ACS Publications. Most Trusted. Most Cited. Most Read
Synthesis and Biological Evaluation of Low Molecular Weight Fluorescent Imaging Agents for the Prostate-Specific Membrane Antigen
My Activity

Figure 1Loading Img
    Article

    Synthesis and Biological Evaluation of Low Molecular Weight Fluorescent Imaging Agents for the Prostate-Specific Membrane Antigen
    Click to copy article linkArticle link copied!

    View Author Information
    Russell H. Morgan Department of Radiology and §NeuroTranslational Drug Discovery Program, Brain Science Institute, Johns Hopkins Medical School, Baltimore, Maryland 21231, United States
    College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Yeongi-gun, Chungnam 339-700, South Korea
    *Phone: 410-955-2789. Fax: 443-817-0990. E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    Bioconjugate Chemistry

    Cite this: Bioconjugate Chem. 2012, 23, 12, 2377–2385
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bc3003919
    Published November 19, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Targeted near-infrared (NIR) optical imaging can be used in vivo to detect specific tissues, including malignant cells. A series of NIR fluorescent ligands targeting the prostate-specific membrane antigen (PSMA) was synthesized and each compound was tested for its ability to image PSMA+ tissues in experimental models of prostate cancer. The agents were prepared by conjugating commercially available active esters of NIR dyes, including IRDye800CW, IRDye800RS, Cy5.5, Cy7, or a derivative of indocyanine green (ICG) to the terminal amine group of (S)-2-(3-((S)-5-amino-1-carboxypentyl)ureido)pentanedioic acid 1, (14S,18S)-1-amino-8,16-dioxo-3,6-dioxa-9,15,17-triazaicosane-14,18,20-tricarboxylic acid 2 and (3S,7S)-26-amino-5,13,20-trioxo-4,6,12,21-tetraazahexacosane-1,3,7,22-tetracarboxylic acid 3. The Ki values for the dye–inhibitor conjugates ranged from 1 to 700 pM. All compounds proved capable of imaging PSMA+ tumors selectively to varying degrees depending on the choice of fluorophore and linker. The highest tumor uptake was observed with IRDye800CW employing a poly(ethylene glycol) or lysine–suberate linker, as in 800CW-2 and 800CW-3, while the highest tumor to nontarget tissue ratios were obtained for Cy7 with these same linkers, as in Cy7-2 and Cy7-3. Compounds 2 and 3 provide useful scaffolds for targeting of PSMA+ tissues in vivo and should be useful for preparing NIR dye conjugates designed specifically for clinical intraoperative optical imaging devices.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    HPLC conditions and traces for the final compounds, ligated to the commercial and previously reported NIR dyes used herein, are provided: 800CW-1; 800CW-2; 800CW-3; 800RS-1; 800RS-2; 800RS-3; ICG-1; ICG-2; ICG-3; Cy7-1; Cy7-2; Cy7-3; Cy5.5-1; Cy5.5-2; Cy5.5-3. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 79 publications.

    1. Yinwen Wang, Hongmei Yuan, Nan Liu, Sufan Tang, Yue Feng, Yang Liu, Ping Cai, Li Xia, Wenlu Zheng, Yue Chen, Zhijun Zhou. High Affinity and FAP-Targeted Radiotracers: A Potential Design Strategy to Improve the Pharmacokinetics and Tumor Uptake for FAP Inhibitors. Journal of Medicinal Chemistry 2023, 66 (13) , 8614-8627. https://doi.org/10.1021/acs.jmedchem.3c00259
    2. Hans F. Schmitthenner, Taylor M. Barrett, Stephanie A. Beach, Lauren E. Heese, Chelsea Weidman, Damien E. Dobson, Emily R. Mahoney, Nicholas C. Schug, Kelsea G. Jones, Ceyda Durmaz, Osarhuwense Otasowie, Sean Aronow, Yin Peng Lee, Henry D. Ophardt, Amy E. Becker, Joseph P. Hornak, Irene M. Evans, Maureen C. Ferran. Modular Synthesis of Peptide-Based Single- and Multimodal Targeted Molecular Imaging Agents. ACS Applied Bio Materials 2021, 4 (7) , 5435-5448. https://doi.org/10.1021/acsabm.1c00157
