ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Synthesis of Pyridyl Disulfide-Functionalized Nanoparticles for Conjugating Thiol-Containing Small Molecules, Peptides, and Proteins

View Author Information
Institute of Bioengineering (IBI) and Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
* To whom correspondence should be addressed. Address: Laboratory for Regenerative Medicine and Pharmacobiology, Institute of Bioengineering, Station 15, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland. E-mail: [email protected]. Phone: +41 21 693 9681. Fax: +41 21 693 9665.
†Institute of Bioengineering (IBI).
‡Institute of Chemical Sciences and Engineering (ISIC).
Cite this: Bioconjugate Chem. 2010, 21, 4, 653–662
Publication Date (Web):April 6, 2010
https://doi.org/10.1021/bc9004443
Copyright © 2010 American Chemical Society

    Article Views

    6994

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (3 MB)
    Supporting Info (1)»

    Abstract

    Previously we reported emulsion polymerization of propylene sulfide with Pluronic F127 as an emulsifier, yielding nanoparticles (NPs) in the 25 nm size range. Immunologically functional NPs were prepared by adding an antigen−Pluronic conjugate to the polymerization mixture (Reddy, S. T., et al. (2007) Nat. Biotechnol.25, 1159). We sought a more flexible scheme for conjugation of antigens and other biomolecules to the NP surfaces that would allow for milder reaction conditions than achievable during the polymerization step. Here, we present the synthesis of such functionalizable NPs in the form of NPs that carry thiol-reactive groups, to which thiol-containing antigens (peptide or protein) or other biomolecules can be conjugated under mild conditions to yield immunofunctional NPs. The Pluronic-stabilized poly(propylene sulfide) (PPS) NPs with thiol-reactive pyridyl disulfide groups are prepared in two steps by (1) emulsion polymerization of propylene sulfide in the presence of a carboxylate-Pluronic and (2) reaction of the carboxylic acid groups on the NP surface with cysteamine pyridyl disulfide and a water-soluble carbodiimide reagent. We choose pyridyl disulfide groups to have a reduction-sensitive disulfide bond linking the antigen to the NP surface, allowing efficient release of antigen inside the cell in response to the reductive conditions within the endosome. The functionalizable NPs are characterized by proton NMR, dynamic light scattering (DLS), UV/vis spectroscopy, and transmission electron microscopy (TEM). Conjugation of small molecules and protein to the NP surface is presented.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Calculation of NP composition, NMR spectra of 6 and pyridyl disulfide-NP, and estimation of numbers of biotin, peptide, and OVA molecules per NP. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 81 publications.

    1. Joomyung V. Jun, Yana D. Petri, Lucas W. Erickson, Ronald T. Raines. Modular Diazo Compound for the Bioreversible Late-Stage Modification of Proteins. Journal of the American Chemical Society 2023, 145 (12) , 6615-6621. https://doi.org/10.1021/jacs.2c11325
    2. Daniel Ossadnik, Sergei Kuzin, Mian Qi, Maxim Yulikov, Adelheid Godt. A GdIII-Based Spin Label at the Limits for Linewidth Reduction through Zero-Field Splitting Optimization. Inorganic Chemistry 2023, 62 (1) , 408-432. https://doi.org/10.1021/acs.inorgchem.2c03531
