ACS Publications. Most Trusted. Most Cited. Most Read
Inhibition of Fibrillization and Accumulation of Prefibrillar Oligomers in Mixtures of Human and Mouse α-Synuclein
My Activity

Figure 1Loading Img
    Accelerated Publication

    Inhibition of Fibrillization and Accumulation of Prefibrillar Oligomers in Mixtures of Human and Mouse α-Synuclein
    Click to copy article linkArticle link copied!

    View Author Information
    Morris K. Udall Parkinson's Disease Research Center of Excellence, Center for Neurologic Diseases, Brigham and Women's Hospital, and Department of Neurology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115
    Other Access Options

    Biochemistry

    Cite this: Biochemistry 2000, 39, 35, 10619–10626
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi001315u
    Published August 10, 2000
    Copyright © 2000 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Parkinson's disease (PD) is a neurodegenerative disorder attributed to the loss of dopaminergic neurons from the substantia nigra. Some surviving neurons are characterized by cytoplasmic Lewy bodies, which contain fibrillar α-synuclein. Two mutants of human α-synuclein (A53T and A30P) have been linked to early-onset, familial PD. Oligomeric forms of these mutants accumulate more rapidly and/or persist for longer periods of time than oligomeric, human wild-type α-synuclein (WT), suggesting a link between oligomerization and cell death. The amino acid sequences of the mouse protein and WT differ at seven positions. Mouse α-synuclein, like A53T, contains a threonine residue at position 53. We have assessed the conformational properties and fibrillogenicity of the murine protein. Like WT and the two PD mutants, mouse α-synuclein adopts a “natively unfolded” or disordered structure. However, at elevated concentrations, the mouse protein forms amyloid fibrils more rapidly than WT, A53T, or A30P. The fibrillization of mouse α-synuclein is slowed by WT and A53T. Inhibition of fibrillization leads to the accumulation of nonfibrillar, potentially toxic oligomers. The results are relevant to the interpretation of the phenotypes of transgenic animal models of PD and suggest a novel approach for testing the cause and effect relationship between fibrillization and neurodegeneration.

    Copyright © 2000 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     This work was funded in part by grants from the National Institutes of Health (AG08470 and AG14366) and a Zenith Award from the Alzheimer's Association. J.-C.R. was supported by fellowships from the Alberta Heritage Foundation for Medical Research and the Human Frontier Science Program.

    *

     To whom correspondence should be addressed. Telephone:  (617) 525-5260. Fax:  (617) 525-5252. E-mail:  [email protected].

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 194 publications.