    3. Kirsten E. Martin, Alexia G. Cosby, Eszter Boros. Multiplex and In Vivo Optical Imaging of Discrete Luminescent Lanthanide Complexes Enabled by In Situ Cherenkov Radiation Mediated Energy Transfer. Journal of the American Chemical Society 2021, 143 (24) , 9206-9214. https://doi.org/10.1021/jacs.1c04264
    4. Longfei Zhang, Xiaojing Shi, Yuying Li, Xiaojiang Duan, Zeyu Zhang, Hualong Fu, Xing Yang, Jie Tian, Zhenhua Hu, Mengchao Cui. Visualizing Tumors in Real Time: A Highly Sensitive PSMA Probe for NIR-II Imaging and Intraoperative Tumor Resection. Journal of Medicinal Chemistry 2021, 64 (11) , 7735-7745. https://doi.org/10.1021/acs.jmedchem.1c00444
    5. Aleksei E. Machulkin, Radik R. Shafikov, Anastasia A. Uspenskaya, Stanislav A. Petrov, Anton P. Ber, Dmitry A. Skvortsov, Ekaterina A. Nimenko, Nikolay U. Zyk, Galina B. Smirnova, Vadim S. Pokrovsky, Maxim A. Abakumov, Irina V. Saltykova, Rauf T. Akhmirov, Anastasiia S. Garanina, Vladimir I. Polshakov, Oleg Y. Saveliev, Yan A. Ivanenkov, Anastasiya V. Aladinskaya, Alexander V. Finko, Emil U. Yamansarov, Olga O. Krasnovskaya, Alexander S. Erofeev, Petr V. Gorelkin, Olga A. Dontsova, Elena K. Beloglazkina, Nikolay V. Zyk, Elena S. Khazanova, Alexander G. Majouga. Synthesis and Biological Evaluation of PSMA Ligands with Aromatic Residues and Fluorescent Conjugates Based on Them. Journal of Medicinal Chemistry 2021, 64 (8) , 4532-4552. https://doi.org/10.1021/acs.jmedchem.0c01935
    6. Xiaojiang Duan, Futao Liu, Hongmok Kwon, Youngjoo Byun, Il Minn, Xuekang Cai, Jingming Zhang, Martin G. Pomper, Zhi Yang, Zhen Xi, Xing Yang. (S)-3-(Carboxyformamido)-2-(3-(carboxymethyl)ureido)propanoic Acid as a Novel PSMA Targeting Scaffold for Prostate Cancer Imaging. Journal of Medicinal Chemistry 2020, 63 (7) , 3563-3576. https://doi.org/10.1021/acs.jmedchem.9b02031
    7. Albertus Wijnand Hensbergen, Danny M. van Willigen, Florian van Beurden, Pim J. van Leeuwen, Tessa Buckle, Margret Schottelius, Tobias Maurer, Hans-Jürgen Wester, Fijs W. B. van Leeuwen. Image-Guided Surgery: Are We Getting the Most Out of Small-Molecule Prostate-Specific-Membrane-Antigen-Targeted Tracers?. Bioconjugate Chemistry 2020, 31 (2) , 375-395. https://doi.org/10.1021/acs.bioconjchem.9b00758
    8. Melanie A. Kimm, Helena Haas, Miriam Stölting, Michael Kuhlmann, Christiane Geyer, Sarah Glasl, Michael Schäfers, Vasilis Ntziachristos, Moritz Wildgruber, Carsten Höltke. Targeting Endothelin Receptors in a Murine Model of Myocardial Infarction Using a Small Molecular Fluorescent Probe. Molecular Pharmaceutics 2020, 17 (1) , 109-117. https://doi.org/10.1021/acs.molpharmaceut.9b00810
    9. Young-Do Kwon, Jung-Mi Oh, Minh Thanh La, Hea-Jong Chung, Sun Joo Lee, Sungkun Chun, Sun-Hwa Lee, Byung-Hoon Jeong, Hee-Kwon Kim. Synthesis and Evaluation of Multifunctional Fluorescent Inhibitors with Synergistic Interaction of Prostate-Specific Membrane Antigen and Hypoxia for Prostate Cancer. Bioconjugate Chemistry 2019, 30 (1) , 90-100. https://doi.org/10.1021/acs.bioconjchem.8b00767
    10. Xing Yang, Ronnie C. Mease, Mrudula Pullambhatla, Ala Lisok, Ying Chen, Catherine A. Foss, Yuchuan Wang, Hassan Shallal, Hannah Edelman, Adam T. Hoye, Giorgio Attardo, Sridhar Nimmagadda, and Martin G. Pomper . [18F]Fluorobenzoyllysinepentanedioic Acid Carbamates: New Scaffolds for Positron Emission Tomography (PET) Imaging of Prostate-Specific Membrane Antigen (PSMA). Journal of Medicinal Chemistry 2016, 59 (1) , 206-218. https://doi.org/10.1021/acs.jmedchem.5b01268