    3. Mike Geven, Hanying Luo, Donghun Koo, Gangadhar Panambur, Roberto Donno, Arianna Gennari, Roberto Marotta, Benedetto Grimaldi, Nicola Tirelli. Disulfide-Mediated Bioconjugation: Disulfide Formation and Restructuring on the Surface of Nanomanufactured (Microfluidics) Nanoparticles. ACS Applied Materials & Interfaces 2019, 11 (30) , 26607-26618. https://doi.org/10.1021/acsami.9b07972
    4. Chenxi Li, Xiaoxu Zhang, Qing Chen, Jiulong Zhang, Wenpan Li, Haiyang Hu, Xiuli Zhao, Mingxi Qiao, and Dawei Chen . Synthetic Polymeric Mixed Micelles Targeting Lymph Nodes Trigger Enhanced Cellular and Humoral Immune Responses. ACS Applied Materials & Interfaces 2018, 10 (3) , 2874-2889. https://doi.org/10.1021/acsami.7b14004
    5. Soo Hyeon Lee, Jeong Yu Lee, Jee Seon Kim, Tae Gwan Park, and Hyejung Mok . Amphiphilic siRNA Conjugates for Co-Delivery of Nucleic Acids and Hydrophobic Drugs. Bioconjugate Chemistry 2017, 28 (8) , 2051-2061. https://doi.org/10.1021/acs.bioconjchem.7b00222
    6. Joshua J. Glass, Yang Li, Robert De Rose, Angus P. R. Johnston, Ewa I. Czuba, Song Yang Khor, John F. Quinn, Michael R. Whittaker, Thomas P. Davis, and Stephen J. Kent . Thiol-Reactive Star Polymers Display Enhanced Association with Distinct Human Blood Components. ACS Applied Materials & Interfaces 2017, 9 (14) , 12182-12194. https://doi.org/10.1021/acsami.6b15942
    7. Huan Peng, Kristin Rübsam, Xiaobin Huang, Felix Jakob, Marcel Karperien, Ulrich Schwaneberg, and Andrij Pich . Reactive Copolymers Based on N-Vinyl Lactams with Pyridyl Disulfide Side Groups via RAFT Polymerization and Postmodification via Thiol–Disulfide Exchange Reaction. Macromolecules 2016, 49 (19) , 7141-7154. https://doi.org/10.1021/acs.macromol.6b01210
    8. Debin Yang, Tingfang Wang, Zhigui Su, Lingjing Xue, Ran Mo, and Can Zhang . Reversing Cancer Multidrug Resistance in Xenograft Models via Orchestrating Multiple Actions of Functional Mesoporous Silica Nanoparticles. ACS Applied Materials & Interfaces 2016, 8 (34) , 22431-22441. https://doi.org/10.1021/acsami.6b04885
    9. Cheuk Ka Poon, Owen Tang, Xin-Ming Chen, Binh T. T. Pham, Guillaume Gody, Carol A. Pollock, Brian S. Hawkett, and Sébastien Perrier . Preparation of Inert Polystyrene Latex Particles as MicroRNA Delivery Vectors by Surfactant-Free RAFT Emulsion Polymerization. Biomacromolecules 2016, 17 (3) , 965-973. https://doi.org/10.1021/acs.biomac.5b01633
    10. Marco Lelle, Stefka Kaloyanova, Christoph Freidel, Marily Theodoropoulou, Michael Musheev, Christof Niehrs, Günter Stalla, and Kalina Peneva . Octreotide-Mediated Tumor-Targeted Drug Delivery via a Cleavable Doxorubicin–Peptide Conjugate. Molecular Pharmaceutics 2015, 12 (12) , 4290-4300. https://doi.org/10.1021/acs.molpharmaceut.5b00487
    11. Darrell J. Irvine, Melissa C. Hanson, Kavya Rakhra, and Talar Tokatlian . Synthetic Nanoparticles for Vaccines and Immunotherapy. Chemical Reviews 2015, 115 (19) , 11109-11146. https://doi.org/10.1021/acs.chemrev.5b00109
    12. Urara Hasegawa, Tomoki Nishida, and André J. van der Vlies . Dual Stimuli-Responsive Phenylboronic Acid-Containing Framboidal Nanoparticles by One-Step Aqueous Dispersion Polymerization. Macromolecules 2015, 48 (13) , 4388-4393. https://doi.org/10.1021/acs.macromol.5b00574
    13. Hirobumi Sunayama and Toshifumi Takeuchi . Molecularly Imprinted Protein Recognition Cavities Bearing Exchangeable Binding Sites for Postimprinting Site-Directed Introduction of Reporter Molecules for Readout of Binding Events. ACS Applied Materials & Interfaces 2014, 6 (22) , 20003-20009. https://doi.org/10.1021/am505551t
