Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Effects of Rett Syndrome Mutations of the Methyl-CpG Binding Domain of the Transcriptional Repressor MeCP2 on Selectivity for Association with Methylated DNA
My Activity
    Article

    Effects of Rett Syndrome Mutations of the Methyl-CpG Binding Domain of the Transcriptional Repressor MeCP2 on Selectivity for Association with Methylated DNA
    Click to copy article linkArticle link copied!

    View Author Information
    Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, National Institutes of Health, Building 18T, Room 106, Bethesda, Maryland 20892-5431, and Department of Genetics, The George Washington University, 2121 I Street NW, Washington, D.C. 20052
    Other Access Options

    Biochemistry

    Cite this: Biochemistry 2000, 39, 24, 7100–7106
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi0001271
    Published May 26, 2000
    Copyright © Not subject to U.S. Copyright. Published 2000 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    We have investigated the properties of mutant forms of the methyl-CpG binding transcriptional repressor MeCP2 associated with Rett syndrome, a childhood neurodevelopmental disorder. We find that four Rett syndrome mutations at known sites within the methyl-CpG binding domain (MBD) impair binding to methylated DNA, but have little effect on nonspecific interactions with unmethylated DNA. Three of these mutations (R106W, R133C, and F155S) have their binding affinities for methylated DNA reduced more than 100-fold; this is consistent with the hypothesis that impaired selectivity for methylated DNA of mutant MeCP2 contributes to Rett syndrome. However, a fourth mutant, T158M, has its binding affinity for methylated DNA reduced only 2-fold, indicative either of additional distinct regulatory functions associated with the MBD or of an exquisite sensitivity of developing neurons to the selective association of MeCP2 with methylated DNA.

    Copyright © Not subject to U.S. Copyright. Published 2000 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     National Institutes of Health.

    §

     These authors made equal contributions to this work.

     The George Washington University.

    *

     Corresponding author. Phone:  (301) 402-2722. Fax:  (301) 402-1323. E-mail:  [email protected].

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 119 publications.