    11. Jan Tykvart, Jiří Schimer, Andrej Jančařík, Jitka Bařinková, Václav Navrátil, Jana Starková, Karolína Šrámková, Jan Konvalinka, Pavel Majer, and Pavel Šácha . Design of Highly Potent Urea-Based, Exosite-Binding Inhibitors Selective for Glutamate Carboxypeptidase II. Journal of Medicinal Chemistry 2015, 58 (10) , 4357-4363. https://doi.org/10.1021/acs.jmedchem.5b00278
    12. Sagnik Sengupta, Amit Pandit, Mena Asha Krishnan, Rajesh Sharma, Sumith A Kularatne, Venkatesh Chelvam. Design, synthesis, and biological evaluation of novel thiourea derivatives as small molecule inhibitors for prostate specific membrane antigen. Bioorganic Chemistry 2025, 155 , 108130. https://doi.org/10.1016/j.bioorg.2025.108130
    13. Aditi A. Shirke, Ethan Walker, Sriprada Chavali, Gopalakrishnan Ramamurthy, Lifang Zhang, Abhiram Panigrahi, James P. Basilion, Xinning Wang. A Synergistic Strategy Combining Chemotherapy and Photodynamic Therapy to Eradicate Prostate Cancer. International Journal of Molecular Sciences 2024, 25 (13) , 7086. https://doi.org/10.3390/ijms25137086
    14. Christoph A. Fink, Eduards Mamlins, Jens Cardinale, Stefan Körber, Frederik L. Giesel. PSMA in Diagnostik und Therapie. 2024, 275-287. https://doi.org/10.1007/978-3-662-67192-4_11
    15. Yuchen Qiao, Bing Xu. Peptide Assemblies for Cancer Therapy. ChemMedChem 2023, 18 (17) https://doi.org/10.1002/cmdc.202300258
    16. Marjolein Verhoeven, Maryana Handula, Lilian van den Brink, Corrina M. A. de Ridder, Debra C. Stuurman, Yann Seimbille, Simone U. Dalm. Pre- and Intraoperative Visualization of GRPR-Expressing Solid Tumors: Preclinical Profiling of Novel Dual-Modality Probes for Nuclear and Fluorescence Imaging. Cancers 2023, 15 (7) , 2161. https://doi.org/10.3390/cancers15072161
    17. Huihui He, Ke Li, Hang Li, Shiliang Zhu, Shuai Qin, Yong Mao, Jianguo Lin, Ling Qiu, Chunjing Yu. Development of a multifunctional platform for near-infrared imaging and targeted radionuclide therapy for tumors. European Journal of Pharmaceutics and Biopharmaceutics 2023, 185 , 107-115. https://doi.org/10.1016/j.ejpb.2023.02.013
    18. Donghua Xie, Di Gu, Ming Lei, Cong Cai, Wen Zhong, Defeng Qi, Wenqi Wu, Guohua Zeng, Yongda Liu. The application of indocyanine green in guiding prostate cancer treatment. Asian Journal of Urology 2023, 10 (1) , 1-8. https://doi.org/10.1016/j.ajur.2021.07.004
    19. Yimin Chen, Yuying Li, Xi Gao, Mengchao Cui. Squaraine dye based prostate-specific membrane antigen probes for near-infrared fluorescence imaging of prostate cancer. Dyes and Pigments 2023, 208 , 110822. https://doi.org/10.1016/j.dyepig.2022.110822
    20. Aleksei E. Machulkin, Ekaterina A. Nimenko, Nikolay U. Zyk, Anastasiia A. Uspenskaia, Galina B. Smirnova, Irina I. Khan, Vadim S. Pokrovsky, Alexander N. Vaneev, Roman V. Timoshenko, Vugara V. Mamed-Nabizade, Maria V. Zavertkina, Alexander Erofeev, Petr Gorelkin, Alexander G. Majouga, Nikolay V. Zyk, Elena S. Khazanova, Elena K. Beloglazkina. Synthesis and Preclinical Evaluation of Small-Molecule Prostate-Specific Membrane Antigen-Targeted Abiraterone Conjugate. Molecules 2022, 27 (24) , 8795. https://doi.org/10.3390/molecules27248795
    21. Hui Li, Yujun Kim, Hyoje Jung, Ji Young Hyun, Injae Shin. Near-infrared (NIR) fluorescence-emitting small organic molecules for cancer imaging and therapy. Chemical Society Reviews 2022, 51 (21) , 8957-9008. https://doi.org/10.1039/D2CS00722C
    22. Xinzeyu Yi, Zheng Wang, Xiang Hu, Aixi Yu. Affinity probes based on small-molecule inhibitors for tumor imaging. Frontiers in Oncology 2022, 12 https://doi.org/10.3389/fonc.2022.1028493
