ACS Publications. Most Trusted. Most Cited. Most Read
Convenient Preparation of 68Ga-Based PET-Radiopharmaceuticals at Room Temperature
My Activity

Figure 1Loading Img
    Technical Note

    Convenient Preparation of 68Ga-Based PET-Radiopharmaceuticals at Room Temperature
    Click to copy article linkArticle link copied!

    View Author Information
    Uppsala Applied Science Lab, GEMS PET Systems AB, GE Healthcare, SE-752 29 Uppsala, Sweden, Division of Radiological Chemistry, University Hospital, CH-4031 Basel, Switzerland, and Department of Biochemistry and Organic Chemistry, BMC, Uppsala University, SE-75124 Uppsala, Sweden
    * Address for correspondence: Irina Velikyan, Uppsala Applied Science Lab, GEMS PET Systems AB, GE Healthcare, Husbyborg, SE-75229 Uppsala, Sweden, Phone: +46 18 180917 , Fax: +46 18 180912, E-mail: [email protected]
    †GE Healthcare.
    ‡University Hospital.
    §Uppsala University.
    Other Access Options

    Bioconjugate Chemistry

    Cite this: Bioconjugate Chem. 2008, 19, 2, 569–573
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bc700341x
    Published January 19, 2008
    Copyright © 2008 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    A straightforward labeling using generator produced positron emitting 68Ga, which provides high quality images, may result in kit type production of PET radiopharmaceuticals and make PET examinations possible also at centers lacking accelerators. The introduction of macrocyclic bifunctional chelators that would provide fast 68Ga-complexation at room temperature would simplify even further tracer preparation and open wide possibilities for 68Ga-labeling of fragile and potent macromolecules. Gallium-68 has the potential to facilitate development of clinically practical PET and to promote PET technique for individualized medicine. The macrocyclic chelator, 1,4,7-triazacyclononanetriacetic acid (NOTA), and its derivative coupled to an eight amino acid residue peptide (NODAGA-TATE, [NODAGA0, Tyr3]Octreotate) were labeled with 68Ge/68Ga-generator produced positron emitting 68Ga. Formation kinetics of 68Ga-NOTA was studied as a function of pH and formation kinetics of 68Ga-NODAGA-TATE was studied as a function of the bioconjugate concentration. The nearly quantitative radioactivity incorporation (RAI > 95%) for 68Ga-NOTA was achieved within less than 10 min at room temperature and pH 3.5. The concentrations of NODAGA-TATE required for RAI of >90% and >95% were, respectively, 2–5 and 10 µM. In both cases the purification of the 68Ga-labeled products was not necessary since the radiochemical purity was >95% and the preparation buffer, 4-(2-hydroxyethyl) piperazine-1-ethanesulfonic acid (HEPES) is suitable for human use. In order to confirm the identity of the products, complexes comprising natGa were synthesized and analyzed by mass spectrometry. The complex was found to be stable in the reaction mixture, phosphate buffer, and human plasma during 4.5 h incubation. Free and peptide conjugated NOTA formed stable complexes with 68Ga at room temperature within 10 min. This might be of special interest for the labeling of fragile and potent macromolecules and allow for kit type preparation of 68Ga-based radiopharmaceuticals.

    Copyright © 2008 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 157 publications.

    1. Celia Pena-Bonhome, Desiree Fiaccabrino, Tamara Rama, Daniel Fernández-Pavón, Lily Southcott, Zhengxing Zhang, Kuo-Shyan Lin, Andrés de Blas, Brian O. Patrick, Paul Schaffer, Chris Orvig, María de Guadalupe Jaraquemada-Peláez, Teresa Rodríguez-Blas. Toward 68Ga and 64Cu Positron Emission Tomography Probes: Is H2dedpa-N,N′-pram the Missing Link for dedpa Conjugation?. Inorganic Chemistry 2023, 62 (50) , 20593-20607. https://doi.org/10.1021/acs.inorgchem.2c04123
    2. Thomas W. Price, Laurène Wagner, Veronika Rosecker, Jana Havlíčková, Timothy J. Prior, Vojtěch Kubíček, Petr Hermann, Graeme J. Stasiuk. Inorganic Chemistry of the Tripodal Picolinate Ligand Tpaa with Gallium(III) and Radiolabeling with Gallium-68. Inorganic Chemistry 2023, 62 (50) , 20769-20776. https://doi.org/10.1021/acs.inorgchem.3c02459
