ACS Publications. Most Trusted. Most Cited. Most Read
Design and Synthesis of [111In]DTPA−Folate for Use as a Tumor-Targeted Radiopharmaceutical
My Activity

Figure 1Loading Img
    Article

    Design and Synthesis of [111In]DTPA−Folate for Use as a Tumor-Targeted Radiopharmaceutical
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, Department of Veterinary Clinical Sciences, and Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907
    Other Access OptionsSupporting Information (1)

    Bioconjugate Chemistry

    Cite this: Bioconjugate Chem. 1997, 8, 5, 673–679
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bc9701297
    Published September 25, 1997
    Copyright © 1997 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Folate-conjugated metal chelates have been proposed as potential imaging agents for cancers that overexpress folate receptors. In a previous study, folic acid was linked through its γ-carboxyl group to deferoxamine (DF), and the 67Ga-labeled complex ([67Ga]DF−folate) was examined for in vivo tumor targeting efficiency in athymic mice with a human tumor cell implant. Although superb tumor-to-background contrast was obtained, slow hepatobiliary clearance would compromise imaging of abdominal tumors such as ovarian cancer. In the present study, folic acid was conjugated to an alternative chelator, diethylenetriaminepentaacetic acid (DTPA), via an ethylenediamine spacer. The desired DTPA−folate(γ) regioisomer was synthesized by two different approaches, purified by reversed phase column chromatography, and characterized mainly by analytical HPLC, mass spectroscopy, and NMR. In cultured tumor cells, uptake of [111In]DTPA−folate(γ) was found to be specific for folate receptor-bearing cells, and the kinetics of uptake were similar to those of free folate and other folate-conjugated molecules. In the normal rat, intravenously administered [111In]DTPA−folate(γ) was found to be rapidly excreted into the urine, giving intestinal levels of radiotracer 10-fold lower than those observed with [67Ga]DF−folate(γ) at 4 h. In a preliminary mouse imaging study, a folate receptor-positive KB cell tumor was readily visualized by γ scintigraphy 1 h following intravenous administration of [111In]DTPA−folate(γ).

    Copyright © 1997 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Department of Chemistry.

     Department of Veterinary Clinical Sciences.

    §

     Department of Medicinal Chemistry and Molecular Pharmacology.

    *

     To whom correspondence should be addressed. Phone:  (317) 494-5273. Fax:  (317) 494-0239.

     Abstract published in Advance ACS Abstracts, September 1, 1997.

    Supporting Information Available

    Click to copy section linkSection link copied!

    1H and 13C NMR spectra of EDA−folate(γ), 1H and 13C NMR spectra of DTPA−folate(γ), analytical HPLC chromatograms of the two compounds with the conditions described in Experimental Procedures, and a table showing the biodistribution of [111In]DTPA−folate and [67Ga]DF−folate in rats calculated as a percentage of the injected dose per gram (%ID/g) of tissue wet weight (7 pages). Ordering information is given on any current masthead page.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 170 publications.