    1. Ye Yang, Tugba G. Kucukkal, Jing Li, Emil Alexov, and Weiguo Cao . Binding Analysis of Methyl-CpG Binding Domain of MeCP2 and Rett Syndrome Mutations. ACS Chemical Biology 2016, 11 (10) , 2706-2715. https://doi.org/10.1021/acschembio.6b00450
    2. Tugba G. Kucukkal, Ye Yang, Olga Uvarov, Weiguo Cao, and Emil Alexov . Impact of Rett Syndrome Mutations on MeCP2 MBD Stability. Biochemistry 2015, 54 (41) , 6357-6368. https://doi.org/10.1021/acs.biochem.5b00790
    3. Sergei Khrapunov, Christopher Warren, Huiyong Cheng, Esther R. Berko, John M. Greally, and Michael Brenowitz . Unusual Characteristics of the DNA Binding Domain of Epigenetic Regulatory Protein MeCP2 Determine Its Binding Specificity. Biochemistry 2014, 53 (21) , 3379-3391. https://doi.org/10.1021/bi500424z
    4. David Ortega-Alarcon, Rafael Claveria-Gimeno, Sonia Vega, Ladan Kalani, Olga C Jorge-Torres, Manel Esteller, Juan Ausio, Olga Abian, Adrian Velazquez-Campoy. Extending MeCP2 interactome: canonical nucleosomal histones interact with MeCP2. Nucleic Acids Research 2024, 52 (7) , 3636-3653. https://doi.org/10.1093/nar/gkae051
    5. Inusha Panigrahi, Sudha Rao, Shalu Verma Kumar, Divya Kumari, Parminder Kaur, . Intellectual Disability and Blended Phenotypes: Insights from a Centre in North India. Case Reports in Genetics 2024, 2024 (1) https://doi.org/10.1155/2024/6009569
    6. Ladan Kalani, Bo-Hyun Kim, John B Vincent, Juan Ausió. MeCP2 ubiquitination and sumoylation, in search of a function. Human Molecular Genetics 2023, 33 (1) , 1-11. https://doi.org/10.1093/hmg/ddad150
    7. Wessam E. Sharaf-Eldin, Mahmoud Y. Issa, Maha S. Zaki, Ayman Kilany, Alaaeldin G. Fayez. Variable predicted pathogenic mechanisms for novel MECP2 variants in RTT patients. Journal of Genetic Engineering and Biotechnology 2022, 20 (1) , 44. https://doi.org/10.1186/s43141-022-00305-8
    8. Zihni Onur Çalışkaner. Computational discovery of novel inhibitory candidates targeting versatile transcriptional repressor MBD2. Journal of Molecular Modeling 2022, 28 (10) https://doi.org/10.1007/s00894-022-05297-3
    9. Annika Schmidt, Jana Frei, Ansgar Poetsch, Alexandra Chittka, Hui Zhang, Chris Aßmann, Anne Lehmkuhl, Uta-Maria Bauer, Ulrike A. Nuber, M. Cristina Cardoso. MeCP2 heterochromatin organization is modulated by arginine methylation and serine phosphorylation. Frontiers in Cell and Developmental Biology 2022, 10 https://doi.org/10.3389/fcell.2022.941493
    10. Xiaolan Fang, Kameryn M. Butler, Fatima Abidi, Jennifer Gass, Arthur Beisang, Timothy Feyma, Robin C. Ryther, Shannon Standridge, Peter Heydemann, Mary Jones, Richard Haas, David N Lieberman, Eric D. Marsh, Tim A. Benke, Steve Skinner, Jeffrey L. Neul, Alan K. Percy, Michael J. Friez, Raymond C. Caylor. Analysis of X‐inactivation status in a Rett syndrome natural history study cohort. Molecular Genetics & Genomic Medicine 2022, 10 (5) https://doi.org/10.1002/mgg3.1917
    11. Friederike Ehrhart, Annika Jacobsen, Maria Rigau, Mattia Bosio, Rajaram Kaliyaperumal, Jeroen F. J. Laros, Egon L. Willighagen, Alfonso Valencia, Marco Roos, Salvador Capella-Gutierrez, Leopold M. G. Curfs, Chris T. Evelo. A catalogue of 863 Rett-syndrome-causing MECP2 mutations and lessons learned from data integration. Scientific Data 2021, 8 (1) https://doi.org/10.1038/s41597-020-00794-7
    12. Abdulkhaleg Ibrahim, Christophe Papin, Kareem Mohideen-Abdul, Stéphanie Le Gras, Isabelle Stoll, Christian Bronner, Stefan Dimitrov, Bruno P. Klaholz, Ali Hamiche. MeCP2 is a microsatellite binding protein that protects CA repeats from nucleosome invasion. Science 2021, 372 (6549) https://doi.org/10.1126/science.abd5581
    13. David Ortega-Alarcon, Rafael Claveria-Gimeno, Sonia Vega, Olga C. Jorge-Torres, Manel Esteller, Olga Abian, Adrian Velazquez-Campoy. Influence of the disordered domain structure of MeCP2 on its structural stability and dsDNA interaction. International Journal of Biological Macromolecules 2021, 175 , 58-66. https://doi.org/10.1016/j.ijbiomac.2021.01.206