    3. Volker Morath, Corinna Brandt, Friedrich-Christian Deuschle, Claudia T. Mendler, Birgit Blechert, Dominik Summer, Cyril Barinka, Clemens Decristoforo, Wolfgang A. Weber, Markus Schwaiger, Arne Skerra. Molecular Design of 68Ga- and 89Zr-Labeled Anticalin Radioligands for PET-Imaging of PSMA-Positive Tumors. Molecular Pharmaceutics 2023, 20 (5) , 2490-2501. https://doi.org/10.1021/acs.molpharmaceut.2c01066
    4. Thomas W. Price, Isaline Renard, Timothy J. Prior, Vojtěch Kubíček, David M. Benoit, Stephen J. Archibald, Anne-Marie Seymour, Petr Hermann, Graeme J. Stasiuk. Bn2DT3A, a Chelator for 68Ga Positron Emission Tomography: Hydroxide Coordination Increases Biological Stability of [68Ga][Ga(Bn2DT3A)(OH)]−. Inorganic Chemistry 2022, 61 (43) , 17059-17067. https://doi.org/10.1021/acs.inorgchem.2c01992
    5. George P. Keeling, Billie Sherin, Jana Kim, Belinda San Juan, Tilmann Grus, Thomas R. Eykyn, Frank Rösch, Gareth E. Smith, Philip J. Blower, Samantha Y. A. Terry, Rafael T. M. de Rosales. [68Ga]Ga-THP-Pam: A Bisphosphonate PET Tracer with Facile Radiolabeling and Broad Calcium Mineral Affinity. Bioconjugate Chemistry 2021, 32 (7) , 1276-1289. https://doi.org/10.1021/acs.bioconjchem.0c00401
    6. Xiaozhu Wang, María de Guadalupe Jaraquemada-Peláez, Yang Cao, Jinhe Pan, Kuo-Shyan Lin, Brian O. Patrick, Chris Orvig. H2hox: Dual-Channel Oxine-Derived Acyclic Chelating Ligand for 68Ga Radiopharmaceuticals. Inorganic Chemistry 2019, 58 (4) , 2275-2285. https://doi.org/10.1021/acs.inorgchem.8b01208
    7. Thomas I. Kostelnik, Chris Orvig. Radioactive Main Group and Rare Earth Metals for Imaging and Therapy. Chemical Reviews 2019, 119 (2) , 902-956. https://doi.org/10.1021/acs.chemrev.8b00294
    8. F. Y. Adeowo, B. Honarparvar, and A. A. Skelton . Density Functional Theory Study on the Complexation of NOTA as a Bifunctional Chelator with Radiometal Ions. The Journal of Physical Chemistry A 2017, 121 (32) , 6054-6062. https://doi.org/10.1021/acs.jpca.7b01017
    9. Alexander Schmidtke, Tilman Läppchen, Christian Weinmann, Lorenz Bier-Schorr, Manfred Keller, Yvonne Kiefer, Jason P. Holland, and Mark D. Bartholomä . Gallium Complexation, Stability, and Bioconjugation of 1,4,7-Triazacyclononane Derived Chelators with Azaheterocyclic Arms. Inorganic Chemistry 2017, 56 (15) , 9097-9110. https://doi.org/10.1021/acs.inorgchem.7b01129
    10. Cinzia Imberti, Samantha Y. A. Terry, Carleen Cullinane, Fiona Clarke, Georgina H. Cornish, Nisha K. Ramakrishnan, Peter Roselt, Andrew P. Cope, Rodney J. Hicks, Philip J. Blower, and Michelle T. Ma . Enhancing PET Signal at Target Tissue in Vivo: Dendritic and Multimeric Tris(hydroxypyridinone) Conjugates for Molecular Imaging of αvβ3 Integrin Expression with Gallium-68. Bioconjugate Chemistry 2017, 28 (2) , 481-495. https://doi.org/10.1021/acs.bioconjchem.6b00621
    11. Michelle T. Ma, Carleen Cullinane, Cinzia Imberti, Julia Baguña Torres, Samantha Y. A. Terry, Peter Roselt, Rodney J. Hicks, and Philip J. Blower . New Tris(hydroxypyridinone) Bifunctional Chelators Containing Isothiocyanate Groups Provide a Versatile Platform for Rapid One-Step Labeling and PET Imaging with 68Ga3+. Bioconjugate Chemistry 2016, 27 (2) , 309-318. https://doi.org/10.1021/acs.bioconjchem.5b00335
    12. Eric W. Price, Brian M. Zeglis, Jacqueline F. Cawthray, Jason S. Lewis, Michael J. Adam, and Chris Orvig . What a Difference a Carbon Makes: H4octapa vs H4C3octapa, Ligands for In-111 and Lu-177 Radiochemistry. Inorganic Chemistry 2014, 53 (19) , 10412-10431. https://doi.org/10.1021/ic501466z
    13. Brian M. Zeglis, Jacob L. Houghton, Michael J. Evans, Nerissa Viola-Villegas, and Jason S. Lewis . Underscoring the Influence of Inorganic Chemistry on Nuclear Imaging with Radiometals. Inorganic Chemistry 2014, 53 (4) , 1880-1899. https://doi.org/10.1021/ic401607z
    14. Jens Frigell, Isabel García, Vanessa Gómez-Vallejo, Jordi Llop, and Soledad Penadés . 68Ga-Labeled Gold Glyconanoparticles for Exploring Blood–Brain Barrier Permeability: Preparation, Biodistribution Studies, and Improved Brain Uptake via Neuropeptide Conjugation. Journal of the American Chemical Society 2014, 136 (1) , 449-457. https://doi.org/10.1021/ja411096m