    14. Marina Talelli and María J. Vicent . Reduction Sensitive Poly(l-glutamic acid) (PGA)-Protein Conjugates Designed for Polymer Masked–Unmasked Protein Therapy. Biomacromolecules 2014, 15 (11) , 4168-4177. https://doi.org/10.1021/bm5011883
    15. Zhongfan Jia, Valentin A. Bobrin, Nghia P. Truong, Marianne Gillard, and Michael J. Monteiro . Multifunctional Nanoworms and Nanorods through a One-Step Aqueous Dispersion Polymerization. Journal of the American Chemical Society 2014, 136 (16) , 5824-5827. https://doi.org/10.1021/ja500092m
    16. Urara Hasegawa, André J. van der Vlies, Eleonora Simeoni, Christine Wandrey, and Jeffrey A. Hubbell. Carbon Monoxide-Releasing Micelles for Immunotherapy. Journal of the American Chemical Society 2010, 132 (51) , 18273-18280. https://doi.org/10.1021/ja1075025
    17. Valentina Marotti, Yining Xu, Cécilia Bohns Michalowski, Wunan Zhang, Inês Domingues, Hafsa Ameraoui, Tom G. Moreels, Pieter Baatsen, Matthias Van Hul, Giulio G. Muccioli, Patrice D. Cani, Mireille Alhouayek, Alessio Malfanti, Ana Beloqui. A nanoparticle platform for combined mucosal healing and immunomodulation in inflammatory bowel disease treatment. Bioactive Materials 2024, 32 , 206-221. https://doi.org/10.1016/j.bioactmat.2023.09.014
    18. Nazende Nur Bayram, Gizem Tuğçe Ulu, Nusaibah Abdulsalam Abdulhadi, Seda Gürdap, İsmail Alper İşoğlu, Yusuf Baran, Sevil Dinçer İşoğlu. HER2-Specific Peptide (LTVSPWY) and Antibody (Herceptin) Targeted Core Cross-Linked Micelles for Breast Cancer: A Comparative Study. Pharmaceutics 2023, 15 (3) , 733. https://doi.org/10.3390/pharmaceutics15030733
    19. Margaret P Manspeaker, Meghan J O'Melia, Susan N Thomas. Elicitation of stem-like CD8 + T cell responses via lymph node-targeted chemoimmunotherapy evokes systemic tumor control. Journal for ImmunoTherapy of Cancer 2022, 10 (9) , e005079. https://doi.org/10.1136/jitc-2022-005079
    20. Yang Sui, Ji Li, Jiqiang Qu, Ting Fang, Hongyan Zhang, Jian Zhang, Zheran Wang, Mingyu Xia, Yinghui Dai, Dongkai Wang. Dual-responsive nanovaccine for cytosolic delivery of antigens to boost cellular immune responses and cancer immunotherapy. Asian Journal of Pharmaceutical Sciences 2022, 17 (4) , 583-595. https://doi.org/10.1016/j.ajps.2022.05.004
    21. Niloofar Safaie, Jessica Smak, Danielle DeJonge, Shiwang Cheng, Xiaobing Zuo, Kohji Ohno, Robert C. Ferrier. Facile synthesis of epoxide-co-propylene sulphide polymers with compositional and architectural control. Polymer Chemistry 2022, 13 (19) , 2803-2812. https://doi.org/10.1039/D2PY00005A
    22. Meenakshi Chauhan, Suparna Mercy Basu, Sunil Kumar Yadava, Nandini Sarviya, Jyotsnendu Giri. A facile strategy for the preparation of polypropylene sulfide nanoparticles for hydrophobic and base‐sensitive cargo. Journal of Applied Polymer Science 2022, 139 (10) https://doi.org/10.1002/app.51767
    23. David M. Francis, Margaret P. Manspeaker, Paul A. Archer, Lauren F. Sestito, Alexander J. Heiler, Alex Schudel, Susan N. Thomas. Drug-eluting immune checkpoint blockade antibody-nanoparticle conjugate enhances locoregional and systemic combination cancer immunotherapy through T lymphocyte targeting. Biomaterials 2021, 279 , 121184. https://doi.org/10.1016/j.biomaterials.2021.121184