    14. Rebekah Tillotson, Justyna Cholewa-Waclaw, Kashyap Chhatbar, John C. Connelly, Sophie A. Kirschner, Shaun Webb, Martha V. Koerner, Jim Selfridge, David A. Kelly, Dina De Sousa, Kyla Brown, Matthew J. Lyst, Skirmantas Kriaucionis, Adrian Bird. Neuronal non-CG methylation is an essential target for MeCP2 function. Molecular Cell 2021, 81 (6) , 1260-1275.e12. https://doi.org/10.1016/j.molcel.2021.01.011
    15. Katrina V. Good, John B. Vincent, Juan Ausió. MeCP2: The Genetic Driver of Rett Syndrome Epigenetics. Frontiers in Genetics 2021, 12 https://doi.org/10.3389/fgene.2021.620859
    16. Hyeong-Min Lee, M. Bram Kuijer, Nerea Ruiz Blanes, Ellen P. Clark, Megumi Aita, Lorena Galiano Arjona, Agnieszka Kokot, Noah Sciaky, Jeremy M. Simon, Sanchita Bhatnagar, Benjamin D. Philpot, Andrea Cerase. A small-molecule screen reveals novel modulators of MeCP2 and X-chromosome inactivation maintenance. Journal of Neurodevelopmental Disorders 2020, 12 (1) https://doi.org/10.1186/s11689-020-09332-3
    17. Juan Qin, Miaomiao Zhang, Yanxue Guan, Chen Li, Xingxing Ma, Christian Rankl, Jilin Tang. Investigation of the interaction between MeCP2 methyl-CpG binding domain and methylated DNA by single molecule force spectroscopy. Analytica Chimica Acta 2020, 1124 , 52-59. https://doi.org/10.1016/j.aca.2020.05.029
    18. Long Xu, Xia Huo, Yu Liu, Yuling Zhang, Qilin Qin, Xijin Xu. Hearing loss risk and DNA methylation signatures in preschool children following lead and cadmium exposure from an electronic waste recycling area. Chemosphere 2020, 246 , 125829. https://doi.org/10.1016/j.chemosphere.2020.125829
    19. Annika Schmidt, Hui Zhang, M. Cristina Cardoso. MeCP2 and Chromatin Compartmentalization. Cells 2020, 9 (4) , 878. https://doi.org/10.3390/cells9040878
    20. Rebekah Tillotson, Adrian Bird. The Molecular Basis of MeCP2 Function in the Brain. Journal of Molecular Biology 2020, 432 (6) , 1602-1623. https://doi.org/10.1016/j.jmb.2019.10.004
    21. Francesco M Piccolo, Zhe Liu, Peng Dong, Ching-Lung Hsu, Elitsa I Stoyanova, Anjana Rao, Robert Tjian, Nathaniel Heintz. MeCP2 nuclear dynamics in live neurons results from low and high affinity chromatin interactions. eLife 2019, 8 https://doi.org/10.7554/eLife.51449
    22. Daniel R Connolly, Zhaolan Zhou. Genomic insights into MeCP2 function: A role for the maintenance of chromatin architecture. Current Opinion in Neurobiology 2019, 59 , 174-179. https://doi.org/10.1016/j.conb.2019.07.002
    23. Hua Yang, Kequan Li, Song Han, Ailing Zhou, Zhaolan (Joe) Zhou. Leveraging the genetic basis of Rett syndrome to ascertain pathophysiology. Neurobiology of Learning and Memory 2019, 165 , 106961. https://doi.org/10.1016/j.nlm.2018.11.006
    24. Muhamad Fahmi, Gen Yasui, Kaito Seki, Syouichi Katayama, Takako Kaneko-Kawano, Tetsuya Inazu, Yukihiko Kubota, Masahiro Ito. In Silico Study of Rett Syndrome Treatment-Related Genes, MECP2, CDKL5, and FOXG1, by Evolutionary Classification and Disordered Region Assessment. International Journal of Molecular Sciences 2019, 20 (22) , 5593. https://doi.org/10.3390/ijms20225593
    25. Liraz Keidar, Gabi Gerlitz, Aditya Kshirsagar, Michael Tsoory, Tsviya Olender, Xing Wang, Ying Yang, Yu-Sheng Chen, Yun-Gui Yang, Irina Voineagu, Orly Reiner. Interplay of LIS1 and MeCP2: Interactions and Implications With the Neurodevelopmental Disorders Lissencephaly and Rett Syndrome. Frontiers in Cellular Neuroscience 2019, 13 https://doi.org/10.3389/fncel.2019.00370
    26. Victor Faundez, Meghan Wynne, Amanda Crocker, Daniel Tarquinio. Molecular Systems Biology of Neurodevelopmental Disorders, Rett Syndrome as an Archetype. Frontiers in Integrative Neuroscience 2019, 13 https://doi.org/10.3389/fnint.2019.00030
    27. Dino Franklin. P152R Mutation Within MeCP2 Can Cause Loss of DNA-Binding Selectivity. Interdisciplinary Sciences: Computational Life Sciences 2019, 11 (1) , 10-20. https://doi.org/10.1007/s12539-019-00316-z
