduardo Romero, Alfonso Martínez, Marta Oteo, Angel García, Miguel Angel Morcillo. Preparation of 68 Ga-labelled DOTA-peptides using a manual labelling approach for small-animal PET imaging. Applied Radiation and Isotopes 2016, 107 , 113-120. https://doi.org/10.1016/j.apradiso.2015.10.005
    68. Izabela Tworowska, David Ranganathan, Sanjay Thamake, Ebrahim Delpassand, Alireza Mojtahedi, Michael K. Schultz, Konstantin Zhernosekov, Sebastian Marx. Radiosynthesis of clinical doses of 68 Ga-DOTATATE (GalioMedix™) and validation of organic-matrix-based 68 Ge/ 68 Ga generators. Nuclear Medicine and Biology 2016, 43 (1) , 19-26. https://doi.org/10.1016/j.nucmedbio.2015.08.004
    69. Michelle T. Ma, Carleen Cullinane, Kelly Waldeck, Peter Roselt, Rodney J. Hicks, Philip J. Blower. Rapid kit-based 68Ga-labelling and PET imaging with THP-Tyr3-octreotate: a preliminary comparison with DOTA-Tyr3-octreotate. EJNMMI Research 2015, 5 (1) https://doi.org/10.1186/s13550-015-0131-1
    70. Rana Ben Azzouna, Faisal Alshoukr, Sébastien Leygnac, Alexandre Guez, Walter Gonzalez, Olivier Rousseaux, Denis Guilloteau, Dominique Le Guludec. A new 68 Ga anionic concentration and purification method for automated synthesis of [ 68 Ga]-DOTA or NODAGA conjugated peptides in high radiochemical purity. Journal of Labelled Compounds and Radiopharmaceuticals 2015, 58 (10) , 403-410. https://doi.org/10.1002/jlcr.3316
    71. Vítor H. Alves, M. I. M. Prata, Antero J. Abrunhosa, Miguel Castelo-Branco. GMP production of 68Ga-labelled DOTA-NOC on IBA Synthera. Journal of Radioanalytical and Nuclear Chemistry 2015, 305 (2) , 501-506. https://doi.org/10.1007/s10967-015-3989-5
    72. Francesco Ceci, Christian Uprimny, Bernhard Nilica, Llanos Geraldo, Dorota Kendler, Alexander Kroiss, Jasmin Bektic, Wolfgang Horninger, Peter Lukas, Clemens Decristoforo, Paolo Castellucci, Stefano Fanti, Irene J. Virgolini. 68Ga-PSMA PET/CT for restaging recurrent prostate cancer: which factors are associated with PET/CT detection rate?. European Journal of Nuclear Medicine and Molecular Imaging 2015, 42 (8) , 1284-1294. https://doi.org/10.1007/s00259-015-3078-6
    73. A. A. Larenkov, A. B. Bruskin, G. E. Kodina. Preparation of highly purified 68Ga solutions via ion exchange in hydrochloric acid–ethanol mixtures. Journal of Radioanalytical and Nuclear Chemistry 2015, 305 (1) , 147-160. https://doi.org/10.1007/s10967-015-4089-2
    74. Irina Velikyan. 68Ga-Based Radiopharmaceuticals: Production and Application Relationship. Molecules 2015, 20 (7) , 12913-12943. https://doi.org/10.3390/molecules200712913
    75. Johanna Seemann, Bradley P. Waldron, Frank Roesch, David Parker. Approaching ‘Kit‐Type’ Labelling with 68 Ga: The DATA Chelators. ChemMedChem 2015, 10 (6) , 1019-1026. https://doi.org/10.1002/cmdc.201500092
    76. Richard P. Baum, Harshad R. Kulkarni, Dirk Müller, Stanley Satz, Narasimhan Danthi, Young-Seung Kim, Martin W. Brechbiel. First-In-Human Study Demonstrating Tumor-Angiogenesis by PET/CT Imaging with 68 Ga-NODAGA-THERANOST, a High-Affinity Peptidomimetic for α v β 3 Integrin Receptor Targeting. Cancer Biotherapy and Radiopharmaceuticals 2015, 30 (4) , 152-159. https://doi.org/10.1089/cbr.2014.1747
    77. Mattia Asti, Michele Iori, Pier Cesare Capponi, Sara Rubagotti, Alessandro Fraternali, Annibale Versari. Development of a simple kit-based method for preparation of pharmaceutical-grade 68Ga-DOTATOC. Nuclear Medicine Communications 2015, 36 (5) , 502-510. https://doi.org/10.1097/MNM.0000000000000275