    1. Junhong Feng, Qianna Wang, Guangxing Yin, Yuhao Jiang, Qing Ruan, Peiwen Han, Qingna Xiao, Dajie Ding, Zuojie Li, Jin Du, Junbo Zhang. Synthesis and Preclinical Evaluation of Novel 99mTc-Labeled FR-Targeting Agents with Satisfactory Imaging Contrast and Reduced Renal Uptake. Journal of Medicinal Chemistry 2025, 68 (5) , 5675-5686. https://doi.org/10.1021/acs.jmedchem.4c02932
    2. Junhong Feng, Xuran Zhang, Yuhao Jiang, Qianna Wang, Qing Ruan, Guangxing Yin, Penwen Han, Jin Du, Junbo Zhang. Development of a Novel 99mTc-Labeled Folate Derivative Containing Phenyl Isonitrile to Target Folate Receptor with Reduced Renal Uptake. Molecular Pharmaceutics 2024, 21 (11) , 5681-5689. https://doi.org/10.1021/acs.molpharmaceut.4c00667
    3. Luisa M. Deberle, Martina Benešová, Anna E. Becker, Magdalena Ratz, Patrycja Guzik, Roger Schibli, Cristina Müller. Novel Synthetic Strategies Enable the Efficient Development of Folate Conjugates for Cancer Radiotheranostics. Bioconjugate Chemistry 2021, 32 (8) , 1617-1628. https://doi.org/10.1021/acs.bioconjchem.1c00198
    4. Paweł Krzysztof Halik, Przemysław Koźmiński, Ewa Gniazdowska. Perspectives of Methotrexate-Based Radioagents for Application in Nuclear Medicine. Molecular Pharmaceutics 2021, 18 (1) , 33-43. https://doi.org/10.1021/acs.molpharmaceut.0c00740
    5. Judit E. Puskas, Marcela Castano, Prajakatta Mulay, Venkat Dudipala, Chrys Wesdemiotis. Method for the Synthesis of γ-PEGylated Folic Acid and Its Fluorescein-Labeled Derivative. Macromolecules 2018, 51 (22) , 9069-9077. https://doi.org/10.1021/acs.macromol.8b01888
    6. Zhide Guo, Linyi You, Changrong Shi, Manli Song, Mengna Gao, Duo Xu, Chenyu Peng, Rongqiang Zhuang, Ting Liu, Xinhui Su, Jin Du, and Xianzhong Zhang . Development of a New FR-Targeting Agent 99mTc-HYNFA with Improved Imaging Contrast and Comparison of Multimerization and/or PEGylation Strategies for Radio-Folate Modification. Molecular Pharmaceutics 2017, 14 (11) , 3780-3788. https://doi.org/10.1021/acs.molpharmaceut.7b00536
    7. Silvan D. Boss, Thomas Betzel, Cristina Müller, Cindy R. Fischer, Stephanie Haller, Josefine Reber, Viola Groehn, Roger Schibli, and Simon M. Ametamey . Comparative Studies of Three Pairs of α- and γ-Conjugated Folic Acid Derivatives Labeled with Fluorine-18. Bioconjugate Chemistry 2016, 27 (1) , 74-86. https://doi.org/10.1021/acs.bioconjchem.5b00644
    8. Michael R. Duff, Jr., Shaileja Chopra, Michael Brad Strader, Pratul K. Agarwal, and Elizabeth E. Howell . Tales of Dihydrofolate Binding to R67 Dihydrofolate Reductase. Biochemistry 2016, 55 (1) , 133-145. https://doi.org/10.1021/acs.biochem.5b00981
    9. Siyan Zhang, Kiat Hwa Chan, Robert K. Prud'homme, and A. James Link . Synthesis and Evaluation of Clickable Block Copolymers for Targeted Nanoparticle Drug Delivery. Molecular Pharmaceutics 2012, 9 (8) , 2228-2236. https://doi.org/10.1021/mp3000748
    10. Jun J. Yang, Sumith A. Kularatne, Xianming Chen, Philip S. Low, and Exing Wang . Characterization of in Vivo Disulfide-Reduction Mediated Drug Release in Mouse Kidneys. Molecular Pharmaceutics 2012, 9 (2) , 310-317. https://doi.org/10.1021/mp200483t
    11. Wei Xia and Philip S. Low. Folate-Targeted Therapies for Cancer. Journal of Medicinal Chemistry 2010, 53 (19) , 6811-6824. https://doi.org/10.1021/jm100509v
    12. Shu-Jyuan Yang, Feng-Huei Lin, Kun-Che Tsai, Ming-Feng Wei, Han-Min Tsai, Jau-Min Wong and Ming-Jium Shieh. Folic Acid-Conjugated Chitosan Nanoparticles Enhanced Protoporphyrin IX Accumulation in Colorectal Cancer Cells. Bioconjugate Chemistry 2010, 21 (4) , 679-689. https://doi.org/10.1021/bc9004798
    13. Cristina Müller, Joseph A. Reddy, Christopher P. Leamon and Roger Schibli . Effects of the Antifolates Pemetrexed and CB3717 on the Tissue Distribution of 99mTc-EC20 in Xenografted and Syngeneic Tumor-Bearing Mice. Molecular Pharmaceutics 2010, 7 (2) , 597-604. https://doi.org/10.1021/mp900296k
    14. Thomas L. Mindt, Cristina Müller, Florian Stuker, Jean-Frédéric Salazar, Alexander Hohn, Thomas Mueggler, Markus Rudin and Roger Schibli . A “Click Chemistry” Approach to the Efficient Synthesis of Multiple Imaging Probes Derived from a Single Precursor. Bioconjugate Chemistry 2009, 20 (10) , 1940-1949. https://doi.org/10.1021/bc900276b