    28. Dino Franklin. Molecular Dynamic Simulations Suggest that P152R Mutation Within MeCP2 Can Lead to Higher DNA Binding Affinity and Loss of Selective Binding to Methylated DNA. 2019, 27-34. https://doi.org/10.1007/978-3-319-98702-6_4
    29. Ajit Singh. Best Approach to Read a Scientific Article. SSRN Electronic Journal 2019, https://doi.org/10.2139/ssrn.3372784
    30. Francesco M. Piccolo, Zhe Liu, Peng Dong, Ching-Lung Hsu, Elitsa I. Stoyanova, Anjana Rao, Robert Tjian, Nathaniel Heintz. Mecp2 Nuclear Dynamics in Live Neurons Results from Low and High Affinity Chromatin Interactions. SSRN Electronic Journal 2019, 20 https://doi.org/10.2139/ssrn.3376659
    31. Eunice W. M. Chin, Eyleen L. K. Goh. MeCP2 Dysfunction in Rett Syndrome and Neuropsychiatric Disorders. 2019, 573-591. https://doi.org/10.1007/978-1-4939-9554-7_33
    32. Jesús Devesa, Olga Devesa, María Carrillo, Nerea Casteleiro, Ana Devesa, David Llorente, Cristina González. Rett Syndrome: Treatment with IGF-I, Melatonin, Blackcurrant Extracts, and Rehabilitation. Reports 2018, 1 (2) , 14. https://doi.org/10.3390/reports1020014
    33. Kathrin K. Geyer, Sabrina E. Munshi, Helen L. Whiteland, Narcis Fernandez-Fuentes, Dylan W. Phillips, Karl F. Hoffmann, . Methyl-CpG-binding (SmMBD2/3) and chromobox (SmCBX) proteins are required for neoblast proliferation and oviposition in the parasitic blood fluke Schistosoma mansoni. PLOS Pathogens 2018, 14 (6) , e1007107. https://doi.org/10.1371/journal.ppat.1007107
    34. Shivakumar Subbanna, Nagaraja N. Nagre, Madhu Shivakumar, Vikram Joshi, Delphine Psychoyos, Abdullah Kutlar, Nagavedi S. Umapathy, Balapal S. Basavarajappa. CB1R-Mediated Activation of Caspase-3 Causes Epigenetic and Neurobehavioral Abnormalities in Postnatal Ethanol-Exposed Mice. Frontiers in Molecular Neuroscience 2018, 11 https://doi.org/10.3389/fnmol.2018.00045
    35. Juan Ausió, Philippe T. Georgel. MeCP2 and CTCF: enhancing the cross-talk of silencers. Biochemistry and Cell Biology 2017, 95 (6) , 593-608. https://doi.org/10.1139/bcb-2017-0147
    36. M. van der Vaart, O. Svoboda, B. G. Weijts, R. Espín-Palazón, V. Sapp, T. Pietri, M. Bagnat, A. R. Muotri, D. Traver. Mecp2 regulates tnfa during zebrafish embryonic development and acute inflammation. Disease Models & Mechanisms 2017, 10 (12) , 1439-1451. https://doi.org/10.1242/dmm.026922
    37. Brian S Johnson, Ying-Tao Zhao, Maria Fasolino, Janine M Lamonica, Yoon Jung Kim, George Georgakilas, Kathleen H Wood, Daniel Bu, Yue Cui, Darren Goffin, Golnaz Vahedi, Tae Hoon Kim, Zhaolan Zhou. Biotin tagging of MeCP2 in mice reveals contextual insights into the Rett syndrome transcriptome. Nature Medicine 2017, 23 (10) , 1203-1214. https://doi.org/10.1038/nm.4406
    38. Giuseppina Mastrototaro, Mattia Zaghi, Alessandro Sessa. Epigenetic Mistakes in Neurodevelopmental Disorders. Journal of Molecular Neuroscience 2017, 61 (4) , 590-602. https://doi.org/10.1007/s12031-017-0900-6
    39. Rebecca J. Stoll, Grace R. Thompson, Mohammad D. Samy, George Blanck. De novo, systemic, deleterious amino acid substitutions are common in large cytoskeleton-related protein coding regions. Biomedical Reports 2017, 6 (2) , 211-216. https://doi.org/10.3892/br.2016.826
    40. Alexia Martínez de Paz, Juan Ausió. MeCP2, A Modulator of Neuronal Chromatin Organization Involved in Rett Syndrome. 2017, 3-21. https://doi.org/10.1007/978-3-319-53889-1_1
    41. T. Kubota. Epigenetics in pervasive developmental disorders: translational aspects. 2017, 93-106. https://doi.org/10.1016/B978-0-12-800226-1.00005-8
    42. Rafael Claveria-Gimeno, Olga Abian, Adrian Velazquez-Campoy, Juan Ausió. MeCP2… Nature’s Wonder Protein or Medicine’s Most Feared One?. Current Genetic Medicine Reports 2016, 4 (4) , 180-194. https://doi.org/10.1007/s40142-016-0107-0
    43. Friederike Ehrhart, Susan L. M. Coort, Elisa Cirillo, Eric Smeets, Chris T. Evelo, Leopold M. G. Curfs. Rett syndrome – biological pathways leading from MECP2 to disorder phenotypes. Orphanet Journal of Rare Diseases 2016, 11 (1) https://doi.org/10.1186/s13023-016-0545-5