    24. Zhongyuan Guo, Luke J. Kubiatowicz, Ronnie H. Fang, Liangfang Zhang. Nanotoxoids: Biomimetic Nanoparticle Vaccines against Infections. Advanced Therapeutics 2021, 4 (8) https://doi.org/10.1002/adtp.202100072
    25. Lantian Lu, Viet Tram Duong, Ahmed O. Shalash, Mariusz Skwarczynski, Istvan Toth. Chemical Conjugation Strategies for the Development of Protein-Based Subunit Nanovaccines. Vaccines 2021, 9 (6) , 563. https://doi.org/10.3390/vaccines9060563
    26. Lauren F. Sestito, Susan N. Thomas. Lymph-directed nitric oxide increases immune cell access to lymph-borne nanoscale solutes. Biomaterials 2021, 265 , 120411. https://doi.org/10.1016/j.biomaterials.2020.120411
    27. Ismail Altinbasak, Mehmet Arslan, Rana Sanyal, Amitav Sanyal. Pyridyl disulfide-based thiol–disulfide exchange reaction: shaping the design of redox-responsive polymeric materials. Polymer Chemistry 2020, 11 (48) , 7603-7624. https://doi.org/10.1039/D0PY01215G
    28. M. J. O’Melia, N. A. Rohner, M. P. Manspeaker, D. M. Francis, H. T. Kissick, S. N. Thomas. Quality of CD8 + T cell immunity evoked in lymph nodes is compartmentalized by route of antigen transport and functional in tumor context. Science Advances 2020, 6 (50) https://doi.org/10.1126/sciadv.abd7134
    29. Catherine Card, David S. Wilson, Sachiko Hirosue, Marcela Rincon-Restrepo, Alexandre de Titta, Esra Güç, Coralie Martin, Odile Bain, Melody A. Swartz, Witold W. Kilarski. Adjuvant-free immunization with infective filarial larvae as lymphatic homing antigen carriers. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-57995-8
    30. Vida Hashemi, Shohreh Farhadi, Mitra Ghasemi Chaleshtari, Brinton Seashore-Ludlow, Ali Masjedi, Mohammad Hojjat-Farsangi, Afshin Namdar, Amir Ajjoolabady, Hamed Mohammadi, Ghasem Ghalamfarsa, Farhad Jadidi-Niaragh. Nanomedicine for improvement of dendritic cell-based cancer immunotherapy. International Immunopharmacology 2020, 83 , 106446. https://doi.org/10.1016/j.intimp.2020.106446
    31. Alex Schudel, Asheley Poole Chapman, Mei-Kwan Yau, Cody James Higginson, David Mark Francis, Margaret Patricia Manspeaker, Alexa Regina Chua Avecilla, Nathan Andrew Rohner, M. G. Finn, Susan Napier Thomas. Programmable multistage drug delivery to lymph nodes. Nature Nanotechnology 2020, 15 (6) , 491-499. https://doi.org/10.1038/s41565-020-0679-4
    32. I. Conejos-Sánchez, E. Gallon, A. Niño-Pariente, J. A. Smith, A. G. De la Fuente, L. Di Canio, S. Pluchino, R. J. M. Franklin, M. J. Vicent. Polyornithine-based polyplexes to boost effective gene silencing in CNS disorders. Nanoscale 2020, 12 (11) , 6285-6299. https://doi.org/10.1039/C9NR06187H
    33. Mehmet Arslan, Rana Sanyal, Amitav Sanyal. Thiol-reactive thiosulfonate group containing copolymers: facile entry to disulfide-mediated polymer conjugation and redox-responsive functionalizable networks. Polymer Chemistry 2020, 11 (10) , 1763-1773. https://doi.org/10.1039/C9PY01851D
    34. Priscilla S. Briquez, Sylvie Hauert, Alexandre de Titta, Laura T. Gray, Aaron T. Alpar, Melody A. Swartz, Jeffrey A. Hubbell. Engineering Targeting Materials for Therapeutic Cancer Vaccines. Frontiers in Bioengineering and Biotechnology 2020, 8 https://doi.org/10.3389/fbioe.2020.00019
    35. Margaret P. Manspeaker, Susan N. Thomas. Lymphatic immunomodulation using engineered drug delivery systems for cancer immunotherapy. Advanced Drug Delivery Reviews 2020, 160 , 19-35. https://doi.org/10.1016/j.addr.2020.10.004