    15. Nazila Kamaly, Tammy Kalber, Maya Thanou, Jimmy D. Bell and Andrew D. Miller . Folate Receptor Targeted Bimodal Liposomes for Tumor Magnetic Resonance Imaging. Bioconjugate Chemistry 2009, 20 (4) , 648-655. https://doi.org/10.1021/bc8002259
    16. Tobias L. Ross, Michael Honer, Phoebe Y. H. Lam, Thomas L. Mindt, Viola Groehn, Roger Schibli, P. August Schubiger and Simon M. Ametamey. Fluorine-18 Click Radiosynthesis and Preclinical Evaluation of a New 18F-Labeled Folic Acid Derivative. Bioconjugate Chemistry 2008, 19 (12) , 2462-2470. https://doi.org/10.1021/bc800356r
    17. Thomas L. Mindt, Cristina Müller, Marleen Melis, Marion de Jong and Roger Schibli . “Click-to-Chelate”: In Vitro and In Vivo Comparison of a 99mTc(CO)3-Labeled N(τ)-Histidine Folate Derivative with Its Isostructural, Clicked 1,2,3-Triazole Analogue. Bioconjugate Chemistry 2008, 19 (8) , 1689-1695. https://doi.org/10.1021/bc800183r
    18. Philip S. Low, Walter A. Henne and Derek D. Doorneweerd. Discovery and Development of Folic-Acid-Based Receptor Targeting for Imaging and Therapy of Cancer and Inflammatory Diseases. Accounts of Chemical Research 2008, 41 (1) , 120-129. https://doi.org/10.1021/ar7000815
    19. Michael E. Nelson,, Natalia A. Loktionova,, Anthony E. Pegg, and, Robert C. Moschel. 2-Amino-O4-benzylpteridine Derivatives:  Potent Inactivators of O6-Alkylguanine-DNA Alkyltransferase. Journal of Medicinal Chemistry 2004, 47 (15) , 3887-3891. https://doi.org/10.1021/jm049758+
    20. Woo Kyung Moon,, Yuhui Lin,, Terence O'Loughlin,, Yi Tang,, Dong-Eog Kim,, Ralph Weissleder, and, Ching-Hsuan Tung. Enhanced Tumor Detection Using a Folate Receptor-Targeted Near-Infrared Fluorochrome Conjugate. Bioconjugate Chemistry 2003, 14 (3) , 539-545. https://doi.org/10.1021/bc0340114
    21. Jakub Fichna and, Anna Janecka. Synthesis of Target-Specific Radiolabeled Peptides for Diagnostic Imaging. Bioconjugate Chemistry 2003, 14 (1) , 3-17. https://doi.org/10.1021/bc025542f
    22. Sindre Hassfjell and, Martin W. Brechbiel. The Development of the α-Particle Emitting Radionuclides 212Bi and 213Bi, and Their Decay Chain Related Radionuclides, for Therapeutic Applications. Chemical Reviews 2001, 101 (7) , 2019-2036. https://doi.org/10.1021/cr000118y
    23. Ha Young Kim,, Douglas A. Lantrip, and, Philip L. Fuchs. Relative Reactivity of anti- and syn-Oximino Carbonates and Carbamates of 2-Pyridylacetic Acid Esters. Organic Letters 2001, 3 (14) , 2137-2140. https://doi.org/10.1021/ol015737n
    24. Shuang Liu and, D. Scott Edwards. 99mTc-Labeled Small Peptides as Diagnostic Radiopharmaceuticals. Chemical Reviews 1999, 99 (9) , 2235-2268. https://doi.org/10.1021/cr980436l
    25. Carolyn J. Anderson and, Michael J. Welch. Radiometal-Labeled Agents (Non-Technetium) for Diagnostic Imaging. Chemical Reviews 1999, 99 (9) , 2219-2234. https://doi.org/10.1021/cr980451q
    26. Jae Wook Lee and, Philip L. Fuchs. Reduction of Azides to Primary Amines in Substrates Bearing Labile Ester Functionality. Synthesis of a PEG-Solubilized, “Y”-Shaped Iminodiacetic Acid Reagent for Preparation of Folate-Tethered Drugs1. Organic Letters 1999, 1 (2) , 179-182. https://doi.org/10.1021/ol9905248
    27. Andrew Siow, Renata Kowalczyk, Jiwon Hong, Paul W. R. Harris. Chemical Modifications on the αvβ6 Integrin Targeting A20FMDV2 Peptide: A Review. ChemMedChem 2024, 10 https://doi.org/10.1002/cmdc.202400131
    28. Navjeet Kaur, Pankaj Popli, Neha Tiwary, Rajan Swami. Small molecules as cancer targeting ligands: Shifting the paradigm. Journal of Controlled Release 2023, 355 , 417-433. https://doi.org/10.1016/j.jconrel.2023.01.032
    29. Batoul Alallam, Hazem Choukaife, Salma Seyam, Vuanghao Lim, Mulham Alfatama. Advanced Drug Delivery Systems for Renal Disorders. Gels 2023, 9 (2) , 115. https://doi.org/10.3390/gels9020115