    44. Gilda Stefanelli, Anna Gandaglia, Mario Costa, Manjinder S. Cheema, Daniele Di Marino, Isabella Barbiero, Charlotte Kilstrup-Nielsen, Juan Ausió, Nicoletta Landsberger. Brain phosphorylation of MeCP2 at serine 164 is developmentally regulated and globally alters its chromatin association. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep28295
    45. Friederike Ehrhart, Susan L. M. Coort, Elisa Cirillo, Eric Smeets, Chris T. Evelo, Leopold Curfs. New insights in Rett syndrome using pathway analysis for transcriptomics data. Wiener Medizinische Wochenschrift 2016, 166 (11-12) , 346-352. https://doi.org/10.1007/s10354-016-0488-4
    46. Alessandro Pedretti, Cinzia Granito, Angelica Mazzolari, Giulio Vistoli. Structural Effects of Some Relevant Missense Mutations on the MECP2‐DNA Binding: A MD Study Analyzed by Rescore+, a Versatile Rescoring Tool of the VEGA ZZ Program. Molecular Informatics 2016, 35 (8-9) , 424-433. https://doi.org/10.1002/minf.201501030
    47. Takeo Kubota. Epigenetic alterations induced by environmental stress associated with metabolic and neurodevelopmental disorders. Environmental Epigenetics 2016, 2 (3) , dvw017. https://doi.org/10.1093/eep/dvw017
    48. Wei Liu, Na Wang, Min Lu, Xiao-Juan Du, Bao-Cai Xing. MBD2 as a novel marker associated with poor survival of patients with hepatocellular carcinoma after hepatic resection. Molecular Medicine Reports 2016, 14 (2) , 1617-1623. https://doi.org/10.3892/mmr.2016.5404
    49. Anne K. Ludwig, Peng Zhang, M. C. Cardoso. Modifiers and Readers of DNA Modifications and Their Impact on Genome Structure, Expression, and Stability in Disease. Frontiers in Genetics 2016, 7 https://doi.org/10.3389/fgene.2016.00115
    50. Takeo Kubota, Kazuki Mochizuki. Epigenetic Effect of Environmental Factors on Autism Spectrum Disorders. International Journal of Environmental Research and Public Health 2016, 13 (5) , 504. https://doi.org/10.3390/ijerph13050504
    51. Derek J. C. Tai, Yen C. Liu, Wei L. Hsu, Yun L. Ma, Sin J. Cheng, Shau Y. Liu, Eminy H. Y. Lee. MeCP2 SUMOylation rescues Mecp2-mutant-induced behavioural deficits in a mouse model of Rett syndrome. Nature Communications 2016, 7 (1) https://doi.org/10.1038/ncomms10552
    52. David M. Katz, Adrian Bird, Monica Coenraads, Steven J. Gray, Debashish U. Menon, Benjamin D. Philpot, Daniel C. Tarquinio. Rett Syndrome: Crossing the Threshold to Clinical Translation. Trends in Neurosciences 2016, 39 (2) , 100-113. https://doi.org/10.1016/j.tins.2015.12.008
    53. Kyla Brown, Jim Selfridge, Sabine Lagger, John Connelly, Dina De Sousa, Alastair Kerr, Shaun Webb, Jacky Guy, Cara Merusi, Martha V. Koerner, Adrian Bird. The molecular basis of variable phenotypic severity among common missense mutations causing Rett syndrome. Human Molecular Genetics 2016, 25 (3) , 558-570. https://doi.org/10.1093/hmg/ddv496
    54. Daniel C. Tarquinio, Alan K. Percy. Rett Syndrome. 2016, 301-323. https://doi.org/10.1016/B978-0-12-800109-7.00019-4
    55. Matthew J. Lyst, Adrian Bird. Rett syndrome: a complex disorder with simple roots. Nature Reviews Genetics 2015, 16 (5) , 261-275. https://doi.org/10.1038/nrg3897
    56. . Hereditary Diseases That Implicate Defective Responses to DNA Damage. 2014, 1001-1047. https://doi.org/10.1128/9781555816704.ch29
    57. Zhaolan Zhou, Darren Goffin. Modeling Rett Syndrome with MeCP2 T158A Knockin Mice. 2014, 2723-2739. https://doi.org/10.1007/978-1-4614-4788-7_181
    58. J T Plummer, O V Evgrafov, M Y Bergman, M Friez, C A Haiman, P Levitt, K A Aldinger. Transcriptional regulation of the MET receptor tyrosine kinase gene by MeCP2 and sex-specific expression in autism and Rett syndrome. Translational Psychiatry 2013, 3 (10) , e316-e316. https://doi.org/10.1038/tp.2013.91
    59. Takeo Kubota, Kunio Miyake, Takae Hirasawa. Role of Epigenetics in Rett Syndrome. Epigenomics 2013, 5 (5) , 583-592. https://doi.org/10.2217/epi.13.54