    36. Diego de la Fuente-Herreruela, Ajay K. Monnappa, Mónica Muñoz-Úbeda, Aarón Morallón-Piña, Eduardo Enciso, Luis Sánchez, Fabrice Giusti, Paolo Natale, Iván López-Montero. Lipid–peptide bioconjugation through pyridyl disulfide reaction chemistry and its application in cell targeting and drug delivery. Journal of Nanobiotechnology 2019, 17 (1) https://doi.org/10.1186/s12951-019-0509-8
    37. Cheol Gyun Kim, Yoon-Chul Kye, Cheol-Heui Yun. The Role of Nanovaccine in Cross-Presentation of Antigen-Presenting Cells for the Activation of CD8+ T Cell Responses. Pharmaceutics 2019, 11 (11) , 612. https://doi.org/10.3390/pharmaceutics11110612
    38. Binglin Sui, Chen Cheng, Peisheng Xu. Pyridyl Disulfide Functionalized Polymers as Nanotherapeutic Platforms. Advanced Therapeutics 2019, 2 (9) https://doi.org/10.1002/adtp.201900062
    39. Jihoon Kim, Margaret P. Manspeaker, Susan N. Thomas. Augmenting the synergies of chemotherapy and immunotherapy through drug delivery. Acta Biomaterialia 2019, 88 , 1-14. https://doi.org/10.1016/j.actbio.2019.02.012
    40. Gabriele Galliverti, Mélanie Tichet, Sonia Domingos-Pereira, Sylvie Hauert, Denise Nardelli-Haefliger, Melody A. Swartz, Douglas Hanahan, Stephan Wullschleger. Nanoparticle Conjugation of Human Papillomavirus 16 E7-long Peptides Enhances Therapeutic Vaccine Efficacy against Solid Tumors in Mice. Cancer Immunology Research 2018, 6 (11) , 1301-1313. https://doi.org/10.1158/2326-6066.CIR-18-0166
    41. Rashmirekha Pati, Maxim Shevtsov, Avinash Sonawane. Nanoparticle Vaccines Against Infectious Diseases. Frontiers in Immunology 2018, 9 https://doi.org/10.3389/fimmu.2018.02224
    42. Olga Schäfer, Matthias Barz. Of Thiols and Disulfides: Methods for Chemoselective Formation of Asymmetric Disulfides in Synthetic Peptides and Polymers. Chemistry – A European Journal 2018, 24 (47) , 12131-12142. https://doi.org/10.1002/chem.201800681
    43. Brittany E Givens, Sean M Geary, Aliasger K Salem. Nanoparticle-based CpG-oligonucleotide therapy for treating allergic asthma. Immunotherapy 2018, 10 (7) , 595-604. https://doi.org/10.2217/imt-2017-0142
    44. Amaya Niño‐Pariente, Ana Armiñán, Sören Reinhard, Claudia Scholz, Ernst Wagner, María J. Vicent. Design of Poly‐ l ‐Glutamate‐Based Complexes for pDNA Delivery. Macromolecular Bioscience 2017, 17 (10) https://doi.org/10.1002/mabi.201700029
    45. Thomas Courant, Emilie Bayon, Hei Lanne Reynaud-Dougier, Christian Villiers, Mathilde Menneteau, Patrice N. Marche, Fabrice P. Navarro. Tailoring nanostructured lipid carriers for the delivery of protein antigens: Physicochemical properties versus immunogenicity studies. Biomaterials 2017, 136 , 29-42. https://doi.org/10.1016/j.biomaterials.2017.05.001
    46. Marcela Rincon-Restrepo, Aaron Mayer, Sylvie Hauert, Daniel K. Bonner, Edward A. Phelps, Jeffrey A. Hubbell, Melody A. Swartz, Sachiko Hirosue. Vaccine nanocarriers: Coupling intracellular pathways and cellular biodistribution to control CD4 vs CD8 T cell responses. Biomaterials 2017, 132 , 48-58. https://doi.org/10.1016/j.biomaterials.2017.03.047
    47. Marco Lelle, Christoph Freidel, Stefka Kaloyanova, Ilja Tabujew, Alexander Schramm, Michael Musheev, Christof Niehrs, Klaus Müllen, Kalina Peneva. Overcoming drug resistance by cell-penetrating peptide-mediated delivery of a doxorubicin dimer with high DNA-binding affinity. European Journal of Medicinal Chemistry 2017, 130 , 336-345. https://doi.org/10.1016/j.ejmech.2017.02.056