    15. Zohreh Varasteh, Irina Velikyan, Gunnar Lindeberg, Jens Sörensen, Mats Larhed, Mattias Sandström, Ram Kumar Selvaraju, Jennie Malmberg, Vladimir Tolmachev, and Anna Orlova . Synthesis and Characterization of a High-Affinity NOTA-Conjugated Bombesin Antagonist for GRPR-Targeted Tumor Imaging. Bioconjugate Chemistry 2013, 24 (7) , 1144-1153. https://doi.org/10.1021/bc300659k
    16. Francisco L. Guerra Gomez, Tomoya Uehara, Takemi Rokugawa, Yusuke Higaki, Hiroyuki Suzuki, Hirofumi Hanaoka, Hiromichi Akizawa, and Yasushi Arano . Synthesis and Evaluation of Diastereoisomers of 1,4,7-Triazacyclononane-1,4,7-tris-(glutaric acid) (NOTGA) for Multimeric Radiopharmaceuticals of Gallium. Bioconjugate Chemistry 2012, 23 (11) , 2229-2238. https://doi.org/10.1021/bc300340g
    17. Cara L. Ferreira, Donald T. T. Yapp, Derek Mandel, Rajanvir K. Gill, Eszter Boros, May Q. Wong, Paul Jurek, and Garry E. Kiefer . 68Ga Small Peptide Imaging: Comparison of NOTA and PCTA. Bioconjugate Chemistry 2012, 23 (11) , 2239-2246. https://doi.org/10.1021/bc300348d
    18. Constance Chollet, Ralf Bergmann, Jens Pietzsch, and Annette G. Beck-Sickinger . Design, Evaluation, and Comparison of Ghrelin Receptor Agonists and Inverse Agonists as Suitable Radiotracers for PET Imaging. Bioconjugate Chemistry 2012, 23 (4) , 771-784. https://doi.org/10.1021/bc2005889
    19. Michelle T. Ma, Oliver C. Neels, Delphine Denoyer, Peter Roselt, John A. Karas, Denis B. Scanlon, Jonathan M. White, Rodney J. Hicks, and Paul S. Donnelly . Gallium-68 Complex of a Macrobicyclic Cage Amine Chelator Tethered to Two Integrin-Targeting Peptides for Diagnostic Tumor Imaging. Bioconjugate Chemistry 2011, 22 (10) , 2093-2103. https://doi.org/10.1021/bc200319q
    20. Jean-François Morfin and Éva Tóth . Kinetics of Ga(NOTA) Formation from Weak Ga-Citrate Complexes. Inorganic Chemistry 2011, 50 (20) , 10371-10378. https://doi.org/10.1021/ic201445e
    21. Ajay N. Singh, Wei Liu, Guiyang Hao, Amit Kumar, Anjali Gupta, Orhan K. Öz, Jer-Tsong Hsieh, and Xiankai Sun . Multivalent Bifunctional Chelator Scaffolds for Gallium-68 Based Positron Emission Tomography Imaging Probe Design: Signal Amplification via Multivalency. Bioconjugate Chemistry 2011, 22 (8) , 1650-1662. https://doi.org/10.1021/bc200227d
    22. Vladimir Tolmachev, Mohamed Altai, Mattias Sandström, Anna Perols, Amelie Eriksson Karlström, Frederic Boschetti, and Anna Orlova . Evaluation of a Maleimido Derivative of NOTA for Site-Specific Labeling of Affibody Molecules. Bioconjugate Chemistry 2011, 22 (5) , 894-902. https://doi.org/10.1021/bc100470x
    23. Eszter Boros, Cara L. Ferreira, Jacqueline F. Cawthray, Eric W. Price, Brian O. Patrick, Dennis W. Wester, Michael J. Adam, and Chris Orvig. Acyclic Chelate with Ideal Properties for 68Ga PET Imaging Agent Elaboration. Journal of the American Chemical Society 2010, 132 (44) , 15726-15733. https://doi.org/10.1021/ja106399h
    24. Lathika Hoigebazar, Jae Min Jeong, Soo Young Choi, Jae Yeon Choi, Dinesh Shetty, Yun-Sang Lee, Dong Soo Lee, June-Key Chung, Myung Chul Lee and Young Keun Chung . Synthesis and Characterization of Nitroimidazole Derivatives for 68Ga-Labeling and Testing in Tumor Xenografted Mice. Journal of Medicinal Chemistry 2010, 53 (17) , 6378-6385. https://doi.org/10.1021/jm100545a
    25. Mark D. Bartholomä, Anika S. Louie, John F. Valliant and Jon Zubieta. Technetium and Gallium Derived Radiopharmaceuticals: Comparing and Contrasting the Chemistry of Two Important Radiometals for the Molecular Imaging Era. Chemical Reviews 2010, 110 (5) , 2903-2920. https://doi.org/10.1021/cr1000755
    26. Cara L. Ferreira, Eric Lamsa, Michael Woods, Yin Duan, Pasan Fernando, Corinne Bensimon, Myra Kordos, Katharina Guenther, Paul Jurek and Garry E. Kiefer . Evaluation of Bifunctional Chelates for the Development of Gallium-Based Radiopharmaceuticals. Bioconjugate Chemistry 2010, 21 (3) , 531-536. https://doi.org/10.1021/bc900443a
    27. Tapan K. Nayak and Martin W. Brechbiel. Radioimmunoimaging with Longer-Lived Positron-Emitting Radionuclides: Potentials and Challenges. Bioconjugate Chemistry 2009, 20 (5) , 825-841. https://doi.org/10.1021/bc800299f