    23. Agostino Cilibrizzi, Julie Tzu-Wen Wang, Siham Memdouh, Antonella Iacovone, Kate McElroy, Noor Jaffar, Jennifer Denise Young, Robert C. Hider, Philip Blower, Khuloud Al-Jamal, Vincenzo Abbate. PSMA-targeted NIR probes for image-guided detection of prostate cancer. Colloids and Surfaces B: Biointerfaces 2022, 218 , 112734. https://doi.org/10.1016/j.colsurfb.2022.112734
    24. Qin Xue, Jingliang Zhang, Jianhua Jiao, Weijun Qin, Xiaojian Yang. Photodynamic therapy for prostate cancer: Recent advances, challenges and opportunities. Frontiers in Oncology 2022, 12 https://doi.org/10.3389/fonc.2022.980239
    25. Weijie Zhang, He Wang, Tianjiao Wang, Dan Ding, Jianquan Hou, Yang Shi, Yuhua Huang. A Supramolecular Self‐Assembling Nanoagent by Inducing Intracellular Aggregation of PSMA for Prostate Cancer Molecularly Targeted Theranostics. Small 2022, 18 (38) https://doi.org/10.1002/smll.202203325
    26. He Wang, Zhangxin He, Xiao-Ang Liu, Yuhua Huang, Jianquan Hou, Weijie Zhang, Dan Ding. Advances in Prostate‐Specific Membrane Antigen (PSMA)‐Targeted Phototheranostics of Prostate Cancer. Small Structures 2022, 3 (8) https://doi.org/10.1002/sstr.202200036
    27. Xiaoying Ma, Lei Shi, Buyue Zhang, Lu Liu, Yao Fu, Xiufeng Zhang. Recent advances in bioprobes and biolabels based on cyanine dyes. Analytical and Bioanalytical Chemistry 2022, 414 (16) , 4551-4573. https://doi.org/10.1007/s00216-022-03995-8
    28. Yuan Li, Xiaojiang Duan, Hongchuang Xu, Jingming Zhang, Haoxi Zhou, Xiaojun Zhang, Jinming Zhang, Zhi Yang, Zhenhua Hu, Ning Zhang, Jie Tian, Xing Yang. Optimization of ODAP-Urea-based dual-modality PSMA targeting probes for sequential PET-CT and optical imaging. Bioorganic & Medicinal Chemistry 2022, 66 , 116810. https://doi.org/10.1016/j.bmc.2022.116810
    29. Ying Chen, Il Minn, Steven P. Rowe, Alla Lisok, Samit Chatterjee, Mary Brummet, Sangeeta Ray Banerjee, Ronnie C. Mease, Martin G. Pomper. A Series of PSMA-Targeted Near-Infrared Fluorescent Imaging Agents. Biomolecules 2022, 12 (3) , 405. https://doi.org/10.3390/biom12030405
    30. A. V. Leontyev, A. I. Khalimon, M. T. Kuliev, A. Y. Govaleshko, A. D. Kaprin, A. A. Krasheninnikov, K. M. Nyushko, A. S. Kalpinskiy, B. Ya. Alekseev. Modern possibilities of application 99mTc-labeled prostate-specific membrane antigen ligands in prostate cancer. Cancer Urology 2022, 17 (4) , 136-150. https://doi.org/10.17650/1726-9776-2021-17-4-136-150
    31. Cristian Antonio Wieczorek Villas Boas, Jefferson de Jesus Silva, Luís Alberto Pereira Dias, Maria Renata Brandão Freire, Luiza Mascarenhas Balieiro, Carolina Silva Ferreira dos Santos, Bianca Franchesqueti Vivaldini, Raquel Benedetto, Daniel Perez Vieira, Priscila de Queiroz Souza Passos, Maria Helena Marumo, Luis Felipe S. Teixeira, Elaine Bortoleti de Araújo. In vitro and in vivo response of PSMA-617 radiolabeled with CA and NCA lutetium-177. Applied Radiation and Isotopes 2022, 180 , 110064. https://doi.org/10.1016/j.apradiso.2021.110064
    32. Tessa Buckle, Danny M. van Willigen, Mick M. Welling, Fijs W.B. van Leeuwen. Pre-clinical development of fluorescent tracers and translation towards clinical application. 2022, 644-661. https://doi.org/10.1016/B978-0-12-822960-6.00045-4
    33. Xiaochen Huang, Jiaojiao Guo, Tao Li, Lizhou Jia, Xiaojun Tang, Jin Zhu, Qi Tang, Zhenqing Feng. c-Met-targeted chimeric antigen receptor T cells inhibit hepatocellular carcinoma cells <i>in vitro</i> and <i>in vivo</i>. The Journal of Biomedical Research 2022, 36 (1) , 10. https://doi.org/10.7555/JBR.35.20200207