    60. Maartje C. Brink, Diewertje G. E. Piebes, Marloes L. de Groote, Martijn S. Luijsterburg, Corella S. Casas-Delucchi, Roel van Driel, Marianne G. Rots, M. Cristina Cardoso, Pernette J. Verschure, . A Role for MeCP2 in Switching Gene Activity via Chromatin Unfolding and HP1γ Displacement. PLoS ONE 2013, 8 (7) , e69347. https://doi.org/10.1371/journal.pone.0069347
    61. Daniel H. Ebert, Harrison W. Gabel, Nathaniel D. Robinson, Nathaniel R. Kastan, Linda S. Hu, Sonia Cohen, Adrija J. Navarro, Matthew J. Lyst, Robert Ekiert, Adrian P. Bird, Michael E. Greenberg. Activity-dependent phosphorylation of MeCP2 threonine 308 regulates interaction with NCoR. Nature 2013, 499 (7458) , 341-345. https://doi.org/10.1038/nature12348
    62. D. P. Stuss, M. Cheema, M. K. Ng, A. Martinez de Paz, B. Williamson, K. Missiaen, J. D. Cosman, D. McPhee, M. Esteller, M. Hendzel, K. Delaney, J. Ausio. Impaired in vivo binding of MeCP2 to chromatin in the absence of its DNA methyl-binding domain. Nucleic Acids Research 2013, 41 (9) , 4888-4900. https://doi.org/10.1093/nar/gkt213
    63. Joshua W.M. Theisen, James S. Gucwa, Timur Yusufzai, Mai T. Khuong, James T. Kadonaga. Biochemical Analysis of Histone Deacetylase-independent Transcriptional Repression by MeCP2. Journal of Biological Chemistry 2013, 288 (10) , 7096-7104. https://doi.org/10.1074/jbc.M112.438697
    64. Laetitia Kasprzyk, Pierre-Antoine Defossez, Benoît Miotto. Contrôle de la différenciation et de la plasticité neuronale par la méthylation de l’ADN. Biologie Aujourd'hui 2013, 207 (1) , 1-17. https://doi.org/10.1051/jbio/2013001
    65. Garry T. Morgan, Peter Jones, Michel Bellini. Association of modified cytosines and the methylated DNA-binding protein MeCP2 with distinctive structural domains of lampbrush chromatin. Chromosome Research 2012, 20 (8) , 925-942. https://doi.org/10.1007/s10577-012-9324-x
    66. Farah D. Lubin. Epileptogenesis: Can the Science of Epigenetics Give Us Answers?. Epilepsy Currents 2012, 12 (3) , 105-110. https://doi.org/10.5698/1535-7511-12.3.105
    67. Maha S. Zaki, Wessam E. Sharaf El-Din, Germine M. Hamdy, I.H. Kamal, Alice K. Abdel Aleem. Molecular analysis of MECP2 gene in Egyptian patients with Rett syndrome. Egyptian Journal of Medical Human Genetics 2012, 13 (1) , 19-27. https://doi.org/10.1016/j.ejmhg.2011.11.004
    68. Ege T. Kavalali, Lisa M. Monteggia. Analysis of MeCP2 Function in the CNS. 2012, 133-143. https://doi.org/10.1007/978-3-642-27913-3_11
    69. Ege T. Kavalali, Erika D. Nelson, Lisa M. Monteggia. Role of MeCP2, DNA methylation, and HDACs in regulating synapse function. Journal of Neurodevelopmental Disorders 2011, 3 (3) , 250-256. https://doi.org/10.1007/s11689-011-9078-3
    70. Aaron Y.L. Cheung, Lindsay M. Horvath, Daria Grafodatskaya, Peter Pasceri, Rosanna Weksberg, Akitsu Hotta, Laura Carrel, James Ellis. Isolation of MECP2-null Rett Syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation. Human Molecular Genetics 2011, 20 (11) , 2103-2115. https://doi.org/10.1093/hmg/ddr093
    71. Nicholas L. Adkins, Philippe T. Georgel. MeCP2: structure and functionThis paper is one of a selection of papers published in a Special Issue entitled 31st Annual International Asilomar Chromatin and Chromosomes Conference, and has undergone the Journal’s usual peer review process.. Biochemistry and Cell Biology 2011, 89 (1) , 1-11. https://doi.org/10.1139/O10-112
    72. Deepali Jain, Kamaljeet Singh, Sankar Chirumamilla, Genila M. Bibat, Mary E. Blue, SakkuBai R. Naidu, Charles G. Eberhart. Ocular MECP2 Protein Expression in Patients With and Without Rett Syndrome. Pediatric Neurology 2010, 43 (1) , 35-40. https://doi.org/10.1016/j.pediatrneurol.2010.02.018
    73. Christopher A. Chapleau, Gaston D. Calfa, Meredith C. Lane, Asher J. Albertson, Jennifer L. Larimore, Shinichi Kudo, Dawna L. Armstrong, Alan K. Percy, Lucas Pozzo-Miller. Dendritic spine pathologies in hippocampal pyramidal neurons from Rett syndrome brain and after expression of Rett-associated MECP2 mutations. Neurobiology of Disease 2009, 35 (2) , 219-233. https://doi.org/10.1016/j.nbd.2009.05.001