    28. Mingming Yu, Fengyu Wu, Yanqin Sun, Shuangshuang Song, Yuehua Chen. Small Animal Positron Emission Tomography Imaging of a Triple-Negative Breast Cancer Model Using the 68 Ga-Labeled pH (Low) Insertion Peptide-Like Peptide YJL-11. Cancer Biotherapy and Radiopharmaceuticals 2025, https://doi.org/10.1089/cbr.2024.0230
    29. Matthieu Bailly, Anne Claire Dupont, Guillaume Domain, Diane Darsin-Bettinger, Maxime Courtehoux, Gilles Metrard, Alain Manrique, Jonathan Vigne. Gallium-Labeled PET Radiopharmaceuticals in Cardiovascular Disease. Pharmaceuticals 2025, 18 (3) , 387. https://doi.org/10.3390/ph18030387
    30. Rahel H. Wallimann, Heloïse Hensinger, Cristina Müller, Roger Schibli, Rainer Kneuer, Patrick Schindler. Liquid Chromatography ICP-MS to Assess the Stability of 175Lu- and natGa-Based Tumor-Targeting Agents towards the Development of 177Lu- and 68Ga-Labeled Radiopharmaceuticals. Pharmaceutics 2024, 16 (3) , 299. https://doi.org/10.3390/pharmaceutics16030299
    31. Frank Rösch, Markus Piel, Janine Ackermann. Radiochemie/Tracer. 2024, 35-63. https://doi.org/10.1007/978-3-662-67192-4_4
    32. M. V. Velikova, V. V. Timofeev, D. V. Ryzhkova. Аpproaches to the production of theranostic couples of radiopharmaceuticals for the diagnosis and treatment of prostate cancer: a literature review. Russian Journal for Personalized Medicine 2023, 3 (3) , 172-185. https://doi.org/10.18705/2782-3806-2023-3-3-172-185
    33. Cyprine Neba Funeh, Jessica Bridoux, Thomas Ertveldt, Timo W. M. De Groof, Dora Mugoli Chigoho, Parinaz Asiabi, Peter Covens, Matthias D’Huyvetter, Nick Devoogdt. Optimizing the Safety and Efficacy of Bio-Radiopharmaceuticals for Cancer Therapy. Pharmaceutics 2023, 15 (5) , 1378. https://doi.org/10.3390/pharmaceutics15051378
    34. Arthur A. Puzyrkov, Ekaterina A. Popova, Artem A. Selyutin, Alexey V. Eremin. Polymer-analogous transformations of poly(N-vinylpyrrolidone) to produce new complexing macromolecular systems. Mendeleev Communications 2023, 33 (3) , 362-364. https://doi.org/10.1016/j.mencom.2023.04.021
    35. Jonathan Martinelli, Leonardo Maria Zapelli, Mariangela Boccalon, Adrienn Vágner, Gábor Nagy, Anikó Fekete, Dezső Szikra, György Trencsényi, Zsolt Baranyai, Lorenzo Tei. AAZTA‐Like Ligands Bearing Phenolate Arms as Efficient Chelators for 68 Ga Labelling in vitro and in vivo. Chemistry – A European Journal 2023, 29 (21) https://doi.org/10.1002/chem.202203798
    36. Shankar Vallabhajosula. Metal Radionuclides for Molecular Imaging. 2023, 259-289. https://doi.org/10.1007/978-3-031-23205-3_12
    37. A. G. Polivanova, I. N. Solovieva, D. O. Botev, D. Y. Yuriev, A. N. Mylnikova, M. S. Oshchepkov. Bifunctional gallium cation chelators. Fine Chemical Technologies 2022, 17 (2) , 107-130. https://doi.org/10.32362/2410-6593-2022-17-2-107-130
    38. Holis Abdul Holik, Faisal Maulana Ibrahim, Angela Alysia Elaine, Bernap Dwi Putra, Arifudin Achmad, Achmad Hussein Sundawa Kartamihardja. The Chemical Scaffold of Theranostic Radiopharmaceuticals: Radionuclide, Bifunctional Chelator, and Pharmacokinetics Modifying Linker. Molecules 2022, 27 (10) , 3062. https://doi.org/10.3390/molecules27103062
    39. Dongmei Chen, Qiqi Fan, Ting Xu, Jinyun Dong, Jiahua Cui, Zengtao Wang, Jie Wang, Qingqing Meng, Shaoshun Li. Design, Synthesis and Binding Affinity Evaluation of Cytochrome P450 1B1 Targeted Chelators. Anti-Cancer Agents in Medicinal Chemistry 2022, 22 (2) , 261-269. https://doi.org/10.2174/1871520621666210405091645
    40. Francesco Bartoli, William C. Eckelman, Marie Boyd, Robert J. Mairs, Paola A. Erba. Principles of Molecular Targeting for Radionuclide Therapy. 2022, 1-54. https://doi.org/10.1007/978-3-319-26067-9_32-2
    41. Sara S. Rinne, Anzhelika Vorobyeva. Radiometals—Chemistry and radiolabeling. 2022, 95-106. https://doi.org/10.1016/B978-0-12-822960-6.00044-2
    42. Francesco Bartoli, William C. Eckelman, Marie Boyd, Robert J. Mairs, Paola A. Erba. Principles of Molecular Targeting for Radionuclide Therapy. 2022, 41-93. https://doi.org/10.1007/978-3-031-05494-5_32
    43. Andrew J. Hall, Mohammad B. Haskali. Radiolabelled Peptides: Optimal Candidates for Theranostic Application in Oncology. Australian Journal of Chemistry 2022, 75 (2) , 34-54. https://doi.org/10.1071/CH21118