    1. Talia Bergaglio, Nico Kummer, Shayon Bhattacharya, Damien Thompson, Silvia Campioni, Peter Niraj Nirmalraj. On Levodopa Interactions with Brain Disease Amyloidogenic Proteins at the Nanoscale. ACS Omega 2025, 10 (14) , 14487-14495. https://doi.org/10.1021/acsomega.5c01028
    2. Jerson L. Silva, Debora Foguel, Vitor F. Ferreira, Tuane C. R. G. Vieira, Mayra A. Marques, Giulia D. S. Ferretti, Tiago F. Outeiro, Yraima Cordeiro, Guilherme A. P. de Oliveira. Targeting Biomolecular Condensation and Protein Aggregation against Cancer. Chemical Reviews 2023, 123 (14) , 9094-9138. https://doi.org/10.1021/acs.chemrev.3c00131
    3. Aditya Iyer, Steven J. Roeters, Vladimir Kogan, Sander Woutersen, Mireille M. A. E Claessens, and Vinod Subramaniam . C-Terminal Truncated α-Synuclein Fibrils Contain Strongly Twisted β-Sheets. Journal of the American Chemical Society 2017, 139 (43) , 15392-15400. https://doi.org/10.1021/jacs.7b07403
    4. Riccardo De Ricco, Daniela Valensin, Simone Dell’Acqua, Luigi Casella, Pierre Dorlet, Peter Faller, and Christelle Hureau . Remote His50 Acts as a Coordination Switch in the High-Affinity N-Terminal Centered Copper(II) Site of α-Synuclein. Inorganic Chemistry 2015, 54 (10) , 4744-4751. https://doi.org/10.1021/acs.inorgchem.5b00120
    5. Riccardo De Ricco, Daniela Valensin, Simone Dell’Acqua, Luigi Casella, Elena Gaggelli, Gianni Valensin, Luigi Bubacco, and Stefano Mangani . Differences in the Binding of Copper(I) to α- and β-Synuclein. Inorganic Chemistry 2015, 54 (1) , 265-272. https://doi.org/10.1021/ic502407w
    6. Hai-Yan Wang, Zhen Gu, Chan Cao, Jian Wang, and Yi-Tao Long . Analysis of a Single α-Synuclein Fibrillation by the Interaction with a Protein Nanopore. Analytical Chemistry 2013, 85 (17) , 8254-8261. https://doi.org/10.1021/ac401496x
    7. Kelly N. L. Huggins, Marco Bisaglia, Luigi Bubacco, Marianna Tatarek-Nossol, Aphrodite Kapurniotu, and Niels H. Andersen . Designed Hairpin Peptides Interfere with Amyloidogenesis Pathways: Fibril Formation and Cytotoxicity Inhibition, Interception of the Preamyloid State. Biochemistry 2011, 50 (38) , 8202-8212. https://doi.org/10.1021/bi200760h
    8. Lijuan Kang, Kuen-Phon Wu, Michele Vendruscolo, and Jean Baum . The A53T Mutation is Key in Defining the Differences in the Aggregation Kinetics of Human and Mouse α-Synuclein. Journal of the American Chemical Society 2011, 133 (34) , 13465-13470. https://doi.org/10.1021/ja203979j
    9. Anjan P. Pandey, Farzin Haque, Jean-Christophe Rochet, and Jennifer S. Hovis . α-Synuclein-Induced Tubule Formation in Lipid Bilayers. The Journal of Physical Chemistry B 2011, 115 (19) , 5886-5893. https://doi.org/10.1021/jp1121917
    10. Farzin Haque, Anjan P. Pandey, Lee R. Cambrea, Jean-Christophe Rochet and Jennifer S. Hovis . Adsorption of α-Synuclein on Lipid Bilayers: Modulating the Structure and Stability of Protein Assemblies. The Journal of Physical Chemistry B 2010, 114 (11) , 4070-4081. https://doi.org/10.1021/jp1006704
    11. Emily R. Lamberson, Lee R. Cambrea, Jean-Christophe Rochet and Jennifer S. Hovis . Path Dependence of Three-Phase or Two-Phase End Points in Fluid Binary Lipid Mixtures. The Journal of Physical Chemistry B 2009, 113 (11) , 3431-3436. https://doi.org/10.1021/jp810326w