    48. A.M. Carmona-Ribeiro. Nanomaterials Based on Lipids for Vaccine Development. 2017, 241-257. https://doi.org/10.1016/B978-0-323-39981-4.00013-0
    49. Changgeng Liu, Xiufang Du, Qingke He, Guangqian Zhu, Lixia Zhang, Junling Zhu, Shangma Xiao, Ying Zeng. Preparation of pyridyl disulfide-functionalized magnetic nanoparticles and application in traceless isolation of thiol-containing proteins. Materials Letters 2017, 186 , 386-389. https://doi.org/10.1016/j.matlet.2016.10.044
    50. Katrin Kramer, Nicholas J. Shields, Viola Poppe, Sarah L. Young, Greg F. Walker. Intracellular Cleavable CpG Oligodeoxynucleotide-Antigen Conjugate Enhances Anti-tumor Immunity. Molecular Therapy 2017, 25 (1) , 62-70. https://doi.org/10.1016/j.ymthe.2016.10.001
    51. Mohammad Hegazy, Pei Zhou, Guangyu Wu, Lei Wang, Nahla Rahoui, Nadia Taloub, Xin Huang, Yudong Huang. Construction of polymer coated core–shell magnetic mesoporous silica nanoparticles with triple responsive drug delivery. Polymer Chemistry 2017, 8 (38) , 5852-5864. https://doi.org/10.1039/C7PY01179B
    52. Helen Mulvana, Richard J. Browning, Ying Luan, Nico de Jong, Meng-Xing Tang, Robert J. Eckersley, Eleanor Stride. Characterization of Contrast Agent Microbubbles for Ultrasound Imaging and Therapy Research. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 2017, 64 (1) , 232-251. https://doi.org/10.1109/TUFFC.2016.2613991
    53. Olga Schäfer, David Huesmann, Christian Muhl, Matthias Barz. Rethinking Cysteine Protective Groups: S ‐Alkylsulfonyl‐ l ‐Cysteines for Chemoselective Disulfide Formation. Chemistry – A European Journal 2016, 22 (50) , 18085-18091. https://doi.org/10.1002/chem.201604391
    54. Yuan Qian, Honglin Jin, Sha Qiao, Yanfeng Dai, Chuan Huang, Lisen Lu, Qingming Luo, Zhihong Zhang. Targeting dendritic cells in lymph node with an antigen peptide-based nanovaccine for cancer immunotherapy. Biomaterials 2016, 98 , 171-183. https://doi.org/10.1016/j.biomaterials.2016.05.008
    55. Enrique Valera, Alejandro Hernández-Albors, M.-Pilar Marco. Electrochemical coding strategies using metallic nanoprobes for biosensing applications. TrAC Trends in Analytical Chemistry 2016, 79 , 9-22. https://doi.org/10.1016/j.trac.2015.12.014
    56. Shuang Yang, Abigail Rubin, Shadi Toghi Eshghi, Hui Zhang. Chemoenzymatic method for glycomics: Isolation, identification, and quantitation. PROTEOMICS 2016, 16 (2) , 241-256. https://doi.org/10.1002/pmic.201500266
    57. Yit Lung Khung, Dario Narducci. Surface modification strategies on mesoporous silica nanoparticles for anti-biofouling zwitterionic film grafting. Advances in Colloid and Interface Science 2015, 226 , 166-186. https://doi.org/10.1016/j.cis.2015.10.009
    58. Marie Ballester, Laura Jeanbart, Alexandre de Titta, Chiara Nembrini, Benjamin J. Marsland, Jeffrey A. Hubbell, Melody A. Swartz. Nanoparticle conjugation enhances the immunomodulatory effects of intranasally delivered CpG in house dust mite-allergic mice. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep14274
    59. Laura Jeanbart, Iraklis C. Kourtis, André J. van der Vlies, Melody A. Swartz, Jeffrey A. Hubbell. 6-Thioguanine-loaded polymeric micelles deplete myeloid-derived suppressor cells and enhance the efficacy of T cell immunotherapy in tumor-bearing mice. Cancer Immunology, Immunotherapy 2015, 64 (8) , 1033-1046. https://doi.org/10.1007/s00262-015-1702-8