    74. Lisa M. Monteggia, Ege T. Kavalali. Rett Syndrome and the Impact of MeCP2 Associated Transcriptional Mechanisms on Neurotransmission. Biological Psychiatry 2009, 65 (3) , 204-210. https://doi.org/10.1016/j.biopsych.2008.10.036
    75. Nourhène Fendri-Kriaa, Zaineb Abdelkafi, Imen Ben Rebeh, Fatma Kamoun, Chahnez Triki, Faiza Fakhfakh. A Novel MECP2 Gene Mutation in a Tunisian Patient with Rett Syndrome. Genetic Testing and Molecular Biomarkers 2009, 13 (1) , 109-113. https://doi.org/10.1089/gtmb.2008.0076
    76. Abidemi A. Adegbola, Michael L. Gonzales, Andrew Chess, Janine M. LaSalle, Gerald F. Cox. A novel hypomorphic MECP2 point mutation is associated with a neuropsychiatric phenotype. Human Genetics 2009, 124 (6) , 615-623. https://doi.org/10.1007/s00439-008-0585-6
    77. Alexey Fomenkov, Priscilla Hiu-Mei Too, Siu-Hong Chan, Romas Vaisvila, Beth Ann Cantin, Laurie Mazzola, Vernissia Tam, Shuang-yong Xu. Targeting DNA 5mCpG sites with chimeric endonucleases. Analytical Biochemistry 2008, 381 (1) , 135-141. https://doi.org/10.1016/j.ab.2008.06.035
    78. Adrian Bird. The methyl-CpG-binding protein MeCP2 and neurological disease. Biochemical Society Transactions 2008, 36 (4) , 575-583. https://doi.org/10.1042/BST0360575
    79. Rajarshi P. Ghosh, Rachel A. Horowitz-Scherer, Tatiana Nikitina, Lila M. Gierasch, Christopher L. Woodcock. Rett Syndrome-causing Mutations in Human MeCP2 Result in Diverse Structural Changes That Impact Folding and DNA Interactions. Journal of Biological Chemistry 2008, 283 (29) , 20523-20534. https://doi.org/10.1074/jbc.M803021200
    80. Asmita Kumar, Sachin Kamboj, Barbara M. Malone, Shinichi Kudo, Jeffery L. Twiss, Kirk J. Czymmek, Janine M. LaSalle, N. Carolyn Schanen. Analysis of protein domains and Rett syndrome mutations indicate that multiple regions influence chromatin-binding dynamics of the chromatin-associated protein MECP2 in vivo. Journal of Cell Science 2008, 121 (7) , 1128-1137. https://doi.org/10.1242/jcs.016865
    81. Kok Lian Ho, Iain W. McNae, Lars Schmiedeberg, Robert J. Klose, Adrian P. Bird, Malcolm D. Walkinshaw. MeCP2 Binding to DNA Depends upon Hydration at Methyl-CpG. Molecular Cell 2008, 29 (4) , 525-531. https://doi.org/10.1016/j.molcel.2007.12.028
    82. Shinya Yakabe, Hidenobu Soejima, Hitomi Yatsuki, Hirotaka Tominaga, Wei Zhao, Ken Higashimoto, Keiichiro Joh, Shinichi Kudo, Kohji Miyazaki, Tsunehiro Mukai. MeCP2 knockdown reveals DNA methylation-independent gene repression of target genes in living cells and a bias in the cellular location of target gene products. Genes & Genetic Systems 2008, 83 (2) , 199-208. https://doi.org/10.1266/ggs.83.199
    83. Daniela Zahorakova, Robert Rosipal, Jan Hadac, Alena Zumrova, Vladimir Bzduch, Nadezda Misovicova, Alice Baxova, Jiri Zeman, Pavel Martasek. Mutation analysis of the MECP2 gene in patients of Slavic origin with Rett syndrome: novel mutations and polymorphisms. Journal of Human Genetics 2007, 52 (4) , 342-348. https://doi.org/10.1007/s10038-007-0121-x
    84. Tatiana Nikitina, Xi Shi, Rajarshi P. Ghosh, Rachel A. Horowitz-Scherer, Jeffrey C. Hansen, Christopher L. Woodcock. Multiple Modes of Interaction between the Methylated DNA Binding Protein MeCP2 and Chromatin. Molecular and Cellular Biology 2007, 27 (3) , 864-877. https://doi.org/10.1128/MCB.01593-06
    85. N. Bahi-Buisson, J. Chelly, V. des Portes. Actualités sur la génétique des retards mentaux liés au chromosome X. Revue Neurologique 2006, 162 (10) , 952-963. https://doi.org/10.1016/S0035-3787(06)75105-0
    86. Terry Gemelli, Olivier Berton, Erika D. Nelson, Linda I. Perrotti, Rudolf Jaenisch, Lisa M. Monteggia. Postnatal Loss of Methyl-CpG Binding Protein 2 in the Forebrain is Sufficient to Mediate Behavioral Aspects of Rett Syndrome in Mice. Biological Psychiatry 2006, 59 (5) , 468-476. https://doi.org/10.1016/j.biopsych.2005.07.025