    44. Janine Suthiram, Thomas Ebenhan, Biljana Marjanovic-Painter, Mike M. Sathekge, Jan Rijn Zeevaart. Towards Facile Radiolabeling and Preparation of Gallium-68-/Bismuth-213-DOTA-[Thi8, Met(O2)11]-Substance P for Future Clinical Application: First Experiences. Pharmaceutics 2021, 13 (9) , 1326. https://doi.org/10.3390/pharmaceutics13091326
    45. S. Ghiani, I. Hawala, D. Szikra, G. Trencsényi, Z. Baranyai, G. Nagy, A. Vágner, R. Stefania, S. Pandey, A. Maiocchi. Synthesis, radiolabeling, and pre-clinical evaluation of [44Sc]Sc-AAZTA conjugate PSMA inhibitor, a new tracer for high-efficiency imaging of prostate cancer. European Journal of Nuclear Medicine and Molecular Imaging 2021, 48 (8) , 2351-2362. https://doi.org/10.1007/s00259-020-05130-0
    46. Viviana S. Prado, Renan C. F. Leitao, Francisco Silva, Lurdes Gano, Isabel C. Santos, Fabio L. N. Marques, António Paulo, Victor M. Deflon. Gallium and indium complexes with new hexadentate bis(semicarbazone) and bis(thiosemicarbazone) chelators. Dalton Transactions 2021, 50 (5) , 1631-1640. https://doi.org/10.1039/D0DT04028B
    47. Henry F. VanBrocklin. PET Radiochemistry. 2021, 445-478. https://doi.org/10.1016/B978-0-12-816386-3.00027-2
    48. E. A. Wallnöfer, G. C. Thurner, C. Kremser, H. Talasz, M. M. Stollenwerk, A. Helbok, N. Klammsteiner, K. Albrecht-Schgoer, H. Dietrich, W. Jaschke, P. Debbage. Albumin-based nanoparticles as contrast medium for MRI: vascular imaging, tissue and cell interactions, and pharmacokinetics of second-generation nanoparticles. Histochemistry and Cell Biology 2021, 155 (1) , 19-73. https://doi.org/10.1007/s00418-020-01919-0
    49. Hidefumi Mukai, Yasuyoshi Watanabe. Review: PET imaging with macro- and middle-sized molecular probes. Nuclear Medicine and Biology 2021, 92 , 156-170. https://doi.org/10.1016/j.nucmedbio.2020.06.007
    50. Philip J. Blower, Ruslan Cusnir, Afnan Darwesh, Nicholas J. Long, Michelle T. Ma, Bradley E. Osborne, Thomas W. Price, Juan Pellico, Gillian Reid, Richard Southworth, Graeme J. Stasiuk, Samantha Y.A. Terry, Rafael Torres Martin de Rosales. Gallium: New developments and applications in radiopharmaceutics. 2021, 1-35. https://doi.org/10.1016/bs.adioch.2021.04.002
    51. Mengshi Li, Edwin A. Sagastume, Dongyoul Lee, Daniel McAlister, Anthony J. DeGraffenreid, Keith R. Olewine, Stephen Graves, Roy Copping, Saed Mirzadeh, Brian E. Zimmerman, Roy H. Larsen, Frances L. Johnson, Michael K. Schultz. 203/212Pb Theranostic Radiopharmaceuticals for Image-guided Radionuclide Therapy for Cancer. Current Medicinal Chemistry 2020, 27 (41) , 7003-7031. https://doi.org/10.2174/0929867327999200727190423
    52. Neil Gerard Quigley, Stefano Tomassi, Francesco Saverio Leva, Salvatore Di Maro, Frauke Richter, Katja Steiger, Susanne Kossatz, Luciana Marinelli, Johannes Notni. Click‐Chemistry (CuAAC) Trimerization of an α v β 6 Integrin Targeting Ga‐68‐Peptide: Enhanced Contrast for in‐Vivo PET Imaging of Human Lung Adenocarcinoma Xenografts. ChemBioChem 2020, 21 (19) , 2836-2843. https://doi.org/10.1002/cbic.202000200
    53. Irina Velikyan, Johan G. Doverfjord, Sergio Estrada, Herman Steen, Guus Van Scharrenburg, Gunnar Antoni. GMP production of [68Ga]Ga-BOT5035 for imaging of liver fibrosis in microdosing phase 0 study. Nuclear Medicine and Biology 2020, 88-89 , 73-85. https://doi.org/10.1016/j.nucmedbio.2020.07.009
    54. Zarif Ashhar, Nor Azah Yusof, Fathinul Fikri Ahmad Saad, Siti Mariam Mohd Nor, Faruq Mohammad, Wan Hamirul Bahrin Wan Kamal, Muhammad Hishar Hassan, Hazlina Ahmad Hassali, Hamad A. Al-Lohedan. Preparation, Characterization, and Radiolabeling of [68Ga]Ga-NODAGA-Pamidronic Acid: A Potential PET Bone Imaging Agent. Molecules 2020, 25 (11) , 2668. https://doi.org/10.3390/molecules25112668
    55. Giulia Orteca, Jean-Philippe Sinnes, Sara Rubagotti, Michele Iori, Pier Cesare Capponi, Markus Piel, Frank Rösch, Erika Ferrari, Mattia Asti. Gallium-68 and scandium-44 labelled radiotracers based on curcumin structure linked to bifunctional chelators: Synthesis and characterization of potential PET radiotracers. Journal of Inorganic Biochemistry 2020, 204 , 110954. https://doi.org/10.1016/j.jinorgbio.2019.110954
    56. Zsolt Baranyai, Gyula Tircsó, Frank Rösch. The Use of the Macrocyclic Chelator DOTA in Radiochemical Separations. European Journal of Inorganic Chemistry 2020, 2020 (1) , 36-56. https://doi.org/10.1002/ejic.201900706