    30. Laurène Wagner, Bibigul Kenzhebayeva, Batoul Dhaini, Samir Boukhlef, Albert Moussaron, Serge Mordon, Céline Frochot, Charlotte Collet, Samir Acherar. Folate-based radiotracers for nuclear imaging and radionuclide therapy. Coordination Chemistry Reviews 2022, 470 , 214702. https://doi.org/10.1016/j.ccr.2022.214702
    31. Dmitry A. Gruzdev, Angelina A. Telegina, Galina L. Levit, Olga I. Solovieva, Tatiana Ya. Gusel’nikova, Ivan A. Razumov, Victor P. Krasnov, Valery N. Charushin. Carborane-Containing Folic Acid bis-Amides: Synthesis and In Vitro Evaluation of Novel Promising Agents for Boron Delivery to Tumour Cells. International Journal of Molecular Sciences 2022, 23 (22) , 13726. https://doi.org/10.3390/ijms232213726
    32. Bo Lin, Ying-Yu Ma, Jun-Wei Wang. Nano-Technological Approaches for Targeting Kidney Diseases With Focus on Diabetic Nephropathy: Recent Progress, and Future Perspectives. Frontiers in Bioengineering and Biotechnology 2022, 10 https://doi.org/10.3389/fbioe.2022.870049
    33. Ahmed A. H. Abdellatif, Hamdoon A. Mohammed, Riaz A. Khan, Varsha Singh, Abdellatif Bouazzaoui, Mohammad Yusuf, Naseem Akhtar, Maria Khan, Amal Al-Subaiyel, Salman A. A. Mohammed, Mohsen S. Al-Omar. Nano-scale delivery: A comprehensive review of nano-structured devices, preparative techniques, site-specificity designs, biomedical applications, commercial products, and references to safety, cellular uptake, and organ toxicity. Nanotechnology Reviews 2021, 10 (1) , 1493-1559. https://doi.org/10.1515/ntrev-2021-0096
    34. Ali Shakeri-Zadeh, Abolhasan Rezaeyan, Abolfazl Sarikhani, Hamed Ghaffari, Hadi Samadian, Sara Khademi, Habib Ghaznavi, Jeff W.M. Bulte. Folate receptor-targeted nanoprobes for molecular imaging of cancer: Friend or foe?. Nano Today 2021, 39 , 101173. https://doi.org/10.1016/j.nantod.2021.101173
    35. Junhong Feng, Xuran Zhang, Qing Ruan, Yuhao Jiang, Junbo Zhang. Preparation and Evaluation of Novel Folate Isonitrile 99mTc Complexes as Potential Tumor Imaging Agents to Target Folate Receptors. Molecules 2021, 26 (15) , 4552. https://doi.org/10.3390/molecules26154552
    36. Nimeet Desai, HariPriya Koppisetti, Shreya Pande, Havish Shukla, Bhagwat Sirsat, Aayushi S Ditani, Pragyan P Mallick, Umesh Kathar, Kiran Kalia, Rakesh K Tekade. Nanomedicine in the Treatment of Diabetic Nephropathy. Future Medicinal Chemistry 2021, 13 (7) , 663-686. https://doi.org/10.4155/fmc-2020-0335
    37. Nimisha, Apoorva Singh, Kalpana Pandey. Advanced drug delivery systems in kidney cancer. 2021, 155-181. https://doi.org/10.1016/B978-0-323-85503-7.00018-3
    38. Cari A. Didion, Walter A. Henne. A Bibliometric analysis of folate receptor research. BMC Cancer 2020, 20 (1) https://doi.org/10.1186/s12885-020-07607-5
    39. Dola Das, Nischal Koirala, Xin Li, Nadia Khan, Franklin Dong, William Zhang, Prajakatta Mulay, Gayatri Shrikhande, Judit Puskas, Judy Drazba, Gordon McLennan. Screening of Polymer-Based Drug Delivery Vehicles Targeting Folate Receptors in Triple-Negative Breast Cancer. Journal of Vascular and Interventional Radiology 2020, 31 (11) , 1866-1873.e2. https://doi.org/10.1016/j.jvir.2020.05.010
    40. Nirmalya Tripathy, Jonathan Wang, Madelynn Tung, Claire Conway, Eun Ji Chung. Transdermal Delivery of Kidney-Targeting Nanoparticles Using Dissolvable Microneedles. Cellular and Molecular Bioengineering 2020, 13 (5) , 475-486. https://doi.org/10.1007/s12195-020-00622-3
    41. Sneha Mahalunkar, Gopal C. Kundu, Suresh W. Gosavi. Folated curcumin-gold nanoformulations: A nanotherapeutic strategy for breast cancer therapy. Journal of Vacuum Science & Technology B 2020, 38 (5) , 050802. https://doi.org/10.1116/6.0000148
    42. Hans-Jürgen Pietzsch, Constantin Mamat, Cristina Müller, Roger Schibli. Single Photon Emission Computed Tomography Tracer. 2020, 227-282. https://doi.org/10.1007/978-3-030-42618-7_7
    43. Chester Blackburn, Hongyun Tai, Martina Salerno, Xi Wang, Edgar Hartsuiker, Wenxin Wang. Folic acid and rhodamine labelled pH responsive hyperbranched polymers: Synthesis, characterization and cell uptake studies. European Polymer Journal 2019, 120 , 109259. https://doi.org/10.1016/j.eurpolymj.2019.109259