    60. Alex Schudel, Timothy Kassis, J. Brandon Dixon, Susan N. Thomas. S‐Nitrosated Polypropylene Sulfide Nanoparticles for Thiol‐Dependent Transnitrosation and Toxicity Against Adult Female Filarial Worms. Advanced Healthcare Materials 2015, 4 (10) , 1484-1490. https://doi.org/10.1002/adhm.201400841
    61. Bedabrata Saha, Jiban Saikia, Gopal Das. Correlating enzyme density, conformation and activity on nanoparticle surfaces in highly functional bio-nanocomposites. The Analyst 2015, 140 (2) , 532-542. https://doi.org/10.1039/C4AN01639D
    62. Solji Park, Keunsoo Jeong, Eunjung Lee, Jae Hyuk Lee, Ji Young Yhee, Ajay Singh, Joonseok Koh, Sangyoup Lee, Kwangmeyung Kim, Ick Chan Kwon, Chong Rae Park, Jungahn Kim, Sehoon Kim. Amphiphilized poly(ethyleneimine) nanoparticles: a versatile multi-cargo carrier with enhanced tumor-homing efficiency and biocompatibility. Journal of Materials Chemistry B 2015, 3 (2) , 198-206. https://doi.org/10.1039/C4TB01255K
    63. Preety Sahdev, Lukasz J. Ochyl, James J. Moon. Biomaterials for Nanoparticle Vaccine Delivery Systems. Pharmaceutical Research 2014, 31 (10) , 2563-2582. https://doi.org/10.1007/s11095-014-1419-y
    64. Marco Lelle, Kalina Peneva. An amino acid-based heterofunctional cross-linking reagent. Amino Acids 2014, 46 (5) , 1243-1251. https://doi.org/10.1007/s00726-014-1685-3
    65. Laura Jeanbart, Marie Ballester, Alexandre de Titta, Patricia Corthésy, Pedro Romero, Jeffrey A. Hubbell, Melody A. Swartz. Enhancing Efficacy of Anticancer Vaccines by Targeted Delivery to Tumor-Draining Lymph Nodes. Cancer Immunology Research 2014, 2 (5) , 436-447. https://doi.org/10.1158/2326-6066.CIR-14-0019-T
    66. Susan N. Thomas, Efthymia Vokali, Amanda W. Lund, Jeffrey A. Hubbell, Melody A. Swartz. Targeting the tumor-draining lymph node with adjuvanted nanoparticles reshapes the anti-tumor immune response. Biomaterials 2014, 35 (2) , 814-824. https://doi.org/10.1016/j.biomaterials.2013.10.003
    67. Alexandre de Titta, Marie Ballester, Ziad Julier, Chiara Nembrini, Laura Jeanbart, André J. van der Vlies, Melody A. Swartz, Jeffrey A. Hubbell. Nanoparticle conjugation of CpG enhances adjuvancy for cellular immunity and memory recall at low dose. Proceedings of the National Academy of Sciences 2013, 110 (49) , 19902-19907. https://doi.org/10.1073/pnas.1313152110
    68. Armando Stano, Evan A. Scott, Karen Y. Dane, Melody A. Swartz, Jeffrey A. Hubbell. Tunable T cell immunity towards a protein antigen using polymersomes vs. solid-core nanoparticles. Biomaterials 2013, 34 (17) , 4339-4346. https://doi.org/10.1016/j.biomaterials.2013.02.024
    69. Jose-Maria Montenegro, Valeria Grazu, Alyona Sukhanova, Seema Agarwal, Jesus M. de la Fuente, Igor Nabiev, Andreas Greiner, Wolfgang J. Parak. Controlled antibody/(bio-) conjugation of inorganic nanoparticles for targeted delivery. Advanced Drug Delivery Reviews 2013, 65 (5) , 677-688. https://doi.org/10.1016/j.addr.2012.12.003
    70. Iraklis C. Kourtis, Sachiko Hirosue, Alexandre de Titta, Stephan Kontos, Toon Stegmann, Jeffrey A. Hubbell, Melody A. Swartz, . Peripherally Administered Nanoparticles Target Monocytic Myeloid Cells, Secondary Lymphoid Organs and Tumors in Mice. PLoS ONE 2013, 8 (4) , e61646. https://doi.org/10.1371/journal.pone.0061646
    71. Armando Stano, Chiara Nembrini, Melody A. Swartz, Jeffrey A. Hubbell, Eleonora Simeoni. Nanoparticle size influences the magnitude and quality of mucosal immune responses after intranasal immunization. Vaccine 2012, 30 (52) , 7541-7546. https://doi.org/10.1016/j.vaccine.2012.10.050