    12. Stanislav D. Zakharov,, John D. Hulleman,, Elena A. Dutseva,, Yuri N. Antonenko,, Jean-Christophe Rochet, and, William A. Cramer. Helical α-Synuclein Forms Highly Conductive Ion Channels. Biochemistry 2007, 46 (50) , 14369-14379. https://doi.org/10.1021/bi701275p
    13. Anthony L. Fink. The Aggregation and Fibrillation of α-Synuclein. Accounts of Chemical Research 2006, 39 (9) , 628-634. https://doi.org/10.1021/ar050073t
    14. Charbel E.-H. Moussa,, Christophe Wersinger,, York Tomita, and, Anita Sidhu. Differential Cytotoxicity of Human Wild Type and Mutant α-Synuclein in Human Neuroblastoma SH-SY5Y Cells in the Presence of Dopamine. Biochemistry 2004, 43 (18) , 5539-5550. https://doi.org/10.1021/bi036114f
    15. Yaoyun Kuang, Hengxu Mao, Tingting Gan, Wenyuan Guo, Wei Dai, Weimeng Huang, Zhuohua Wu, Hongyan Li, Xiaoyun Huang, Xinling Yang, Ping-Yi Xu. A skin-specific α-Synuclein seeding amplification assay for diagnosing Parkinson’s disease. npj Parkinson's Disease 2024, 10 (1) https://doi.org/10.1038/s41531-024-00738-7
    16. Yaoyun Kuang, Hengxu Mao, Xiaoyun Huang, Minshan Chen, Wei Dai, Tingting Gan, Jiaqi Wang, Hui Sun, Hao Lin, Qin Liu, Xinling Yang, Ping-Yi Xu. α-Synuclein seeding amplification assays for diagnosing synucleinopathies: an innovative tool in clinical implementation. Translational Neurodegeneration 2024, 13 (1) https://doi.org/10.1186/s40035-024-00449-2
    17. Silvia Zampar, Sonja E. Di Gregorio, Gustavo Grimmer, Joel C. Watts, Martin Ingelsson. “Prion-like” seeding and propagation of oligomeric protein assemblies in neurodegenerative disorders. Frontiers in Neuroscience 2024, 18 https://doi.org/10.3389/fnins.2024.1436262
    18. David Brash-Arias, Luis I. García, César Antonio Pérez-Estudillo, Fausto Rojas-Durán, Gonzalo Emiliano Aranda-Abreu, Deissy Herrera-Covarrubias, Donaji Chi-Castañeda. The Role of Astrocytes and Alpha-Synuclein in Parkinson’s Disease: A Review. NeuroSci 2024, 5 (1) , 71-86. https://doi.org/10.3390/neurosci5010005
    19. Zeyaul Islam, Nishant N. Vaikath, Issam Hmila, Omar M. A. El‐Agnaf, Prasanna R. Kolatkar. Structural insights into the unique recognition module between α‐synuclein peptide and nanobody. Protein Science 2024, 33 (2) https://doi.org/10.1002/pro.4875
    20. Mashoque Ahmed Rather, Andleeb Khan, Saeed Alsharani, Sadaf Jahan, Arif Jamal Siddiqui, Sidharth Mehan, Athanasios Alexiou. The Mechanistic Approach Involved in the Progression of Neurodegenerative Disorders. 2023, 33-56. https://doi.org/10.1007/978-981-99-3848-3_2
    21. Aishwarya S Kulkarni, Matthew R Burns, Patrik Brundin, Daniel W Wesson. Linking α-synuclein-induced synaptopathy and neural network dysfunction in early Parkinson’s disease. Brain Communications 2022, 4 (4) https://doi.org/10.1093/braincomms/fcac165
    22. Alexander I. P. Taylor, Rosemary A. Staniforth. General Principles Underpinning Amyloid Structure. Frontiers in Neuroscience 2022, 16 https://doi.org/10.3389/fnins.2022.878869
    23. Kathryn E. Carnazza, Lauren E. Komer, Ying Xue Xie, André Pineda, Juan Antonio Briano, Virginia Gao, Yoonmi Na, Trudy Ramlall, Vladimir L. Buchman, David Eliezer, Manu Sharma, Jacqueline Burré. Synaptic vesicle binding of α-synuclein is modulated by β- and γ-synucleins. Cell Reports 2022, 39 (2) , 110675. https://doi.org/10.1016/j.celrep.2022.110675