    44. Simon Finn Mayer, Julie Ducrey, Jessica Dupasquier, Laetitia Haeni, Barbara Rothen-Rutishauser, Jerry Yang, Aziz Fennouri, Michael Mayer. Targeting specific membranes with an azide derivative of the pore-forming peptide ceratotoxin A. Biochimica et Biophysica Acta (BBA) - Biomembranes 2019, 1861 (10) , 183023. https://doi.org/10.1016/j.bbamem.2019.07.011
    45. Zhi-xiang Yuan, Zhenghui Shang, Jian Gu, Lili He. Renal Targeting Delivery Systems. Future Medicinal Chemistry 2019, 11 (17) , 2237-2240. https://doi.org/10.4155/fmc-2019-0152
    46. Cherie Stayner, Darby G. Brooke, Michael Bates, Michael R. Eccles. Targeted Therapies for Autosomal Dominant Polycystic Kidney Disease. Current Medicinal Chemistry 2019, 26 (17) , 3081-3102. https://doi.org/10.2174/0929867325666180508095654
    47. Arjan Geersing, Reinder H. de Vries, Gerrit Jansen, Marianne G. Rots, Gerard Roelfes. Folic acid conjugates of a bleomycin mimic for selective targeting of folate receptor positive cancer cells. Bioorganic & Medicinal Chemistry Letters 2019, 29 (15) , 1922-1927. https://doi.org/10.1016/j.bmcl.2019.05.047
    48. Chun‐Ping Liu, You Hu, Ju‐Chun Lin, Hua‐Lin Fu, Lee Yong Lim, Zhi‐Xiang Yuan. Targeting strategies for drug delivery to the kidney: From renal glomeruli to tubules. Medicinal Research Reviews 2019, 39 (2) , 561-578. https://doi.org/10.1002/med.21532
    49. Weidong Yang, Cheng Wang, Gang Huang. Receptor-Targeted Radionuclide Imaging (RTRI) and Peptide Receptor Radionuclide Therapy (PRRT). 2019, 177-199. https://doi.org/10.1007/978-981-13-7458-6_12
    50. Nasser Alhajj, Chin Fei Chee, Tin Wui Wong, Noorsaadah Abd Rahman, Noor Hayaty Abu Kasim, Paolo Colombo. Lung cancer: active therapeutic targeting and inhalational nanoproduct design. Expert Opinion on Drug Delivery 2018, 15 (12) , 1223-1247. https://doi.org/10.1080/17425247.2018.1547280
    51. Sean S Tanzey, Stephen Thompson, Peter JH Scott, Allen F Brooks. Gallium-68: Methodology and Novel Radiotracers for Positron Emission Tomography (2012–2017). Pharmaceutical Patent Analyst 2018, 7 (5) , 193-227. https://doi.org/10.4155/ppa-2018-0016
    52. Fahimeh Charbgoo, Maryam Nikkhah, Mehrdad Behmanesh. Size of single‐wall carbon nanotube affects the folate receptor‐mediated cancer cell targeting. Biotechnology and Applied Biochemistry 2018, 65 (3) , 328-337. https://doi.org/10.1002/bab.1592
    53. Zhangli Du, Jing Sun, Christie A. Bader, Doug A. Brooks, Minqi Li, Xun Li, Sally E. Plush. Synthesis, photophysical and cellular characterisation of folate and methotrexate labelled luminescent lanthanide complexes. Journal of Inorganic Biochemistry 2018, 178 , 32-42. https://doi.org/10.1016/j.jinorgbio.2017.10.003
    54. Marcos Fernández, Faiza Javaid, Vijay Chudasama. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chemical Science 2018, 9 (4) , 790-810. https://doi.org/10.1039/C7SC04004K
    55. Klaudia Siwowska, Raffaella Schmid, Susan Cohrs, Roger Schibli, Cristina Müller. Folate Receptor-Positive Gynecological Cancer Cells: In Vitro and In Vivo Characterization. Pharmaceuticals 2017, 10 (3) , 72. https://doi.org/10.3390/ph10030072
    56. Rahul Pratap Singh, Gunjan Sharma, Sonali, Sanjay Singh, Shreekant Bharti, Bajarangprasad L. Pandey, Biplob Koch, Madaswamy S. Muthu. Chitosan-folate decorated carbon nanotubes for site specific lung cancer delivery. Materials Science and Engineering: C 2017, 77 , 446-458. https://doi.org/10.1016/j.msec.2017.03.225
    57. Masafumi Tanaka, Naomi Tsujino, Takahiro Mukai. Preparation and Cellular Uptake of Folate-modified Lipid Nanodisks. Chemistry Letters 2017, 46 (7) , 944-946. https://doi.org/10.1246/cl.170198
    58. Manli Song, Zhide Guo, Mengna Gao, Changrong Shi, Duo Xu, Linyi You, Xiaowei Wu, Xinhui Su, Rongqiang Zhuang, Weimin Pan, Ting Liu, Xianzhong Zhang. Synthesis and preliminary evaluation of a 99m Tc‐labeled folate‐ PAMAM dendrimer for FR imaging. Chemical Biology & Drug Design 2017, 89 (5) , 755-761. https://doi.org/10.1111/cbdd.12899
    59. Yongquan Li, Yu Xiao, Zongning Yin. Enhanced Anti-Inflammatory Efficacy Through Targeting to Macrophages: Synthesis and In Vitro Evaluation of Folate-Glycine-Celecoxib. AAPS PharmSciTech 2017, 18 (3) , 729-737. https://doi.org/10.1208/s12249-016-0556-5