    57. Jannie le Roux, Sietske Rubow, Thomas Ebenhan, Carl Wagener. An automated synthesis method for 68Ga-labelled ubiquicidin 29–41. Journal of Radioanalytical and Nuclear Chemistry 2020, 323 (1) , 105-116. https://doi.org/10.1007/s10967-019-06910-1
    58. Cinzia Imberti, Peter J. Sadler. 150 years of the periodic table: New medicines and diagnostic agents. 2020, 3-56. https://doi.org/10.1016/bs.adioch.2019.11.001
    59. Nkemakonam C. Okoye, Jakob E. Baumeister, Firouzeh Najafi Khosroshahi, Heather M. Hennkens, Silvia S. Jurisson. Chelators and metal complex stability for radiopharmaceutical applications. Radiochimica Acta 2019, 107 (9-11) , 1087-1120. https://doi.org/10.1515/ract-2018-3090
    60. Rosalba Mansi, Melpomeni Fani. Design and development of the theranostic pair 177 Lu‐OPS201/ 68 Ga‐OPS202 for targeting somatostatin receptor expressing tumors. Journal of Labelled Compounds and Radiopharmaceuticals 2019, 62 (10) , 635-645. https://doi.org/10.1002/jlcr.3755
    61. Jesse Pulido, Maria de Cabrera, Adam J. Sobczak, Alejandro Amor-Coarasa, Anthony J. McGoron, Stanislaw F. Wnuk. 4-N-Alkanoyl and 4-N-alkyl gemcitabine analogues with NOTA chelators for 68-gallium labelling. Bioorganic & Medicinal Chemistry 2018, 26 (21) , 5624-5630. https://doi.org/10.1016/j.bmc.2018.10.007
    62. James R Ballinger. Theranostic radiopharmaceuticals: established agents in current use. The British Journal of Radiology 2018, 91 (1091) , 20170969. https://doi.org/10.1259/bjr.20170969
    63. Yuka Nakamoto, Ambara R. Pradipta, Hidefumi Mukai, Maki Zouda, Yasuyoshi Watanabe, Almira Kurbangalieva, Peni Ahmadi, Yoshiyuki Manabe, Koichi Fukase, Katsunori Tanaka. Expanding the Applicability of the Metal Labeling of Biomolecules by the RIKEN Click Reaction: A Case Study with Gallium‐68 Positron Emission Tomography. ChemBioChem 2018, 19 (19) , 2055-2060. https://doi.org/10.1002/cbic.201800335
    64. Tilman Läppchen, Yvonne Kiefer, Jason P. Holland, Mark D. Bartholomä. In vitro and in vivo evaluation of the bifunctional chelator NODIA-Me in combination with a prostate-specific membrane antigen targeting vector. Nuclear Medicine and Biology 2018, 60 , 45-54. https://doi.org/10.1016/j.nucmedbio.2018.03.002
    65. Yong Huang, Yajing Liu, Song Liu, Renbo Wu, Zehui Wu. An Efficient Synthesis of N , N , N ‐Substituted 1,4,7‐Triazacyclononane. European Journal of Organic Chemistry 2018, 2018 (13) , 1546-1551. https://doi.org/10.1002/ejoc.201800048
    66. Akanksha Jain, Sudipta Chakraborty, H. D. Sarma, Ashutosh Dash. A Systematic Comparative Evaluation of 68Ga-Labeled RGD Peptides Conjugated with Different Chelators. Nuclear Medicine and Molecular Imaging 2018, 52 (2) , 125-134. https://doi.org/10.1007/s13139-017-0499-0
    67. Drishty Satpati, Rohit Sharma, Haladhar Dev Sarma, Ashutosh Dash. Comparative evaluation of 68 Ga‐labeled NODAGA , DOTAGA , and HBED ‐ CC ‐conjugated cNGR peptide chelates as tumor‐targeted molecular imaging probes. Chemical Biology & Drug Design 2018, 91 (3) , 781-788. https://doi.org/10.1111/cbdd.13143
    68. Irina Velikyan. Prospective of 68 Ga Radionuclide Contribution to the Development of Imaging Agents for Infection and Inflammation. Contrast Media & Molecular Imaging 2018, 2018 , 1-24. https://doi.org/10.1155/2018/9713691
    69. Saima Nawaz, Gregory E. D. Mullen, Kavitha Sunassee, Jayanta Bordoloi, Philip J. Blower, James R. Ballinger. Simple, mild, one-step labelling of proteins with gallium-68 using a tris(hydroxypyridinone) bifunctional chelator: a 68Ga-THP-scFv targeting the prostate-specific membrane antigen. EJNMMI Research 2017, 7 (1) https://doi.org/10.1186/s13550-017-0336-6
    70. Katsumasa Fujiki, Shinya Yano, Takeshi Ito, Yuki Kumagai, Yoshinori Murakami, Osamu Kamigaito, Hiromitsu Haba, Katsunori Tanaka. A One-Pot Three-Component Double-Click Method for Synthesis of [67Cu]-Labeled Biomolecular Radiotherapeutics. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-02123-2
    71. Akanksha Jain, Usha Pandey, Naresh Gamre, Haladhar Dev Sarma, Ashutosh Dash. Development of 68Ga labeled human serum albumin for blood pool imaging: a comparison between two ligands. Journal of Radioanalytical and Nuclear Chemistry 2017, 313 (3) , 661-668. https://doi.org/10.1007/s10967-017-5320-0