    34. Jingming Zhang, Anastasia Rakhimbekova, Xiaojiang Duan, Qingqing Yin, Catherine A. Foss, Yan Fan, Yangyang Xu, Xuesong Li, Xuekang Cai, Zsofia Kutil, Pengyuan Wang, Zhi Yang, Ning Zhang, Martin G. Pomper, Yiguang Wang, Cyril Bařinka, Xing Yang. A prostate-specific membrane antigen activated molecular rotor for real-time fluorescence imaging. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-25746-6
    35. Stanislav A. Petrov, Nikolay Y. Zyk, Aleksei E. Machulkin, Elena K. Beloglazkina, Alexander G. Majouga. PSMA-targeted low-molecular double conjugates for diagnostics and therapy. European Journal of Medicinal Chemistry 2021, 225 , 113752. https://doi.org/10.1016/j.ejmech.2021.113752
    36. Rongbao Liao, Hong Wei, Qijuan Xiong, Heping Dai, Liru Zheng, Yan Wang, Tingting Xiong, Lin Zhang, Dongliang Tao, Feng Jin. Crystal structure and optical property of a Cadmium(II) complex based on triphenylamine derivative—Theoretical and experimental investigation. Journal of Luminescence 2021, 238 , 118270. https://doi.org/10.1016/j.jlumin.2021.118270
    37. Sung Chang Lee, Jennifer S. Y. Ma, Min Soo Kim, Eduardo Laborda, Sei-Hyun Choi, Eric N. Hampton, Hwayoung Yun, Vanessa Nunez, Michelle T. Muldong, Christina N. Wu, Wenxue Ma, Anna A. Kulidjian, Christopher J. Kane, Vadim Klyushnichenko, Ashley K. Woods, Sean B. Joseph, Mike Petrassi, John Wisler, Jing Li, Christina A. M. Jamieson, Peter G. Schultz, Chan Hyuk Kim, Travis S. Young. A PSMA-targeted bispecific antibody for prostate cancer driven by a small-molecule targeting ligand. Science Advances 2021, 7 (33) https://doi.org/10.1126/sciadv.abi8193
    38. Andrew Siow, Renata Kowalczyk, Margaret A. Brimble, Paul W.R. Harris. Evolution of Peptide-Based Prostate-Specific Membrane Antigen (PSMA) Inhibitors: An Approach to Novel Prostate Cancer Therapeutics. Current Medicinal Chemistry 2021, 28 (19) , 3713-3752. https://doi.org/10.2174/0929867327666201006153847
    39. Albertus W. Hensbergen, Mathijs A.C. de Kleer, Michael S. Boutkan, Danny M. van Willigen, Felicia A. van der Wijk, Mick M. Welling, Hans-Jürgen Wester, Tessa Buckle, Fijs W.B. van Leeuwen. Evaluation of asymmetric orthogonal cyanine fluorophores. Dyes and Pigments 2020, 183 , 108712. https://doi.org/10.1016/j.dyepig.2020.108712
    40. Jianhua Jiao, Jingliang Zhang, Fa Yang, Wei Song, Donghui Han, Weihong Wen, Weijun Qin. Quicker, deeper and stronger imaging: A review of tumor-targeted, near-infrared fluorescent dyes for fluorescence guided surgery in the preclinical and clinical stages. European Journal of Pharmaceutics and Biopharmaceutics 2020, 152 , 123-143. https://doi.org/10.1016/j.ejpb.2020.05.002
    41. Jiayingzi Wu, Hyeon Jeong Lee, Liyan You, Xuyi Luo, Tsukasa Hasegawa, Kai‐Chih Huang, Peng Lin, Timothy Ratliff, Minoru Ashizawa, Jianguo Mei, Ji‐Xin Cheng. Functionalized NIR‐II Semiconducting Polymer Nanoparticles for Single‐cell to Whole‐Organ Imaging of PSMA‐Positive Prostate Cancer. Small 2020, 16 (19) https://doi.org/10.1002/smll.202001215
    42. Young-Do Kwon, Jun Young Lee, Minh Thanh La, Sun Joo Lee, Sun-Hwa Lee, Jeong Hoon Park, Hee-Kwon Kim. Novel multifunctional 18F-labelled PET tracer with prostate-specific membrane antigen-targeting and hypoxia-sensitive moieties. European Journal of Medicinal Chemistry 2020, 189 , 112099. https://doi.org/10.1016/j.ejmech.2020.112099
    43. Sang-Hyun Son, Hongmok Kwon, Hye-Hyun Ahn, Hwanhee Nam, Kyul Kim, SangJin Nam, Doyoung Choi, Hyunsoo Ha, Il Minn, Youngjoo Byun. Design and synthesis of a novel BODIPY-labeled PSMA inhibitor. Bioorganic & Medicinal Chemistry Letters 2020, 30 (3) , 126894. https://doi.org/10.1016/j.bmcl.2019.126894