    87. Walter E. Kaufmann, Michael V. Johnston, Mary E. Blue. MeCP2 expression and function during brain development: implications for Rett syndrome's pathogenesis and clinical evolution. Brain and Development 2005, 27 , S77-S87. https://doi.org/10.1016/j.braindev.2004.10.008
    88. Jordanka Zlatanova. MeCP2: the chromatin connection and beyond. Biochemistry and Cell Biology 2005, 83 (3) , 251-262. https://doi.org/10.1139/o05-048
    89. Esteban Ballestar, Santiago Ropero, Miguel Alaminos, Judith Armstrong, Fernando Setien, Ruben Agrelo, Mario F. Fraga, Michel Herranz, Sonia Avila, Mercedes Pineda, Eugenia Monros, Manel Esteller. The impact of MECP2 mutations in the expression patterns of Rett syndrome patients. Human Genetics 2005, 116 (1-2) , 91-104. https://doi.org/10.1007/s00439-004-1200-0
    90. Ann L. Collins, Jonathan M. Levenson, Alexander P. Vilaythong, Ronald Richman, Dawna L. Armstrong, Jeffrey L. Noebels, J. David Sweatt, Huda Y. Zoghbi. Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Human Molecular Genetics 2004, 13 (21) , 2679-2689. https://doi.org/10.1093/hmg/ddh282
    91. Linda Jeffery, Sara Nakielny. Components of the DNA Methylation System of Chromatin Control Are RNA-binding Proteins. Journal of Biological Chemistry 2004, 279 (47) , 49479-49487. https://doi.org/10.1074/jbc.M409070200
    92. Maria Rosaria Matarazzo, Francesca Lembo, Tiziana Angrisano, Esteban Ballestar, Marcella Ferraro, Raffaela Pero, Maria Luigia De Bonis, Carmelo Bruno Bruni, Manel Esteller, Maurizio D'Esposito, Lorenzo Chiariotti. In vivo analysis of DNA methylation patterns recognized by specific proteins: coupling ChIP and bisulfite analysis. BioTechniques 2004, 37 (4) , 666-673. https://doi.org/10.2144/04374DD02
    93. Stella Carro, Anna Bergo, Mauro Mengoni, Angela Bachi, Gianfranco Badaracco, Charlotte Kilstrup-Nielsen, Nicoletta Landsberger. A Novel Protein, Xenopus p20, Influences the Stability of MeCP2 through Direct Interaction. Journal of Biological Chemistry 2004, 279 (24) , 25623-25631. https://doi.org/10.1074/jbc.M402571200
    94. S. Kriaucionis, A. Bird. DNA methylation and Rett syndrome. Human Molecular Genetics 2003, 12 (suppl 2) , R221-R227. https://doi.org/10.1093/hmg/ddg286
    95. SakkuBai Naidu, Genila Bibat, Lisa Kratz, Richard I. Kelley, Jonathan Pevsner, Eric Hoffman, Carmen Cuffari, Charles Rohde, Mary E. Blue, Michael V. Johnston. Clinical Variability in Rett Syndrome. Journal of Child Neurology 2003, 18 (10) , 662-668. https://doi.org/10.1177/08830738030180100801
    96. Philippe T. Georgel, Rachel A. Horowitz-Scherer, Nick Adkins, Christopher L. Woodcock, Paul A. Wade, Jeffrey C. Hansen. Chromatin Compaction by Human MeCP2. Journal of Biological Chemistry 2003, 278 (34) , 32181-32188. https://doi.org/10.1074/jbc.M305308200
    97. J Ausió, DB Levin, GV De Amorim, S Bakker, PM Macleod. Syndromes of disordered chromatin remodeling. Clinical Genetics 2003, 64 (2) , 83-95. https://doi.org/10.1034/j.1399-0004.2003.00124.x
    98. Björn Heitmann, Till Maurer, Joachim M. Weitzel, Wolf H. Strätling, Hans Robert Kalbitzer, Eike Brunner. Solution structure of the matrix attachment region‐binding domain of chicken MeCP2. European Journal of Biochemistry 2003, 270 (15) , 3263-3270. https://doi.org/10.1046/j.1432-1033.2003.03714.x
    99. . References. 2003, 170-236. https://doi.org/10.1016/B978-012639881-6/50011-7
    100. Mona D. Shahbazian, Huda Y. Zoghbi. Rett Syndrome and MeCP2: Linking Epigenetics and Neuronal Function. The American Journal of Human Genetics 2002, 71 (6) , 1259-1272. https://doi.org/10.1086/345360
    Load all citations

    Biochemistry

    Cite this: Biochemistry 2000, 39, 24, 7100–7106
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi0001271
    Published May 26, 2000
    Copyright © Not subject to U.S. Copyright. Published 2000 American Chemical Society

    Article Views

    1090

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.