    24. Daniel Klose, Sahithya Phani Babu Vemulapalli, Michal Richman, Safra Rudnick, Vered Aisha, Meital Abayev, Marina Chemerovski, Meital Shviro, David Zitoun, Katharina Majer, Nino Wili, Gil Goobes, Christian Griesinger, Gunnar Jeschke, Shai Rahimipour. Cu 2+ -Induced self-assembly and amyloid formation of a cyclic d , l -α-peptide: structure and function. Physical Chemistry Chemical Physics 2022, 24 (11) , 6699-6715. https://doi.org/10.1039/D1CP05415E
    25. Soham Maity, Kazuma Shimanaka, Laken N. Rivet, Malikah O'Dell, Anisa M. Rashid, Nurhanis B.M. Isa, Rachel S. Kepczynski, Ulf Dettmer, Babak Borhan, Jessica S. Fortin. In vitro characterization of urea derivatives to inhibit alpha-synuclein early-stage aggregation. Journal of Molecular Structure 2022, 1249 , 131569. https://doi.org/10.1016/j.molstruc.2021.131569
    26. Buket Uçar, Nadia Stefanova, Christian Humpel. Spreading of Aggregated α-Synuclein in Sagittal Organotypic Mouse Brain Slices. Biomolecules 2022, 12 (2) , 163. https://doi.org/10.3390/biom12020163
    27. Ashley E. Russell, Asmaa Badr, Ali Rai, Cierra Carafice, Ansaar Rai, Kylene P. Daily, Owen Whitham, Amal O. Amer, Candice M. Brown, Duaa Dakhlallah. Crosstalk Between Autophagy and Nutrigenomics in Neurodegenerative Diseases. 2022, 175-199. https://doi.org/10.1007/978-981-16-9205-5_13
    28. Bente Vestergaard, Annette Eva Langkilde. Protein fibrillation from another small angle: Sample preparation and SAXS data collection. 2022, 291-321. https://doi.org/10.1016/bs.mie.2022.08.041
    29. Alissa Oakes, Kate Menefee, Arleen Lamba, Larry M. Palato, Dillon J. Rinauro, Angela Tun, Betssy Jauregui, Kevin Chang, Luiza A. Nogaj, David A. Moffet. Nonhuman IAPP Variants Inhibit Human IAPP Aggregation. Protein & Peptide Letters 2021, 28 (9) , 963-971. https://doi.org/10.2174/0929866528666210806152706
    30. Marco Diociaiuti, Roberto Bonanni, Ida Cariati, Claudio Frank, Giovanna D’Arcangelo. Amyloid Prefibrillar Oligomers: The Surprising Commonalities in Their Structure and Activity. International Journal of Molecular Sciences 2021, 22 (12) , 6435. https://doi.org/10.3390/ijms22126435
    31. Natalie Landeck, Katherine E. Strathearn, Daniel Ysselstein, Kerstin Buck, Sayan Dutta, Siddhartha Banerjee, Zhengjian Lv, John D. Hulleman, Jagadish Hindupur, Li-Kai Lin, Sonal Padalkar, Lia A. Stanciu, Yuri L. Lyubchenko, Deniz Kirik, Jean-Christophe Rochet. Two C-terminal sequence variations determine differential neurotoxicity between human and mouse α-synuclein. Molecular Neurodegeneration 2020, 15 (1) https://doi.org/10.1186/s13024-020-00380-w
    32. Laura Boi, Augusta Pisanu, Maria Francesca Palmas, Giuliana Fusco, Ezio Carboni, Maria Antonietta Casu, Valentina Satta, Maria Scherma, Elzbieta Janda, Ignazia Mocci, Giovanna Mulas, Anna Ena, Saturnino Spiga, Paola Fadda, Alfonso De Simone, Anna R. Carta. Modeling Parkinson’s Disease Neuropathology and Symptoms by Intranigral Inoculation of Preformed Human α-Synuclein Oligomers. International Journal of Molecular Sciences 2020, 21 (22) , 8535. https://doi.org/10.3390/ijms21228535