    44. Albertus W. Hensbergen, Tessa Buckle, Danny M. van Willigen, Margret Schottelius, Mick M. Welling, Felicia A. van der Wijk, Tobias Maurer, Henk G. van der Poel, Gabri van der Pluijm, Wytske M. van Weerden, Hans-Jürgen Wester, Fijs W.B. van Leeuwen. Hybrid Tracers Based on Cyanine Backbones Targeting Prostate-Specific Membrane Antigen: Tuning Pharmacokinetic Properties and Exploring Dye–Protein Interaction. Journal of Nuclear Medicine 2020, 61 (2) , 234-241. https://doi.org/10.2967/jnumed.119.233064
    45. Brett A. Vaughn, Shin Hye Ahn, Eduardo Aluicio-Sarduy, Justin Devaraj, Aeli P. Olson, Jonathan Engle, Eszter Boros. Chelation with a twist: a bifunctional chelator to enable room temperature radiolabeling and targeted PET imaging with scandium-44. Chemical Science 2020, 11 (2) , 333-342. https://doi.org/10.1039/C9SC04655K
    46. P. Korol, M. Tkachenko, A. Voloshin. 99MTc-PSMA – radionuclide imaging of prostate cancer: an innovative diagnostic direction in nuclear medicine. Radiation Diagnostics, Radiation Therapy 2020, (3) , 26-38. https://doi.org/10.37336/2707-0700-2020-3-3
    47. Ben T. Copeland, Hassan Shallal, Chentian Shen, Kenneth J. Pienta, Catherine A. Foss, Martin G. Pomper. Imaging and Characterization of Macrophage Distribution in Mouse Models of Human Prostate Cancer. Molecular Imaging and Biology 2019, 21 (6) , 1054-1063. https://doi.org/10.1007/s11307-019-01318-5
    48. Sagnik Sengupta, Mena Asha Krishnan, Amit Pandit, Premansh Dudhe, Rajesh Sharma, Venkatesh Chelvam. Tyrosine-based asymmetric urea ligand for prostate carcinoma: Tuning biological efficacy through in silico studies. Bioorganic Chemistry 2019, 91 , 103154. https://doi.org/10.1016/j.bioorg.2019.103154
    49. Bogdan Mitran, Zohreh Varasteh, Ayman Abouzayed, Sara S. Rinne, Emmi Puuvuori, Maria De Rosa, Mats Larhed, Vladimir Tolmachev, Anna Orlova, Ulrika Rosenström. Bispecific GRPR-Antagonistic Anti-PSMA/GRPR Heterodimer for PET and SPECT Diagnostic Imaging of Prostate Cancer. Cancers 2019, 11 (9) , 1371. https://doi.org/10.3390/cancers11091371
    50. Margret Schottelius, Alexander Wurzer, Katharina Wissmiller, Roswitha Beck, Maximilian Koch, Dimitrios Gorpas, Johannes Notni, Tessa Buckle, Matthias N. van Oosterom, Katja Steiger, Vasilis Ntziachristos, Markus Schwaiger, Fijs W.B. van Leeuwen, Hans-Jürgen Wester. Synthesis and Preclinical Characterization of the PSMA-Targeted Hybrid Tracer PSMA-I&F for Nuclear and Fluorescence Imaging of Prostate Cancer. Journal of Nuclear Medicine 2019, 60 (1) , 71-78. https://doi.org/10.2967/jnumed.118.212720
    51. Michael S. Hofman, Amir Iravani, Tatenda Nzenza, Declan G. Murphy. Advances in Urologic Imaging. Urologic Clinics of North America 2018, 45 (3) , 503-524. https://doi.org/10.1016/j.ucl.2018.03.016
    52. Thomas A. Burley, Justyna Mączyńska, Anant Shah, Wojciech Szopa, Kevin J. Harrington, Jessica K.R. Boult, Anna Mrozek‐Wilczkiewicz, Maria Vinci, Jeffrey C. Bamber, Wojciech Kaspera, Gabriela Kramer‐Marek. Near‐infrared photoimmunotherapy targeting EGFR—Shedding new light on glioblastoma treatment. International Journal of Cancer 2018, 142 (11) , 2363-2374. https://doi.org/10.1002/ijc.31246
    53. Sangeeta Ray Banerjee, Xiaolei Song, Xing Yang, Il Minn, Ala Lisok, Yanrong Chen, Albert Bui, Samit Chatterjee, Jian Chen, Peter C. M. van Zijl, Michael T. McMahon, Martin G. Pomper. Salicylic Acid‐Based Polymeric Contrast Agents for Molecular Magnetic Resonance Imaging of Prostate Cancer. Chemistry – A European Journal 2018, 24 (28) , 7235-7242. https://doi.org/10.1002/chem.201800882
    54. Daiko Matsuoka, Hiroyuki Watanabe, Yoichi Shimizu, Hiroyuki Kimura, Yusuke Yagi, Ryoko Kawai, Masahiro Ono, Hideo Saji. Structure–activity relationships of succinimidyl-Cys-C(O)-Glu derivatives with different near-infrared fluorophores as optical imaging probes for prostate-specific membrane antigen. Bioorganic & Medicinal Chemistry 2018, 26 (9) , 2291-2301. https://doi.org/10.1016/j.bmc.2018.03.015