    60. N. Achini Bandara, Cody D. Bates, Yingjuan Lu, Emily K. Hoylman, Philip S. Low. Folate-Hapten–Mediated Immunotherapy Synergizes with Vascular Endothelial Growth Factor Receptor Inhibitors in Treating Murine Models of Cancer. Molecular Cancer Therapeutics 2017, 16 (3) , 461-468. https://doi.org/10.1158/1535-7163.MCT-16-0569
    61. Shaghayegh Fathi, Adegboyega K Oyelere. Liposomal Drug Delivery Systems for Targeted Cancer Therapy: Is Active Targeting the Best Choice?. Future Medicinal Chemistry 2016, 8 (17) , 2091-2112. https://doi.org/10.4155/fmc-2016-0135
    62. Akanksha Jain, Anupam Mathur, Usha Pandey, Jyotsna Bhatt, Archana Mukherjee, Ramu Ram, Haladhar Dev Sarma, Ashutosh Dash. Synthesis and evaluation of a 68Ga labeled folic acid derivative for targeting folate receptors. Applied Radiation and Isotopes 2016, 116 , 77-84. https://doi.org/10.1016/j.apradiso.2016.07.024
    63. Philipp Spang, Christian Herrmann, Frank Roesch. Bifunctional Gallium-68 Chelators: Past, Present, and Future. Seminars in Nuclear Medicine 2016, 46 (5) , 373-394. https://doi.org/10.1053/j.semnuclmed.2016.04.003
    64. Jae-Young Lee, Ubonvan Termsarasab, Ju-Hwan Park, Song Yi Lee, Seung-Hak Ko, Jae-Seong Shim, Suk-Jae Chung, Hyun-Jong Cho, Dae-Duk Kim. Dual CD44 and folate receptor-targeted nanoparticles for cancer diagnosis and anticancer drug delivery. Journal of Controlled Release 2016, 236 , 38-46. https://doi.org/10.1016/j.jconrel.2016.06.021
    65. Chris V. Galliford, Philip S. Low. Receptor‐Mediated Drug Delivery. 2016, 451-474. https://doi.org/10.1002/9781118833322.ch19
    66. Chin S. Kue, Anyanee Kamkaew, Kevin Burgess, Lik V. Kiew, Lip Y. Chung, Hong B. Lee. Small Molecules for Active Targeting in Cancer. Medicinal Research Reviews 2016, 36 (3) , 494-575. https://doi.org/10.1002/med.21387
    67. Ahmad Jiblaoui, Julie Barbeau, Thomas Vivès, Patrick Cormier, Virginie Glippa, Bertrand Cosson, Thierry Benvegnu. Folate-conjugated stealth archaeosomes for the targeted delivery of novel antitumoral peptides. RSC Advances 2016, 6 (79) , 75234-75241. https://doi.org/10.1039/C6RA15713K
    68. J.A. Ledermann, S. Canevari, T. Thigpen. Targeting the folate receptor: diagnostic and therapeutic approaches to personalize cancer treatments. Annals of Oncology 2015, 26 (10) , 2034-2043. https://doi.org/10.1093/annonc/mdv250
    69. Kaushik Mishra, Abraham Joy. Dual functionalized telechelic block copolymers with reproducible block sizes prepared by microwave assisted RAFT polymerization. Polymer 2015, 66 , 110-121. https://doi.org/10.1016/j.polymer.2015.04.013
    70. Paramjot, Nikhat Mansoor Khan, Himani Kapahi, Sahil Kumar, T. R. Bhardwaj, Saahil Arora, Neeraj Mishra. Role of polymer–drug conjugates in organ-specific delivery systems. Journal of Drug Targeting 2015, 23 (5) , 387-416. https://doi.org/10.3109/1061186X.2015.1016436
    71. Dawen Dong, Wei Gao, Yujie Liu, Xian-Rong Qi. Therapeutic potential of targeted multifunctional nanocomplex co-delivery of siRNA and low-dose doxorubicin in breast cancer. Cancer Letters 2015, 359 (2) , 178-186. https://doi.org/10.1016/j.canlet.2015.01.011
    72. T. Firouzyar, A. R. Jalilian, M. Shafiee-Ardestani, M. R. Aboudzadeh, Y. Fazaeli, F. Bolourinovin, M. Mirzaii, A. Khalaj. Development of an 111In-labeled dihydropyridine complex for L-type calcium channel imaging. Journal of Radioanalytical and Nuclear Chemistry 2015, 303 (3) , 2361-2369. https://doi.org/10.1007/s10967-014-3656-2
    73. Grazia Maria Letizia Consoli, Giuseppe Granata, Giorgia Fragassi, Mauro Grossi, Michele Sallese, Corrada Geraci. Design and synthesis of a multivalent fluorescent folate–calix[4]arene conjugate: cancer cell penetration and intracellular localization. Organic & Biomolecular Chemistry 2015, 13 (11) , 3298-3307. https://doi.org/10.1039/C4OB02333A
    74. Paolo Arosio, Francesco Orsini, Anna M. Piras, Stefania Sandreschi, Federica Chiellini, Maurizio Corti, Marc Masa, Marta Múčková, Ľudmila Schmidtová, Costanza Ravagli, Giovanni Baldi, Elena Nicolato, Giamaica Conti, Pasquina Marzola, Alessandro Lascialfari. MR imaging and targeting of human breast cancer cells with folate decorated nanoparticles. RSC Advances 2015, 5 (50) , 39760-39770. https://doi.org/10.1039/C5RA04880J