    72. Edit Farkas, Johannes Nagel, Bradley P. Waldron, David Parker, Imre Tóth, Ernő Brücher, Frank Rösch, Zsolt Baranyai. Equilibrium, Kinetic and Structural Properties of Gallium(III) and Some Divalent Metal Complexes Formed with the New DATA m and DATA 5m Ligands. Chemistry – A European Journal 2017, 23 (43) , 10358-10371. https://doi.org/10.1002/chem.201701508
    73. Ralf Bergmann, Katrin Splith, Jens Pietzsch, Michael Bachmann, Ines Neundorf. Biological characterization of novel nitroimidazole‐peptide conjugates in vitr o and in vivo. Journal of Peptide Science 2017, 23 (7-8) , 597-609. https://doi.org/10.1002/psc.2995
    74. Thomas Ebenhan, Isabel Schoeman, Daniel D. Rossouw, Anne Grobler, Biljana Marjanovic-Painter, Judith Wagener, Hendrik G. Kruger, Mike M. Sathekge, Jan Rijn Zeevaart. Evaluation of a Flexible NOTA-RGD Kit Solution Using Gallium-68 from Different 68Ge/68Ga-Generators: Pharmacokinetics and Biodistribution in Nonhuman Primates and Demonstration of Solitary Pulmonary Nodule Imaging in Humans. Molecular Imaging and Biology 2017, 19 (3) , 469-482. https://doi.org/10.1007/s11307-016-1014-1
    75. Shankar Siva, Jason Callahan, David Pryor, Jarad Martin, Nathan Lawrentschuk, Michael S Hofman. Utility of 68 Ga prostate specific membrane antigen – positron emission tomography in diagnosis and response assessment of recurrent renal cell carcinoma. Journal of Medical Imaging and Radiation Oncology 2017, 61 (3) , 372-378. https://doi.org/10.1111/1754-9485.12590
    76. Thomas W. Price, Juan Gallo, Vojtěch Kubíček, Zuzana Böhmová, Timothy J. Prior, John Greenman, Petr Hermann, Graeme J. Stasiuk. Amino acid based gallium-68 chelators capable of radiolabeling at neutral pH. Dalton Transactions 2017, 46 (48) , 16973-16982. https://doi.org/10.1039/C7DT03398B
    77. Kritee Pant, Johanna Pufe, Kristof Zarschler, Ralf Bergmann, Jörg Steinbach, Sabine Reimann, Rainer Haag, Jens Pietzsch, Holger Stephan. Surface charge and particle size determine the metabolic fate of dendritic polyglycerols. Nanoscale 2017, 9 (25) , 8723-8739. https://doi.org/10.1039/C7NR01702B
    78. Maria Iris Tsionou, Caroline E. Knapp, Calum A. Foley, Catherine R. Munteanu, Andrew Cakebread, Cinzia Imberti, Thomas R. Eykyn, Jennifer D. Young, Brett M. Paterson, Philip J. Blower, Michelle T. Ma. Comparison of macrocyclic and acyclic chelators for gallium-68 radiolabelling. RSC Adv. 2017, 7 (78) , 49586-49599. https://doi.org/10.1039/C7RA09076E
    79. Johanna Seemann, Bradley Waldron, David Parker, Frank Roesch. DATATOC: a novel conjugate for kit-type 68Ga labelling of TOC at ambient temperature. EJNMMI Radiopharmacy and Chemistry 2017, 1 (1) https://doi.org/10.1186/s41181-016-0007-3
    80. Ruslan Cusnir, Cinzia Imberti, Robert Hider, Philip Blower, Michelle Ma. Hydroxypyridinone Chelators: From Iron Scavenging to Radiopharmaceuticals for PET Imaging with Gallium-68. International Journal of Molecular Sciences 2017, 18 (1) , 116. https://doi.org/10.3390/ijms18010116
    81. Michelle T. Ma, Philip J. Blower. Chelators for Diagnostic Molecular Imaging with Radioisotopes of Copper, Gallium and Zirconium. 2016, 260-312. https://doi.org/10.1039/9781782623892-00260
    82. Philipp Spang, Christian Herrmann, Frank Roesch. Bifunctional Gallium-68 Chelators: Past, Present, and Future. Seminars in Nuclear Medicine 2016, 46 (5) , 373-394. https://doi.org/10.1053/j.semnuclmed.2016.04.003
    83. Zehui Wu, Zhihao Zha, Seok Rye Choi, Karl Plössl, Lin Zhu, Hank F. Kung. New 68Ga-PhenA bisphosphonates as potential bone imaging agents. Nuclear Medicine and Biology 2016, 43 (6) , 360-371. https://doi.org/10.1016/j.nucmedbio.2016.03.002
    84. Sven Macholl, Matthias Glaser. Radiochemistry for Preclinical Imaging Studies. 2016, 277-314. https://doi.org/10.1201/b19052-22
    85. Raisa N. Krasikova, Ramiz A. Aliev, Stepan N. Kalmykov. The next generation of positron emission tomography radiopharmaceuticals labeled with non-conventional radionuclides. Mendeleev Communications 2016, 26 (2) , 85-94. https://doi.org/10.1016/j.mencom.2016.03.001