    55. Jing-Yan Tian, Feng-Jun Guo, Guo-You Zheng, Aamir Ahmad. Prostate cancer: updates on current strategies for screening, diagnosis and clinical implications of treatment modalities. Carcinogenesis 2018, 39 (3) , 307-317. https://doi.org/10.1093/carcin/bgx141
    56. Young-Do Kwon, Hea-Jong Chung, Sun Joo Lee, Sun-Hwa Lee, Byung-Hoon Jeong, Hee-Kwon Kim. Synthesis of novel multivalent fluorescent inhibitors with high affinity to prostate cancer and their biological evaluation. Bioorganic & Medicinal Chemistry Letters 2018, 28 (4) , 572-576. https://doi.org/10.1016/j.bmcl.2018.01.047
    57. Jennifer D. Young, Vincenzo Abbate, Cinzia Imberti, Levente K. Meszaros, Michelle T. Ma, Samantha Y.A. Terry, Robert C. Hider, Greg E. Mullen, Philip J. Blower. 68 Ga-THP-PSMA: A PET Imaging Agent for Prostate Cancer Offering Rapid, Room-Temperature, 1-Step Kit-Based Radiolabeling. Journal of Nuclear Medicine 2017, 58 (8) , 1270-1277. https://doi.org/10.2967/jnumed.117.191882
    58. Ashanul Haque, Md. Serajul Haque Faizi, Jahangir Ahmad Rather, Muhammad S. Khan. Next generation NIR fluorophores for tumor imaging and fluorescence-guided surgery: A review. Bioorganic & Medicinal Chemistry 2017, 25 (7) , 2017-2034. https://doi.org/10.1016/j.bmc.2017.02.061
    59. Michael S. Hofman, Amir Iravani. Gallium-68 Prostate-Specific Membrane Antigen PET Imaging. PET Clinics 2017, 12 (2) , 219-234. https://doi.org/10.1016/j.cpet.2016.12.004
    60. Ying Chen, Samit Chatterjee, Ala Lisok, Il Minn, Mrudula Pullambhatla, Bryan Wharram, Yuchuan Wang, Jiefu Jin, Zaver M. Bhujwalla, Sridhar Nimmagadda, Ronnie C. Mease, Martin G. Pomper. A PSMA-targeted theranostic agent for photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology 2017, 167 , 111-116. https://doi.org/10.1016/j.jphotobiol.2016.12.018
    61. Gerhard Glatting, Carmen Wängler, Björn Wängler. Physikalisch-technische Grundlagen und Tracerentwicklung in der Positronenemissionstomografie. 2017, 19-56. https://doi.org/10.1007/978-3-662-50468-0_2
    62. Kai Bao, Jeong Heon Lee, Homan Kang, G. Kate Park, Georges El Fakhri, Hak Soo Choi. PSMA-targeted contrast agents for intraoperative imaging of prostate cancer,. Chemical Communications 2017, 53 (10) , 1611-1614. https://doi.org/10.1039/C6CC09781B
    63. Cristina Martelli, Alessia Lo Dico, Cecilia Diceglie, Giovanni Lucignani, Luisa Ottobrini. Optical imaging probes in oncology. Oncotarget 2016, 7 (30) , 48753-48787. https://doi.org/10.18632/oncotarget.9066
    64. Vikram Dogra, Bhargava Chinni, Shalini Singh, Hans Schmitthenner, Navalgund Rao, John J. Krolewski, Kent L. Nastiuk. Photoacoustic imaging with an acoustic lens detects prostate cancer cells labeled with PSMA-targeting near-infrared dye-conjugates. Journal of Biomedical Optics 2016, 21 (6) , 066019. https://doi.org/10.1117/1.JBO.21.6.066019
    65. Ming Li, Sangeeta Ray Banerjee, Chao Zheng, Martin G. Pomper, Ishan Barman. Ultrahigh affinity Raman probe for targeted live cell imaging of prostate cancer. Chemical Science 2016, 7 (11) , 6779-6785. https://doi.org/10.1039/C6SC01739H
    66. 红香 黄. Research Progress in Cyanine Dyes and Their Functionalized Nanocomposites Used for Bioanalysis and Near-Infrared Molecular Fluorescent Imaging. Advances in Analytical Chemistry 2016, 06 (04) , 109-115. https://doi.org/10.12677/AAC.2016.64017