    75. Madhuri Sharon. Surface Orchestration of Gold Nanoparticles Using Cysteamine as Linker and Folate as Navigating Molecule for Synaphic Delivery of Doxorubicin. Journal of Nanomedicine Research 2014, 1 (1) https://doi.org/10.15406/jnmr.2014.01.00002
    76. Qing Dong, Zuo-Xu Xie, Cao Xie, Wei-Yue Lu, Qian Zhang, Xue Li, Min Liu. Isomeric Folate-Conjugated Polymeric Micelles Bind to Folate Receptors and Display Anticancer Effects. Asian Pacific Journal of Cancer Prevention 2014, 15 (17) , 7363-7369. https://doi.org/10.7314/APJCP.2014.15.17.7363
    77. Parisa Yousefpour, Ashutosh Chilkoti. Co‐opting biology to deliver drugs. Biotechnology and Bioengineering 2014, 111 (9) , 1699-1716. https://doi.org/10.1002/bit.25307
    78. Nicholas A. Peppas, Ruth Duncan, Gary E. Wnek, Allan S. Hoffman, Guang Hui Gao, Sung Wan Kim, Doo Sung Lee, Michael Hadjiargyrou, Elka Touitou, Denize Ainbinder, Russell Mumper, Alain Rolland, Takuro Niidome, Vinod Labhasetwar, Shi Liu, Guangyuan Zhou, Yubin Huang, Zhigang Xie, Xiabin Jing, Noemi Csaba, Maria Jose Alonso, Omar Ali, David J. Mooney, Peter Lönn, Steven F. Dowdy, Si-Shen Feng, Jinming Gao, Eun Seong Lee, Kun Na, You Han Bae, Gaylen M. Zentner, Hyesung Kim, Hyuk Sang Yoo, Masamichi Nakayama, Teruo Okano, Zi-Xian Liao, Er-Yuan Chuang, Chun-Wen Hsiao, Hsing-Wen Sung, Horacio Cabral, Kazunori Kataoka, Praful R. Nair, Dennis Discher, Samir Mitragotri. Highly cited research articles in Journal of Controlled Release: Commentaries and perspectives by authors. Journal of Controlled Release 2014, 190 , 29-74. https://doi.org/10.1016/S0168-3659(14)00482-9
    79. Rijun Gui, Ajun Wan, Yalei Zhang, Huili Li, Tingting Zhao. Retracted Article: Light-triggered nitric oxide release and targeted fluorescence imaging in tumor cells developed from folic acid-graft-carboxymethyl chitosan nanospheres. RSC Advances 2014, 4 (57) , 30129-30136. https://doi.org/10.1039/C4RA03034F
    80. I. AlJammaz, B. Al-Otaibi, F. Al-Rumayan, S. Al-Yanbawi, S. Amer, S.M. Okarvi. Development and preclinical evaluation of new 124I-folate conjugates for PET imaging of folate receptor-positive tumors. Nuclear Medicine and Biology 2014, 41 (6) , 457-463. https://doi.org/10.1016/j.nucmedbio.2014.03.013
    81. Peng Zhou, Xun Sun, Zhirong Zhang. Kidney–targeted drug delivery systems. Acta Pharmaceutica Sinica B 2014, 4 (1) , 37-42. https://doi.org/10.1016/j.apsb.2013.12.005
    82. Yuan Chen, Hongjuan Guo, Fang Xie, Jie Lu. Preparation and biological evaluation of 99m TcN‐labeled pteroyl‐lys derivative as a potential folate receptor imaging agent. Journal of Labelled Compounds and Radiopharmaceuticals 2014, 57 (1) , 12-17. https://doi.org/10.1002/jlcr.3116
    83. Alexandre F. Trindade, Raquel F. M. Frade, Ermelinda M. S. Maçôas, Cátia Graça, Catarina A. B. Rodrigues, José M. G. Martinho, Carlos A. M. Afonso. “Click and go”: simple and fast folic acid conjugation. Org. Biomol. Chem. 2014, 12 (20) , 3181-3190. https://doi.org/10.1039/C4OB00150H
    84. Shengtang Huang, Ying Wan, Zheng Wang, Jiliang Wu. Folate-conjugated chitosan–polylactide nanoparticles for enhanced intracellular uptake of anticancer drug. Journal of Nanoparticle Research 2013, 15 (12) https://doi.org/10.1007/s11051-013-2096-1
    85. Cristina Müller. Folate-Based Radiotracers for PET Imaging—Update and Perspectives. Molecules 2013, 18 (5) , 5005-5031. https://doi.org/10.3390/molecules18055005
    86. Changli Du, Dawei Deng, Lingling Shan, Shunan Wan, Jie Cao, Junmei Tian, Samuel Achilefu, Yueqing Gu. A pH-sensitive doxorubicin prodrug based on folate-conjugated BSA for tumor-targeted drug delivery. Biomaterials 2013, 34 (12) , 3087-3097. https://doi.org/10.1016/j.biomaterials.2013.01.041
    87. Wei-Liang Ye, Zeng-Hui Teng, Dao-Zhou Liu, Han Cui, Miao Liu, Ying Cheng, Tie-Hong Yang, Qi-Bing Mei, Si-Yuan Zhou. Synthesis of a New pH-Sensitive Folate–Doxorubicin Conjugate and its Antitumor Activity In Vitro. Journal of Pharmaceutical Sciences 2013, 102 (2) , 530-540. https://doi.org/10.1002/jps.23381