    72. Jackson K. Eby, Karen Y. Dane, Conlin P. O’Neil, Sachiko Hirosue, Melody A. Swartz, Jeffrey A. Hubbell. Polymer micelles with pyridyl disulfide-coupled antigen travel through lymphatics and show enhanced cellular responses following immunization. Acta Biomaterialia 2012, 8 (9) , 3210-3217. https://doi.org/10.1016/j.actbio.2012.06.007
    73. Jeonghun Lee, Hyunjung Kim, Seahee Kim, Hyemi Lee, Jin Kim, Namkug Kim, Heon Joo Park, Eun Kyoung Choi, Jin Seong Lee, Chulhee Kim. A multifunctional mesoporous nanocontainer with an iron oxide core and a cyclodextrin gatekeeper for an efficient theranostic platform. Journal of Materials Chemistry 2012, 22 (28) , 14061. https://doi.org/10.1039/c2jm32137h
    74. Krzysztof Babiuch, Michael Gottschaldt, Oliver Werz, Ulrich S. Schubert. Particulate transepithelial drug carriers: barriers and functional polymers. RSC Advances 2012, 2 (28) , 10427. https://doi.org/10.1039/c2ra20726e
    75. J. A. Nam, Yeon Jeong Oh, Abdullah Abdullah-Al-Nahain, Euisang Yoo, Sung Young Park. Preparation of cross-linked biodegradable copolymers based polycarbanion of 3-arm PL(D)LA with brominated pluronic and stereocomplex mediated gelation behavior. 2012, 620-623. https://doi.org/10.1109/BHI.2012.6211659
    76. Chiara Nembrini, Armando Stano, Karen Y. Dane, Marie Ballester, André J. van der Vlies, Benjamin J. Marsland, Melody A. Swartz, Jeffrey A. Hubbell. Nanoparticle conjugation of antigen enhances cytotoxic T-cell responses in pulmonary vaccination. Proceedings of the National Academy of Sciences 2011, 108 (44) https://doi.org/10.1073/pnas.1104264108
    77. Marie Ballester, Chiara Nembrini, Neeraj Dhar, Alexandre de Titta, Cyntia de Piano, Miriella Pasquier, Eleonora Simeoni, André J. van der Vlies, John D. McKinney, Jeffrey A. Hubbell, Melody A. Swartz. Nanoparticle conjugation and pulmonary delivery enhance the protective efficacy of Ag85B and CpG against tuberculosis. Vaccine 2011, 29 (40) , 6959-6966. https://doi.org/10.1016/j.vaccine.2011.07.039
    78. Joshua D. Thomas, Terrence R. Burke. Application of a water-soluble pyridyl disulfide amine linker for use in Cu-free click bioconjugation. Tetrahedron Letters 2011, 52 (33) , 4316-4319. https://doi.org/10.1016/j.tetlet.2011.06.042
    79. Susan N. Thomas, André J. van der Vlies, Conlin P. O’Neil, Sai T. Reddy, Shann S. Yu, Todd D. Giorgio, Melody A. Swartz, Jeffrey A. Hubbell. Engineering complement activation on polypropylene sulfide vaccine nanoparticles. Biomaterials 2011, 32 (8) , 2194-2203. https://doi.org/10.1016/j.biomaterials.2010.11.037
    80. Armando Stano, André J. van der Vlies, Mikael M. Martino, Melody A. Swartz, Jeffrey A. Hubbell, Eleonora Simeoni. PPS nanoparticles as versatile delivery system to induce systemic and broad mucosal immunity after intranasal administration. Vaccine 2011, 29 (4) , 804-812. https://doi.org/10.1016/j.vaccine.2010.11.010
    81. Sachiko Hirosue, Iraklis C. Kourtis, André J. van der Vlies, Jeffrey A. Hubbell, Melody A. Swartz. Antigen delivery to dendritic cells by poly(propylene sulfide) nanoparticles with disulfide conjugated peptides: Cross-presentation and T cell activation. Vaccine 2010, 28 (50) , 7897-7906. https://doi.org/10.1016/j.vaccine.2010.09.077

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect