ACS Publications. Most Trusted. Most Cited. Most Read
Synthesis of [99mTc]DTPA-Folate and Its Evaluation as a Folate-Receptor-Targeted Radiopharmaceutical
My Activity

Figure 1Loading Img
    Article

    Synthesis of [99mTc]DTPA-Folate and Its Evaluation as a Folate-Receptor-Targeted Radiopharmaceutical
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Medicinal Chemistry and Molecular Pharmacology, 1333 Pharmacy Building, and Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1333
    Other Access OptionsSupporting Information (1)

    Bioconjugate Chemistry

    Cite this: Bioconjugate Chem. 2000, 11, 2, 253–257
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bc9901447
    Published February 19, 2000
    Copyright © 2000 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    A DTPA−folate conjugate was radiolabeled with 99mTc by stannous chloride reduction of [99mTc]sodium pertechnetate in an aqueous solution of DTPA−folate. The radiochemical purity of the product consistently exceeded 97%, as assessed by thin-layer chromatography employing conditions analogous to those for radiochemical quality control of the radiopharmaceutical [99mTc]DTPA. HPLC demonstrated that the radiolabeled product resulted from the intact DTPA−folate conjugate and not unconjugated DTPA. The ability of [99mTc]DTPA−folate to target folate receptors in vivo was assessed in biodistribution studies with athymic mice bearing subcutaneous folate-receptor-positive human KB cell tumors. As an internal control, previously studied [111In]DTPA−folate was coinjected with the [99mTc]DTPA−folate, along with varying amounts of DTPA−folate (0.38 mg/kg, 1.6 mg/kg, or 14 mg/kg). At each DTPA−folate dose, [99mTc]DTPA−folate exhibited tumor uptake comparable to that of the coadministered [111In]DTPA−folate, with radiotracer levels declining at the higher DTPA−folate doses due to competitive receptor binding of the unlabeled conjugate. Tumor uptake of both tracers was also competitively blocked by preadministered folic acid dihydrate (2.9 mg/kg). Tumor-to-background tissue contrast obtained with [99mTc]DTPA−folate was generally similar to that obtained with [111In]DTPA−folate. The 99mTc-labeled DTPA−folate conjugate may have utility as a targeted radiopharmaceutical for imaging neoplastic tissues known to overexpress the folate receptor.

    Copyright © 2000 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Department of Chemistry.

    *

     To whom correspondence should be addressed. Phone:  (765) 494-1445. Fax:  (765) 494-1414:  E-mail:  [email protected].

    Supporting Information Available

    Click to copy section linkSection link copied!

    Tabulation of biodistribution results calculated as the percent injected dose per organ. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 78 publications.

    1. Paweł Krzysztof Halik, Przemysław Koźmiński, Ewa Gniazdowska. Perspectives of Methotrexate-Based Radioagents for Application in Nuclear Medicine. Molecular Pharmaceutics 2021, 18 (1) , 33-43. https://doi.org/10.1021/acs.molpharmaceut.0c00740
    2. Zhide Guo, Linyi You, Changrong Shi, Manli Song, Mengna Gao, Duo Xu, Chenyu Peng, Rongqiang Zhuang, Ting Liu, Xinhui Su, Jin Du, and Xianzhong Zhang . Development of a New FR-Targeting Agent 99mTc-HYNFA with Improved Imaging Contrast and Comparison of Multimerization and/or PEGylation Strategies for Radio-Folate Modification. Molecular Pharmaceutics 2017, 14 (11) , 3780-3788. https://doi.org/10.1021/acs.molpharmaceut.7b00536
    3. Giulio Casi and Dario Neri . Noninternalizing Targeted Cytotoxics for Cancer Therapy. Molecular Pharmaceutics 2015, 12 (6) , 1880-1884. https://doi.org/10.1021/mp500798y
    4. Silvio Quici, Alessandro Casoni, Francesca Foschi, Lidia Armelao, Gregorio Bottaro, Roberta Seraglia, Cristina Bolzati, Nicola Salvarese, Debora Carpanese, and Antonio Rosato . Folic Acid-Conjugated Europium Complexes as Luminescent Probes for Selective Targeting of Cancer Cells. Journal of Medicinal Chemistry 2015, 58 (4) , 2003-2014. https://doi.org/10.1021/jm501945w
    5. Walter A. Henne, Ryan Rothenbuhler, Wilfredo Ayala-Lopez, Wei Xia, Bindu Varghese, and Philip S. Low . Imaging Sites of Infection Using a 99mTc-Labeled Folate Conjugate Targeted to Folate Receptor Positive Macrophages. Molecular Pharmaceutics 2012, 9 (5) , 1435-1440. https://doi.org/10.1021/mp3000138
    6. Cristina Müller, Joseph A. Reddy, Christopher P. Leamon and Roger Schibli . Effects of the Antifolates Pemetrexed and CB3717 on the Tissue Distribution of 99mTc-EC20 in Xenografted and Syngeneic Tumor-Bearing Mice. Molecular Pharmaceutics 2010, 7 (2) , 597-604. https://doi.org/10.1021/mp900296k
    7. Philip S. Low, Walter A. Henne and Derek D. Doorneweerd. Discovery and Development of Folic-Acid-Based Receptor Targeting for Imaging and Therapy of Cancer and Inflammatory Diseases. Accounts of Chemical Research 2008, 41 (1) , 120-129. https://doi.org/10.1021/ar7000815
    8. Christine L. Maupin,, Anna Mondry,, Leslie Leifer, and, James P. Riehl. Pressure and Temperature Dependence of the 7F0 → 5D0 Excitation Spectrum of Europium(III) as a Probe of the Thermodynamics and Solution Structure of Complexes of Europium(III) with Polyaminocarboxylate Ligands. The Journal of Physical Chemistry A 2001, 105 (13) , 3071-3076. https://doi.org/10.1021/jp003935a
    9. Mr. Shivam Rajendra Thakare, Prof. Miss. Vaishnavi C. Tajne, Dr. Avinash S. Jiddewar, Mr. Suyash M. Adhau, Miss. Sanika B. Raut. NANO MEDICINE: Towards Development of Patient Friendly Drug Delivery Systems Oncological Applications. International Journal of Advanced Research in Science, Communication and Technology 2025, , 162-183. https://doi.org/10.48175/IJARSCT-22915
    10. Hui‐Teng Cheng, Yen‐Nhi Ngoc Ta, Tiffaney Hsia, Yunching Chen. A quantitative review of nanotechnology‐based therapeutics for kidney diseases. WIREs Nanomedicine and Nanobiotechnology 2024, 16 (2) https://doi.org/10.1002/wnan.1953
    11. Prashant Upadhaya, Puja Panwar Hazari, Anil Kumar Mishra, Bijaideep Dutta, Puthusserickal Hassan, Vandana Patravale. Radiolabelled folate micellar carriers as proposed diagnostic aid for CNS tumors by nasal route. Drug Delivery and Translational Research 2023, 13 (10) , 2604-2613. https://doi.org/10.1007/s13346-023-01341-8
    12. Prashant Upadhaya, Puja Panwar Hazari, Anil Kumar Mishra, Bijaideep Dutta, Puthusserickal Hassan, Vandana Patravale. Nose to brain delivery of radiolabeled chemotherapeutic micelles: Meeting the unmet needs of brain tumors. Journal of Drug Delivery Science and Technology 2023, 86 , 104700. https://doi.org/10.1016/j.jddst.2023.104700
    13. Soumen Das, Navin Sakhare, Dheeraj Kumar, Anupam Mathur, Shubhangi Mirapurkar, M. Sheela, Bhabani Mohanty, Pradip Chaudhari, Sudipta Chakraborty. Design, characterization and evaluation of a new 99mTc-labeled folate derivative with affinity towards folate receptor. Bioorganic & Medicinal Chemistry Letters 2023, 86 , 129240. https://doi.org/10.1016/j.bmcl.2023.129240
    14. Batoul Alallam, Hazem Choukaife, Salma Seyam, Vuanghao Lim, Mulham Alfatama. Advanced Drug Delivery Systems for Renal Disorders. Gels 2023, 9 (2) , 115. https://doi.org/10.3390/gels9020115
    15. Laurène Wagner, Bibigul Kenzhebayeva, Batoul Dhaini, Samir Boukhlef, Albert Moussaron, Serge Mordon, Céline Frochot, Charlotte Collet, Samir Acherar. Folate-based radiotracers for nuclear imaging and radionuclide therapy. Coordination Chemistry Reviews 2022, 470 , 214702. https://doi.org/10.1016/j.ccr.2022.214702
    16. Pejman Shahrokhi, Arezou Masteri Farahani, Mohammad Tamaddondar. Radiolabeled vitamins as the potential diagnostic probes for targeted tumor imaging. Bioorganic Chemistry 2022, 122 , 105717. https://doi.org/10.1016/j.bioorg.2022.105717
    17. Mohamed H. Aboumanei, Ashgan F. Mahmoud, Mohamed A. Motaleb. Evaluation of radioiodinated ethopabate as a potential tumor targeting agent. Applied Radiation and Isotopes 2022, 180 , 110063. https://doi.org/10.1016/j.apradiso.2021.110063
    18. J. P. Jose Merlin, Xiaogang Li. Role of Nanotechnology and Their Perspectives in the Treatment of Kidney Diseases. Frontiers in Genetics 2022, 12 https://doi.org/10.3389/fgene.2021.817974
    19. Dionysia Papagiannopoulou. 99m Tc Radiopharmaceutical Chemistry. 2020, 375-433. https://doi.org/10.1002/9781119500575.ch12
    20. Zhong Chen, Haisheng Peng, Changmei Zhang. Advances in kidney-targeted drug delivery systems. International Journal of Pharmaceutics 2020, 587 , 119679. https://doi.org/10.1016/j.ijpharm.2020.119679
    21. Arjan Geersing, Reinder H. de Vries, Gerrit Jansen, Marianne G. Rots, Gerard Roelfes. Folic acid conjugates of a bleomycin mimic for selective targeting of folate receptor positive cancer cells. Bioorganic & Medicinal Chemistry Letters 2019, 29 (15) , 1922-1927. https://doi.org/10.1016/j.bmcl.2019.05.047
    22. Nadeem Ahmed Lodhi, Ji Yong Park, Mi Kyung Hong, Young Joo Kim, Yun-Sang Lee, Gi Jeong Cheon, Jae Min Jeong. Development of 99mTc-labeled trivalent isonitrile radiotracer for folate receptor imaging. Bioorganic & Medicinal Chemistry 2019, 27 (10) , 1925-1931. https://doi.org/10.1016/j.bmc.2019.04.013
    23. Weidong Yang, Cheng Wang, Gang Huang. Receptor-Targeted Radionuclide Imaging (RTRI) and Peptide Receptor Radionuclide Therapy (PRRT). 2019, 177-199. https://doi.org/10.1007/978-981-13-7458-6_12
    24. Haili Shi, Wouter N. Leonhard, Niels J. Sijbrandi, Mies J. van Steenbergen, Marcel H.A.M. Fens, Joep B. van de Dikkenberg, Javier Sastre Toraño, Dorien J.M. Peters, Wim E. Hennink, Robbert Jan Kok. Folate-dactolisib conjugates for targeting tubular cells in polycystic kidneys. Journal of Controlled Release 2019, 293 , 113-125. https://doi.org/10.1016/j.jconrel.2018.11.019
    25. Jing Li, Cuiting Zhang, Weiming He, Hongzhi Qiao, Jiahui Chen, KaiKai Wang, David Oupický, Minjie Sun. Coordination-driven assembly of catechol-modified chitosan for the kidney-specific delivery of salvianolic acid B to treat renal fibrosis. Biomaterials Science 2018, 6 (1) , 179-188. https://doi.org/10.1039/C7BM00811B
    26. Klaudia Siwowska, Raffaella Schmid, Susan Cohrs, Roger Schibli, Cristina Müller. Folate Receptor-Positive Gynecological Cancer Cells: In Vitro and In Vivo Characterization. Pharmaceuticals 2017, 10 (3) , 72. https://doi.org/10.3390/ph10030072
    27. Kusum Vats, Suresh Subramanian, Anupam Mathur, Haladhar Dev Sarma, Sharmila Banerjee. Radiosynthesis and evaluation of a 99mTc-folic acid radiotracer prepared using [99mTcN(PNP)]2+ metal fragment. Bioorganic & Medicinal Chemistry Letters 2017, 27 (5) , 1329-1332. https://doi.org/10.1016/j.bmcl.2016.03.090
    28. Akanksha Jain, Anupam Mathur, Usha Pandey, Jyotsna Bhatt, Archana Mukherjee, Ramu Ram, Haladhar Dev Sarma, Ashutosh Dash. Synthesis and evaluation of a 68Ga labeled folic acid derivative for targeting folate receptors. Applied Radiation and Isotopes 2016, 116 , 77-84. https://doi.org/10.1016/j.apradiso.2016.07.024
    29. Zhide Guo, Mengna Gao, Manli Song, Changrong Shi, Pu Zhang, Duo Xu, Linyi You, Rongqiang Zhuang, Xinhui Su, Ting Liu, Jin Du, Xianzhong Zhang. Synthesis and Evaluation of 99mTc-Labeled Dimeric Folic Acid for FR-Targeting. Molecules 2016, 21 (6) , 817. https://doi.org/10.3390/molecules21060817
    30. Rinku Baishya, Dipak K. Nayak, Sanmoy Karmakar, Sankha Chattopadhyay, Satbir S. Sachdeva, Bharat R. Sarkar, Shantanu Ganguly, Mita C. Debnath. Synthesis and Evaluation of Technetium‐99m‐Labeled Bioreductive Pharmacophores Conjugated with Amino Acids and Peptides for Tumor Imaging. Chemical Biology & Drug Design 2015, 85 (4) , 504-517. https://doi.org/10.1111/cbdd.12437
    31. R.P. Fauzia, A. Mutalib, R.U.M.S. Soedjanaatmadja, H.H. Bahti, A. Anggraeni, A.H. Gunawan, H. Pujiastuti, Y. Hidayati. Synthesis and Characterization of Gadolinium Diethylenetriamine Pentaacetate-Folate. Procedia Chemistry 2015, 17 , 139-146. https://doi.org/10.1016/j.proche.2015.12.128
    32. Maxim L. Belyanin, Elena V. Stepanova, Stanislav M. Minin, Yuri B. Lyshmanov, Victor D. Filimonov. Methods of Synthesis of Radiopharmaceuticals Based on Fatty Acids Marked with 99mTc and Perspectives of their Application. Advanced Materials Research 2015, 1084 , 400-405. https://doi.org/10.4028/www.scientific.net/AMR.1084.400
    33. Zhide Guo, Pu Zhang, Manli Song, Xiaowei Wu, Chang Liu, Zuoquan Zhao, Jie Lu, Xianzhong Zhang. Synthesis and preliminary evaluation of novel 99mTc-labeled folate derivative via click reaction for SPECT imaging. Applied Radiation and Isotopes 2014, 91 , 24-30. https://doi.org/10.1016/j.apradiso.2014.04.020
    34. Hongzhi Qiao, Minjie Sun, Zhigui Su, Ying Xie, Minglei Chen, Li Zong, Yahan Gao, Huipeng Li, Jianping Qi, Qun Zhao, Xiaochen Gu, Qineng Ping. Kidney-specific drug delivery system for renal fibrosis based on coordination-driven assembly of catechol-derived chitosan. Biomaterials 2014, 35 (25) , 7157-7171. https://doi.org/10.1016/j.biomaterials.2014.04.106
    35. I. AlJammaz, B. Al-Otaibi, F. Al-Rumayan, S. Al-Yanbawi, S. Amer, S.M. Okarvi. Development and preclinical evaluation of new 124I-folate conjugates for PET imaging of folate receptor-positive tumors. Nuclear Medicine and Biology 2014, 41 (6) , 457-463. https://doi.org/10.1016/j.nucmedbio.2014.03.013
    36. Yuan Chen, Hongjuan Guo, Fang Xie, Jie Lu. Preparation and biological evaluation of 99m TcN‐labeled pteroyl‐lys derivative as a potential folate receptor imaging agent. Journal of Labelled Compounds and Radiopharmaceuticals 2014, 57 (1) , 12-17. https://doi.org/10.1002/jlcr.3116
    37. Sung-Min Kim, Naeun Choi, Seungkyun Hwang, Min Su Yim, Jung-Sik Lee, Sang-Mok Lee, Gyunggoo Cho, Eun Kyoung Ryu. Folate Receptor-Specific Positron Emission Tomography Imaging with Folic Acid-Conjugated Tissue Inhibitor of Metalloproteinase-2. Bulletin of the Korean Chemical Society 2013, 34 (11) , 3243-3248. https://doi.org/10.5012/bkcs.2013.34.11.3243
    38. Nikolaus Krall, Jörg Scheuermann, Dario Neri. Entwicklung zielgerichteter niedermolekularer zytotoxischer Wirkstoffverbindungen mit DNA‐codierten chemischen Bibliotheken. Angewandte Chemie 2013, 125 (5) , 1424-1443. https://doi.org/10.1002/ange.201204631
    39. Nikolaus Krall, Jörg Scheuermann, Dario Neri. Small Targeted Cytotoxics: Current State and Promises from DNA‐Encoded Chemical Libraries. Angewandte Chemie International Edition 2013, 52 (5) , 1384-1402. https://doi.org/10.1002/anie.201204631
    40. R. Alberto, H. Braband. SPECT/PET Imaging with Technetium, Gallium, Copper, and Other Metallic Radionuclides. 2013, 785-817. https://doi.org/10.1016/B978-0-08-097774-4.00331-4
    41. Güliz Ak, Fatma Yurt Lambrecht, Senay Hamarat Sanlier. Radiolabeling of folate targeted multifunctional conjugate with Technetium-99m and biodistribution studies in rats. Journal of Drug Targeting 2012, 20 (6) , 509-514. https://doi.org/10.3109/1061186X.2012.686038
    42. Sophie Laurent, Céline Henoumont, Luce Vander Elst, Robert N. Muller. Synthesis and Physicochemical Characterisation of Gd‐DTPA Derivatives as Contrast Agents for MRI. European Journal of Inorganic Chemistry 2012, 2012 (12) , 1889-1915. https://doi.org/10.1002/ejic.201101226
    43. Gauri Mishra, Puja Panwar Hazari, Nitin Kumar, Anil K. Mishra. In vitro and in vivo evaluation of 99m Tc-DO3A-EA-Folate for receptor-mediated targeting of folate positive tumors. Journal of Drug Targeting 2011, 19 (9) , 761-769. https://doi.org/10.3109/1061186X.2011.561857
    44. I. Al Jammaz, B. Al-Otaibi, S. Amer, S.M. Okarvi. Rapid synthesis and in vitro and in vivo evaluation of folic acid derivatives labeled with fluorine-18 for PET imaging of folate receptor-positive tumors. Nuclear Medicine and Biology 2011, 38 (7) , 1019-1028. https://doi.org/10.1016/j.nucmedbio.2011.03.004
    45. Mehmet Onursal, Fatma Yurt Lambrecht, Aykut Ozgur. Synthesis and biological evaluation of receptor-based tumor imaging agent: 99mTc-folate-glucaric acid. International Journal of Pharmaceutics 2011, 416 (1) , 288-292. https://doi.org/10.1016/j.ijpharm.2011.07.010
    46. Jie Lu, Yan Pang, Fang Xie, Hongjuan Guo, Yan Li, Zhi Yang, Xuebin Wang. Synthesis and in vitro/in vivo evaluation of 99mTc-labeled folate conjugates for folate receptor imaging. Nuclear Medicine and Biology 2011, 38 (4) , 557-565. https://doi.org/10.1016/j.nucmedbio.2010.11.007
    47. Hongjuan Guo, Fang Xie, Meilin Zhu, Yan Li, Zhi Yang, Xuebin Wang, Jie Lu. The synthesis of pteroyl-lys conjugates and its application as Technetium-99m labeled radiotracer for folate receptor-positive tumor targeting. Bioorganic & Medicinal Chemistry Letters 2011, 21 (7) , 2025-2029. https://doi.org/10.1016/j.bmcl.2011.02.014
    48. Cristina Müller, Roger Schibli. Folate Receptor-Targeted Radionuclide Imaging Agents. 2011, 65-92. https://doi.org/10.1007/978-1-4419-8417-3_4
    49. Melpomeni Fani, Xuejuan Wang, Guillaume Nicolas, Christelle Medina, Isabelle Raynal, Marc Port, Helmut R. Maecke. Development of new folate-based PET radiotracers: preclinical evaluation of 68Ga-DOTA-folate conjugates. European Journal of Nuclear Medicine and Molecular Imaging 2011, 38 (1) , 108-119. https://doi.org/10.1007/s00259-010-1597-8
    50. Morteza Mahmoudi, Vahid Serpooshan, Sophie Laurent. Engineered nanoparticles for biomolecular imaging. Nanoscale 2011, 3 (8) , 3007. https://doi.org/10.1039/c1nr10326a
    51. James R. Galt, Raghuveer K. Halkar, Chheng-Orn Evans, Naema A. Osman, David LaBorde, Timothy H. Fox, Bajat A. Faraj, Kush Kumar, Houping Wang, Nelson M. Oyesiku. In Vivo Assay of Folate Receptors in Nonfunctional Pituitary Adenomas with 99m Tc-Folate SPECT/CT. Journal of Nuclear Medicine 2010, 51 (11) , 1716-1723. https://doi.org/10.2967/jnumed.108.061689
    52. Tobias L. Ross, Michael Honer, Cristina Müller, Viola Groehn, Roger Schibli, Simon M. Ametamey. A New 18 F-Labeled Folic Acid Derivative with Improved Properties for the PET Imaging of Folate Receptor–Positive Tumors. Journal of Nuclear Medicine 2010, 51 (11) , 1756-1762. https://doi.org/10.2967/jnumed.110.079756
    53. Bing Gu, Cao Xie, Jianhua Zhu, Wei He, Weiyue Lu. Folate-PEG-CKK2-DTPA, A Potential Carrier for Lymph-Metastasized Tumor Targeting. Pharmaceutical Research 2010, 27 (5) , 933-942. https://doi.org/10.1007/s11095-010-0100-3
    54. Linglin Feng, Lei Zhang, Min Liu, Zhiqiang Yan, Chenyu Wang, Bing Gu, Yu Liu, Gang Wei, Gaoren Zhong, Weiyue Lu. Roles of dextrans on improving lymphatic drainage for liposomal drug delivery system. Journal of Drug Targeting 2010, 18 (3) , 168-178. https://doi.org/10.3109/10611860903318126
    55. Mehdi Shafiee Ardestani, Ali Jabbari Arabzadeh, Zahra Heidari, Amirreza Hosseinzadeh, Hamidreza Ebrahimi, Elham Hashemi, Mona Mosayebnia, Mohammad Shafiee-Alavidjeh, Abbas Alavi, Mohammad Hossein Babaei, Arman Rahmim, Seyed Esmaeil Sadat Ebrahimi, Massoud Amanlou. Novel and facile methods for the synthesis of DTPA-mono-amide: a new completely revised strategy in radiopharmaceutical chemistry. Journal of Radioanalytical and Nuclear Chemistry 2010, 283 (2) , 447-455. https://doi.org/10.1007/s10967-009-0414-y
    56. Cristina Müller, Thomas L. Mindt, Marion de Jong, Roger Schibli. Evaluation of a novel radiofolate in tumour-bearing mice: promising prospects for folate-based radionuclide therapy. European Journal of Nuclear Medicine and Molecular Imaging 2009, 36 (6) , 938-946. https://doi.org/10.1007/s00259-008-1058-9
    57. Emanuela I. Sega, Philip S. Low. Tumor detection using folate receptor-targeted imaging agents. Cancer and Metastasis Reviews 2008, 27 (4) , 655-664. https://doi.org/10.1007/s10555-008-9155-6
    58. Cristina Müller, Roger Schibli, Eric P. Krenning, Marion de Jong. Pemetrexed Improves Tumor Selectivity of 111 In-DTPA-Folate in Mice with Folate Receptor–Positive Ovarian Cancer. Journal of Nuclear Medicine 2008, 49 (4) , 623-629. https://doi.org/10.2967/jnumed.107.047704
    59. Cristina Müller, Flavio Forrer, Roger Schibli, Eric P. Krenning, Marion de Jong. SPECT Study of Folate Receptor-Positive Malignant and Normal Tissues in Mice Using a Novel 99m Tc-Radiofolate. Journal of Nuclear Medicine 2008, 49 (2) , 310-317. https://doi.org/10.2967/jnumed.107.045856
    60. Aviv Hagooly, Raffaella Rossin, Michael J. Welch. Small Molecule Receptors as Imaging Targets. 2008, 93-129. https://doi.org/10.1007/978-3-540-77496-9_5
    61. Christopher P. Leamon, Ann L. Jackman. Chapter 7 Exploitation of the Folate Receptor in the Management of Cancer and Inflammatory Disease. 2008, 203-233. https://doi.org/10.1016/S0083-6729(08)00407-X
    62. Cristina Müller, P. August Schubiger, Roger Schibli. Isostructural folate conjugates radiolabeled with the matched pair 99mTc/188Re: a potential strategy for diagnosis and therapy of folate receptor-positive tumors. Nuclear Medicine and Biology 2007, 34 (6) , 595-601. https://doi.org/10.1016/j.nucmedbio.2007.05.011
    63. Marcela D’Alincourt Salazar, Manohar Ratnam. The folate receptor: What does it promise in tissue-targeted therapeutics?. Cancer and Metastasis Reviews 2007, 26 (1) , 141-152. https://doi.org/10.1007/s10555-007-9048-0
    64. Cristina Müller, P. August Schubiger, Roger Schibli. In vitro and in vivo targeting of different folate receptor-positive cancer cell lines with a novel 99mTc-radiofolate tracer. European Journal of Nuclear Medicine and Molecular Imaging 2006, 33 (10) , 1162-1170. https://doi.org/10.1007/s00259-006-0118-2
    65. Cristina Müller, Alexander Hohn, P. August Schubiger, Roger Schibli. Preclinical evaluation of novel organometallic 99mTc-folate and 99mTc-pteroate radiotracers for folate receptor-positive tumour targeting. European Journal of Nuclear Medicine and Molecular Imaging 2006, 33 (9) , 1007-1016. https://doi.org/10.1007/s00259-006-0111-9
    66. Rajni Sinha, Gloria J. Kim, Shuming Nie, Dong M. Shin. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Molecular Cancer Therapeutics 2006, 5 (8) , 1909-1917. https://doi.org/10.1158/1535-7163.MCT-06-0141
    67. Yong-kyu Lee. Preparation and characterization of folic acid linked poly(L-glutamate) nanoparticles for cancer targeting. Macromolecular Research 2006, 14 (3) , 387-393. https://doi.org/10.1007/BF03219099
    68. I. Al Jammaz, B. Al-Otaibi, S. Okarvi, J. Amartey. Novel synthesis of [18F]-fluorobenzene and pyridinecarbohydrazide-folates as potential PET radiopharmaceuticals. Journal of Labelled Compounds and Radiopharmaceuticals 2006, 49 (2) , 125-137. https://doi.org/10.1002/jlcr.1022
    69. . Contributors. 2005, 19-22. https://doi.org/10.1201/b14270-3
    70. Cristina Müller, Cécile Dumas, Ute Hoffmann, P. August Schubiger, Roger Schibli. Organometallic 99mTc-technetium(I)- and Re-rhenium(I)-folate derivatives for potential use in nuclear medicine. Journal of Organometallic Chemistry 2004, 689 (25) , 4712-4721. https://doi.org/10.1016/j.jorganchem.2004.08.045
    71. Gregory Russell-Jones, Kirsten McTavish, John McEwan, John Rice, David Nowotnik. Vitamin-mediated targeting as a potential mechanism to increase drug uptake by tumours. Journal of Inorganic Biochemistry 2004, 98 (10) , 1625-1633. https://doi.org/10.1016/j.jinorgbio.2004.07.009
    72. Chun-Yen Ke, Carla J. Mathias, Mark A. Green. The folate receptor as a molecular target for tumor-selective radionuclide delivery. Nuclear Medicine and Biology 2003, 30 (8) , 811-817. https://doi.org/10.1016/S0969-8051(03)00117-3
    73. Manohar Ratnam, Hong Hao, Xuan Zheng, Hui Wang, Huiling Qi, Robert Lee, Xing Pan. Receptor induction and targeted drug delivery: a new antileukaemia strategy. Expert Opinion on Biological Therapy 2003, 3 (4) , 563-574. https://doi.org/10.1517/14712598.3.4.563
    74. Michael D. Kennedy, Karim N. Jallad, David H. Thompson, Dor Ben-Amotz, Philip S. Low. Optical imaging of metastatic tumors using a folate-targeted fluorescent probe. Journal of Biomedical Optics 2003, 8 (4) , 636. https://doi.org/10.1117/1.1609453
    75. E. Forgacs, T. Cserhati. LIQUID CHROMATOGRAPHY OF ORGANOMETALLIC COMPOUNDS. Journal of Liquid Chromatography & Related Technologies 2002, 25 (13-15) , 2023-2038. https://doi.org/10.1081/JLC-120013993
    76. David P Trump, Carla J Mathias, Zhenfan Yang, Philip S Low, Mary Marmion, Mark A Green. Synthesis and evaluation of 99mTc(CO)3-DTPA-folate as a folate-receptor-targeted radiopharmaceutical. Nuclear Medicine and Biology 2002, 29 (5) , 569-573. https://doi.org/10.1016/S0969-8051(02)00310-4
    77. SHEELA D. KONDA, STEVEN WANG, MARTIN BRECHBIEL, ERIK C. WIENER. Biodistribution of a 153Gd-Folate Dendrimer, Generation = 4, in Mice With Folate-Receptor Positive and Negative Ovarian Tumor Xenografts. Investigative Radiology 2002, 37 (4) , 199-204. https://doi.org/10.1097/00004424-200204000-00005
    78. Shuang Liu, D. Scott Edwards. Fundamentals of Receptor-Based Diagnostic Metalloradiopharmaceuticals. 2002, 259-278. https://doi.org/10.1007/3-540-46009-8_8

    Bioconjugate Chemistry

    Cite this: Bioconjugate Chem. 2000, 11, 2, 253–257
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bc9901447
    Published February 19, 2000
    Copyright © 2000 American Chemical Society

    Article Views

    1210

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.