    67. Charles Zhu, Amey Bandekar, Michelle Sempkowski, Sangeeta Ray Banerjee, Martin G. Pomper, Frank Bruchertseifer, Alfred Morgenstern, Stavroula Sofou. Nanoconjugation of PSMA-Targeting Ligands Enhances Perinuclear Localization and Improves Efficacy of Delivered Alpha-Particle Emitters against Tumor Endothelial Analogues. Molecular Cancer Therapeutics 2016, 15 (1) , 106-113. https://doi.org/10.1158/1535-7163.MCT-15-0207
    68. Ana P. Kiess, Il Minn, Ying Chen, Robert Hobbs, George Sgouros, Ronnie C. Mease, Mrudula Pullambhatla, Colette J. Shen, Catherine A. Foss, Martin G. Pomper. Auger Radiopharmaceutical Therapy Targeting Prostate-Specific Membrane Antigen. Journal of Nuclear Medicine 2015, 56 (9) , 1401-1407. https://doi.org/10.2967/jnumed.115.155929
    69. Monique R. Bernsen, Klazina Kooiman, Marcel Segbers, Fijs W. B. van Leeuwen, Marion de Jong. Biomarkers in preclinical cancer imaging. European Journal of Nuclear Medicine and Molecular Imaging 2015, 42 (4) , 579-596. https://doi.org/10.1007/s00259-014-2980-7
    70. , , Daniel R. Draney. Clinical trials in near infrared fluorescence imaging with IRDye 800CW. 2015, 93110L. https://doi.org/10.1117/12.2079285
    71. Yang Zhao, Jing Peng, Yuanjie Niu, Xuening Zhang, Ning Jiang, Rongrong Jia, Jiang Li, Zhiqun Shang, Shimiao Zhu, Libin Sun. In vivo targeted imaging of early stage prostate cancer using a transferrin based near-infrared fluorescence probe. RSC Advances 2015, 5 (79) , 64076-64082. https://doi.org/10.1039/C5RA06188A
    72. Danielle M. Charron, Juan Chen, Gang Zheng. Theranostic Lipid Nanoparticles for Cancer Medicine. 2015, 103-127. https://doi.org/10.1007/978-3-319-16555-4_5
    73. Xinning Wang, Steve S. Huang, Warren D.W. Heston, Hong Guo, Bing-Cheng Wang, James P. Basilion. Development of Targeted Near-Infrared Imaging Agents for Prostate Cancer. Molecular Cancer Therapeutics 2014, 13 (11) , 2595-2606. https://doi.org/10.1158/1535-7163.MCT-14-0422
    74. Jan Tykvart, Jiří Schimer, Jitka Bařinková, Petr Pachl, Lenka Poštová-Slavětínská, Pavel Majer, Jan Konvalinka, Pavel Šácha. Rational design of urea-based glutamate carboxypeptidase II (GCPII) inhibitors as versatile tools for specific drug targeting and delivery. Bioorganic & Medicinal Chemistry 2014, 22 (15) , 4099-4108. https://doi.org/10.1016/j.bmc.2014.05.061
    75. Benjamin T. Ristau, Denise S. O'Keefe, Dean J. Bacich. The prostate-specific membrane antigen: Lessons and current clinical implications from 20 years of research. Urologic Oncology: Seminars and Original Investigations 2014, 32 (3) , 272-279. https://doi.org/10.1016/j.urolonc.2013.09.003
    76. Richard R Drake, Thomas Kislinger. The proteomics of prostate cancer exosomes. Expert Review of Proteomics 2014, 11 (2) , 167-177. https://doi.org/10.1586/14789450.2014.890894
    77. Joy L. Kovar, Lael L. Cheung, Melanie A. Simpson, D. Michael Olive. Pharmacokinetic and Biodistribution Assessment of a Near Infrared-Labeled PSMA-Specific Small Molecule in Tumor-Bearing Mice. Prostate Cancer 2014, 2014 , 1-10. https://doi.org/10.1155/2014/104248
    78. Kristine E. Day, Lauren N. Beck, Nicholas L. Deep, Joy Kovar, Kurt R. Zinn, Eben L. Rosenthal. Fluorescently labeled therapeutic antibodies for detection of microscopic melanoma. The Laryngoscope 2013, 123 (11) , 2681-2689. https://doi.org/10.1002/lary.24102
    79. Ana P. Kiess, Steve Y. Cho, Martin G. Pomper. Translational Molecular Imaging of Prostate Cancer. Current Radiology Reports 2013, 1 (3) , 216-226. https://doi.org/10.1007/s40134-013-0020-1

    Bioconjugate Chemistry

    Cite this: Bioconjugate Chem. 2012, 23, 12, 2377–2385
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bc3003919
    Published November 19, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    3115

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.