    86. Adrienn Vágner, Calogero D'Alessandria, Giuseppe Gambino, Markus Schwaiger, Silvio Aime, Alessandro Maiocchi, Imre Tóth, Zsolt Baranyai, Lorenzo Tei . A rigidified AAZTA-like ligand as efficient chelator for 68 Ga radiopharmaceuticals. ChemistrySelect 2016, 1 (2) , 163-171. https://doi.org/10.1002/slct.201500051
    87. Marlies Gijs, Sylvestre Dammicco, Corentin Warnier, An Aerts, Nathalie R.E.N Impens, Matthias D'Huyvetter, Marc Léonard, Sarah Baatout, André Luxen. Gallium‐68‐labelled NOTA‐oligonucleotides: an optimized method for their preparation. Journal of Labelled Compounds and Radiopharmaceuticals 2016, 59 (2) , 63-71. https://doi.org/10.1002/jlcr.3363
    88. Frank Rösch, Markus Piel. Radiochemie/Tracer. 2016, 35-73. https://doi.org/10.1007/978-3-662-48842-3_3
    89. Thomas W. Price, John Greenman, Graeme J. Stasiuk. Current advances in ligand design for inorganic positron emission tomography tracers 68 Ga, 64 Cu, 89 Zr and 44 Sc. Dalton Transactions 2016, 45 (40) , 15702-15724. https://doi.org/10.1039/C5DT04706D
    90. F. Y. Adeowo, B. Honarparvar, A. A. Skelton. The interaction of NOTA as a bifunctional chelator with competitive alkali metal ions: a DFT study. RSC Advances 2016, 6 (83) , 79485-79496. https://doi.org/10.1039/C6RA20203A
    91. Sudhakara Reddy Seelam, Ji Youn Lee, Yun-Sang Lee, Mi Kyung Hong, Young Joo Kim, Vinay Kumar Banka, Dong Soo Lee, June-Key Chung, Jae Min Jeong. Development of 68Ga-labeled multivalent nitroimidazole derivatives for hypoxia imaging. Bioorganic & Medicinal Chemistry 2015, 23 (24) , 7743-7750. https://doi.org/10.1016/j.bmc.2015.11.024
    92. Michelle T. Ma, Carleen Cullinane, Kelly Waldeck, Peter Roselt, Rodney J. Hicks, Philip J. Blower. Rapid kit-based 68Ga-labelling and PET imaging with THP-Tyr3-octreotate: a preliminary comparison with DOTA-Tyr3-octreotate. EJNMMI Research 2015, 5 (1) https://doi.org/10.1186/s13550-015-0131-1
    93. Joachim Pfister, Dominik Summer, Christine Rangger, Milos Petrik, Elisabeth von Guggenberg, Paolo Minazzi, Giovanni B. Giovenzana, Luigi Aloj, Clemens Decristoforo. Influence of a novel, versatile bifunctional chelator on theranostic properties of a minigastrin analogue. EJNMMI Research 2015, 5 (1) https://doi.org/10.1186/s13550-015-0154-7
    94. Sophie Poty, Pauline Désogère, Jakub Šimeček, Claire Bernhard, Victor Goncalves, Christine Goze, Frédéric Boschetti, Johannes Notni, Hans J. Wester, Franck Denat. MA‐NOTMP: A Triazacyclononane Trimethylphosphinate Based Bifunctional Chelator for Gallium Radiolabelling of Biomolecules. ChemMedChem 2015, 10 (9) , 1475-1479. https://doi.org/10.1002/cmdc.201500198
    95. Bing Xu, Xiaowei Li, Jipeng Yin, Cong Liang, Lijuan Liu, Zhaoyan Qiu, Liping Yao, Yongzhan Nie, Jing Wang, Kaichun Wu. Evaluation of 68Ga-Labeled MG7 Antibody: A Targeted Probe for PET/CT Imaging of Gastric Cancer. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep08626
    96. Irina Velikyan. 68Ga-Based Radiopharmaceuticals: Production and Application Relationship. Molecules 2015, 20 (7) , 12913-12943. https://doi.org/10.3390/molecules200712913
    97. Johanna Seemann, Bradley P. Waldron, Frank Roesch, David Parker. Approaching ‘Kit‐Type’ Labelling with 68 Ga: The DATA Chelators. ChemMedChem 2015, 10 (6) , 1019-1026. https://doi.org/10.1002/cmdc.201500092
    98. Irina Velikyan. Continued rapid growth in 68 Ga applications: update 2013 to June 2014. Journal of Labelled Compounds and Radiopharmaceuticals 2015, 58 (3) , 99-121. https://doi.org/10.1002/jlcr.3250
    99. C. Lamesa, A. Rauscher, F. Lacoeuille, M.-D. Desruet, B. Guillet, A. Faivre-Chauvet. 68Ga somatostatin analog radiolabelling: The radiopharmacist's point of view. Médecine Nucléaire 2015, 39 (1) , 3-10. https://doi.org/10.1016/j.mednuc.2015.01.003
    100. James Nairne, Peter B. Iveson, Andreas Meijer. Imaging in Drug Development. 2015, 231-280. https://doi.org/10.1016/bs.pmch.2014.10.002
    Load all citations

    Bioconjugate Chemistry

    Cite this: Bioconjugate Chem. 2008, 19, 2, 569–573
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bc700341x
    Published January 19, 2008
    Copyright © 2008 American Chemical Society

    Article Views

    2801

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.