    88. Philip T. Cagle, Qihui “Jim” Zhai, Linda Murphy, Philip S. Low. Folate Receptor in Adenocarcinoma and Squamous Cell Carcinoma of the Lung: Potential Target for Folate-Linked Therapeutic Agents. Archives of Pathology & Laboratory Medicine 2013, 137 (2) , 241-244. https://doi.org/10.5858/arpa.2012-0176-OA
    89. Nikolaus Krall, Jörg Scheuermann, Dario Neri. Entwicklung zielgerichteter niedermolekularer zytotoxischer Wirkstoffverbindungen mit DNA‐codierten chemischen Bibliotheken. Angewandte Chemie 2013, 125 (5) , 1424-1443. https://doi.org/10.1002/ange.201204631
    90. Nikolaus Krall, Jörg Scheuermann, Dario Neri. Small Targeted Cytotoxics: Current State and Promises from DNA‐Encoded Chemical Libraries. Angewandte Chemie International Edition 2013, 52 (5) , 1384-1402. https://doi.org/10.1002/anie.201204631
    91. Cristina Müller, Roger Schibli. Single Photon Emission Computed Tomography Tracer. 2013, 65-105. https://doi.org/10.1007/978-3-642-10853-2_2
    92. Güliz Ak, Senay Hamarat Sanlıer. SYNTHESIS OF FOLATE RECEPTOR-TARGETED AND DOXORUBICIN-COUPLED CHEMOTHERAPEUTIC NANOCONJUGATE AND RESEARCH INTO ITS MEDICAL APPLICATIONS. Preparative Biochemistry and Biotechnology 2012, 42 (6) , 551-563. https://doi.org/10.1080/10826068.2012.662926
    93. Huaihong Zhang, Zhaosheng Cai, Yu Sun, Fei Yu, Yaoqiang Chen, Baiwang Sun. Folate‐conjugated β‐cyclodextrin from click chemistry strategy and for tumor‐targeted drug delivery. Journal of Biomedical Materials Research Part A 2012, 100A (9) , 2441-2449. https://doi.org/10.1002/jbm.a.34169
    94. Azahara Rata-Aguilar, Paola Sánchez-Moreno, Ana B Jódar-Reyes, Antonio Martín-Rodríguez, Houria Boulaiz, Juan A Marchal-Corrales, José M Peula-García, Juan L Ortega-Vinuesa. Colloidal stability and “in vitro” antitumor targeting ability of lipid nanocapsules coated by folate–chitosan conjugates. Journal of Bioactive and Compatible Polymers 2012, 27 (4) , 388-404. https://doi.org/10.1177/0883911512447492
    95. Sanyog Jain, Rashi Mathur, Manasmita Das, Nitin K Swarnakar, Anil K Mishra. Synthesis, Pharmacoscintigraphic Evaluation and Antitumor Efficacy of Methotrexate-Loaded, Folate-Conjugated, Stealth Albumin Nanoparticles. Nanomedicine 2011, 6 (10) , 1733-1754. https://doi.org/10.2217/nnm.11.53
    96. Drishty Satpati, Archana Mukherjee, Meera Venkatesh, Sharmila Banerjee. Radiosynthesis and in vitro evaluation of 99mTc(CO)3-labeled folic acid derivative. Journal of Radioanalytical and Nuclear Chemistry 2011, 290 (1) , 89-93. https://doi.org/10.1007/s10967-011-1142-7
    97. I. Al Jammaz, B. Al-Otaibi, S. Amer, S.M. Okarvi. Rapid synthesis and in vitro and in vivo evaluation of folic acid derivatives labeled with fluorine-18 for PET imaging of folate receptor-positive tumors. Nuclear Medicine and Biology 2011, 38 (7) , 1019-1028. https://doi.org/10.1016/j.nucmedbio.2011.03.004
    98. Mehmet Onursal, Fatma Yurt Lambrecht, Aykut Ozgur. Synthesis and biological evaluation of receptor-based tumor imaging agent: 99mTc-folate-glucaric acid. International Journal of Pharmaceutics 2011, 416 (1) , 288-292. https://doi.org/10.1016/j.ijpharm.2011.07.010
    99. Brian M. Laing, Peixuan Guo, Donald E. Bergstrom. Optimized method for the synthesis and purification of adenosine – Folic acid conjugates for use as transcription initiators in the preparation of modified RNA. Methods 2011, 54 (2) , 260-266. https://doi.org/10.1016/j.ymeth.2010.12.007
    100. Ryo Masuda, Shinya Oishi, Hiroaki Ohno, Hiroyuki Kimura, Hideo Saji, Nobutaka Fujii. Concise site-specific synthesis of DTPA–peptide conjugates: Application to imaging probes for the chemokine receptor CXCR4. Bioorganic & Medicinal Chemistry 2011, 19 (10) , 3216-3220. https://doi.org/10.1016/j.bmc.2011.03.059
    Load all citations

    Bioconjugate Chemistry

    Cite this: Bioconjugate Chem. 1997, 8, 5, 673–679
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bc9701297
    Published September 25, 1997
    Copyright © 1997 American Chemical Society

    Article Views

    2639

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.