    78. Johanna Seemann, Elisabeth Eppard, Bradley P. Waldron, Tobias L. Ross, Frank Roesch. Cation exchange-based post-processing of 68Ga-eluate: A comparison of three solvent systems for labelling of DOTATOC, NO2APBP and DATAm. Applied Radiation and Isotopes 2015, 98 , 54-59. https://doi.org/10.1016/j.apradiso.2015.01.023
    79. C. Lamesa, A. Rauscher, F. Lacoeuille, M.-D. Desruet, B. Guillet, A. Faivre-Chauvet. 68Ga somatostatin analog radiolabelling: The radiopharmacist's point of view. Médecine Nucléaire 2015, 39 (1) , 3-10. https://doi.org/10.1016/j.mednuc.2015.01.003
    80. Peter A. Knetsch, Chuangyan Zhai, Christine Rangger, Michael Blatzer, Hubertus Haas, Piriya Kaeopookum, Roland Haubner, Clemens Decristoforo. [68Ga]FSC-(RGD)3 a trimeric RGD peptide for imaging αvβ3 integrin expression based on a novel siderophore derived chelating scaffold—synthesis and evaluation. Nuclear Medicine and Biology 2015, 42 (2) , 115-122. https://doi.org/10.1016/j.nucmedbio.2014.10.001
    81. Botshelo B. Mokaleng, Thomas Ebenhan, Suhas Ramesh, Thavendran Govender, Hendrik G. Kruger, Raveen Parboosing, Puja P. Hazari, Anil K. Mishra, Biljana Marjanovic-Painter, Jan R. Zeevaart, Mike M. Sathekge. Synthesis, 68 Ga-Radiolabeling, and Preliminary In Vivo Assessment of a Depsipeptide-Derived Compound as a Potential PET/CT Infection Imaging Agent. BioMed Research International 2015, 2015 , 1-12. https://doi.org/10.1155/2015/284354
    82. Martina Weineisen, Jakub Simecek, Margret Schottelius, Markus Schwaiger, Hans-Jürgen Wester. Synthesis and preclinical evaluation of DOTAGA-conjugated PSMA ligands for functional imaging and endoradiotherapy of prostate cancer. EJNMMI Research 2014, 4 (1) https://doi.org/10.1186/s13550-014-0063-1
    83. Kristell L.S. Chatalic, Gerben M. Franssen, Wytske M. van Weerden, William J. McBride, Peter Laverman, Erik de Blois, Bouchra Hajjaj, Luc Brunel, David M. Goldenberg, Jean-Alain Fehrentz, Jean Martinez, Otto C. Boerman, Marion de Jong. Preclinical Comparison of Al 18 F- and 68 Ga-Labeled Gastrin-Releasing Peptide Receptor Antagonists for PET Imaging of Prostate Cancer. Journal of Nuclear Medicine 2014, 55 (12) , 2050-2056. https://doi.org/10.2967/jnumed.114.141143
    84. M. Chomet, T. Cross, B. Géraudie, A.-S. Chipan, J.-N. Talbot, V. Nataf. Gallium-68 : considérations pratiques pour le succès des applications cliniques au sein d’un service de médecine nucléaire. Médecine Nucléaire 2014, 38 (4) , 229-234. https://doi.org/10.1016/j.mednuc.2014.07.003
    85. Archana Mukherjee, Usha Pandey, Rubel Chakravarty, Haladhar Dev Sarma, Ashutosh Dash. Development of Single Vial Kits for Preparation of 68Ga-Labelled Peptides for PET Imaging of Neuroendocrine Tumours. Molecular Imaging and Biology 2014, 16 (4) , 550-557. https://doi.org/10.1007/s11307-014-0719-2
    86. Johannes Notni, Jakub Šimeček, Hans‐Jürgen Wester. Phosphinic Acid Functionalized Polyazacycloalkane Chelators for Radiodiagnostics and Radiotherapeutics: Unique Characteristics and Applications. ChemMedChem 2014, 9 (6) , 1107-1115. https://doi.org/10.1002/cmdc.201400055
    87. Yuji Mikata, Michael Gottschaldt. Metal Complexes of Carbohydrate‐targeted Ligands in Medicinal Inorganic Chemistry. 2014, 145-173. https://doi.org/10.1002/9781118697191.ch6
    88. Krzysztof Kilian. 68Ga-DOTA and analogs: Current status and future perspectives. Reports of Practical Oncology & Radiotherapy 2014, 19 , S13-S21. https://doi.org/10.1016/j.rpor.2014.04.016
    89. Benjamin P. Burke, Gonçalo S. Clemente, Stephen J. Archibald. Recent advances in chelator design and labelling methodology for 68 Ga radiopharmaceuticals. Journal of Labelled Compounds and Radiopharmaceuticals 2014, 57 (4) , 239-243. https://doi.org/10.1002/jlcr.3146
    90. Rubel Chakravarty, Ashutosh Dash. Nanomaterial-based adsorbents: the prospect of developing new generation radionuclide generators to meet future research and clinical demands. Journal of Radioanalytical and Nuclear Chemistry 2014, 299 (1) , 741-757. https://doi.org/10.1007/s10967-013-2823-1
    91. René Martin, Steffen Jüttler, Marco Müller, Hans-Jürgen Wester. Cationic eluate pretreatment for automated synthesis of [68Ga]CPCR4.2. Nuclear Medicine and Biology 2014, 41 (1) , 84-89. https://doi.org/10.1016/j.nucmedbio.2013.09.002
    92. Wei-Yu Tseng, R. Michael van Dam. Compact microfluidic device for rapid concentration of PET tracers. Lab Chip 2014, 14 (13) , 2293-2302. https://doi.org/10.1039/C4LC00286E
    93. A. A. Larenkov, A. B. Bruskin, G. E. Kodina. Preparation of high-purity 68Ga solutions by ion exchange in mixed acetone-hydrochloric acid medium. Radiochemistry 2014, 56 (1) , 57-65. https://doi.org/10.1134/S1066362214010123
    94. Rubel Chakravarty, Sudipta Chakraborty, Ramu Ram, Ashutosh Dash, M.R.A. Pillai. Long-Term Evaluation of ‘BARC 68 Ge/ 68 Ga Generator’ Based on the Nanoceria-Polyacrylonitrile Composite Sorbent. Cancer Biotherapy and Radiopharmaceuticals 2013, 28 (8) , 631-637. https://doi.org/10.1089/cbr.2012.1470
    95. Svend B. Jensen, Karin M. Nielsen, Dennis Mewis, Jens Kaufmann. Fast and simple one-step preparation of 68Ga citrate for routine clinical PET. Nuclear Medicine Communications 2013, 34 (8) , 806-812. https://doi.org/10.1097/MNM.0b013e328363142f
    96. Yusuf Menda, Laura L. Boles Ponto, Michael K. Schultz, Gideon K.D. Zamba, G. Leonard Watkins, David L. Bushnell, Mark T. Madsen, John J. Sunderland, Michael M. Graham, Thomas M. O’Dorisio, M. Sue O’Dorisio. Repeatability of Gallium-68 DOTATOC Positron Emission Tomographic Imaging in Neuroendocrine Tumors. Pancreas 2013, 42 (6) , 937-943. https://doi.org/10.1097/MPA.0b013e318287ce21
    97. Michael K. Schultz, Dirk Mueller, Richard P. Baum, G. Leonard Watkins, Wouter A.P. Breeman. A new automated NaCl based robust method for routine production of gallium-68 labeled peptides. Applied Radiation and Isotopes 2013, 76 , 46-54. https://doi.org/10.1016/j.apradiso.2012.08.011
    98. Frank Rösch. 68Ge/68Ga Generators and 68Ga Radiopharmaceutical Chemistry on Their Way into a New Century. Journal of Postgraduate Medicine, Education and Research 2013, 47 (1) , 18-25. https://doi.org/10.5005/jp-journals-10028-1052
    99. Richard P Baum, Harshad R Kulkarni. Molecular Imaging using PET/CT Applying 68Ga-Labeled Tracers and Targeted Radionuclide Therapy: Theranostics on the Way to Personalized Medicine. Journal of Postgraduate Medicine, Education and Research 2013, 47 (1) , 47-53. https://doi.org/10.5005/jp-journals-10028-1055
    100. Rubel Chakravarty, Sudipta Chakraborty, Ashutosh Dash, M.R.A. Pillai. Detailed evaluation on the effect of metal ion impurities on complexation of generator eluted 68Ga with different bifunctional chelators. Nuclear Medicine and Biology 2013, 40 (2) , 197-205. https://doi.org/10.1016/j.nucmedbio.2012.11.001
    Load all citations

    Bioconjugate Chemistry

    Cite this: Bioconjugate Chem. 2012, 23, 8, 1712–1717
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bc300103t
    Published July 4, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    2240

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.