    33. Isabell C. Pitigoi, Courtney E. Ostromecki. Using CRISPR-X for Optimization of Antibodies Towards A30P α-synuclein Oligomers in Immunotherapy of Parkinson’s Disease. Undergraduate Research in Natural and Clinical Science and Technology (URNCST) Journal 2020, 4 (7) , 1-8. https://doi.org/10.26685/urncst.188
    34. Xinyu Yu, Qilan Xu, Yuan Wu, Huijun Jiang, Wei Wei, Azhati Zulipikaer, Yan Guo, Jirimutu, Jin Chen. Nanobodies derived from Camelids represent versatile biomolecules for biomedical applications. Biomaterials Science 2020, 8 (13) , 3559-3573. https://doi.org/10.1039/D0BM00574F
    35. A.R. Carta, L. Boi, A. Pisanu, M.F. Palmas, E. Carboni, A. De Simone. Advances in modelling alpha-synuclein-induced Parkinson’s diseases in rodents: Virus-based models versus inoculation of exogenous preformed toxic species. Journal of Neuroscience Methods 2020, 338 , 108685. https://doi.org/10.1016/j.jneumeth.2020.108685
    36. Zachary A. Sorrentino, Yuxing Xia, Kimberly‐Marie Gorion, Ethan Hass, Benoit I. Giasson. Carboxy‐terminal truncations of mouse α‐synuclein alter aggregation and prion‐like seeding. FEBS Letters 2020, 594 (8) , 1271-1283. https://doi.org/10.1002/1873-3468.13728
    37. Lisa M. Miller. Infrared spectroscopy and imaging for understanding neurodegenerative protein-misfolding diseases. 2020, 121-142. https://doi.org/10.1016/B978-0-12-818610-7.00005-0
    38. Caterina Masaracchia, Annekatrin König, Ariel A. Valiente-Gabioud, Pablo Peralta, Filippo Favretto, Timo Strohäker, Diana F. Lázaro, Markus Zweckstetter, Claudio O. Fernandez, Tiago F. Outeiro. Molecular characterization of an aggregation-prone variant of alpha-synuclein used to model synucleinopathies. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2020, 1868 (1) , 140298. https://doi.org/10.1016/j.bbapap.2019.140298
    39. Penelope J. Hallett, Simone Engelender, Ole Isacson. Lipid and immune abnormalities causing age-dependent neurodegeneration and Parkinson’s disease. Journal of Neuroinflammation 2019, 16 (1) https://doi.org/10.1186/s12974-019-1532-2
    40. Xinhe Wang, Katelyn Becker, Nathan Levine, Michelle Zhang, Andrew P. Lieberman, Darren J. Moore, Jiyan Ma. Pathogenic alpha-synuclein aggregates preferentially bind to mitochondria and affect cellular respiration. Acta Neuropathologica Communications 2019, 7 (1) https://doi.org/10.1186/s40478-019-0696-4
    41. Kensuke Ikenaka, Mari Suzuki, Hideki Mochizuki, Yoshitaka Nagai. Lipids as Trans-Acting Effectors for α-Synuclein in the Pathogenesis of Parkinson’s Disease. Frontiers in Neuroscience 2019, 13 https://doi.org/10.3389/fnins.2019.00693
    42. Ana Canerina-Amaro, Daniel Pereda, Mario Diaz, Deiene Rodriguez-Barreto, Verónica Casañas-Sánchez, Marija Heffer, Paula Garcia-Esparcia, Isidro Ferrer, Ricardo Puertas-Avendaño, Raquel Marin. Differential Aggregation and Phosphorylation of Alpha Synuclein in Membrane Compartments Associated With Parkinson Disease. Frontiers in Neuroscience 2019, 13 https://doi.org/10.3389/fnins.2019.00382
    43. Songhwan Hwang, Pascal Fricke, Maximilian Zinke, Karin Giller, Joseph S. Wall, Dietmar Riedel, Stefan Becker, Adam Lange. Comparison of the 3D structures of mouse and human α-synuclein fibrils by solid-state NMR and STEM. Journal of Structural Biology 2019, 206 (1) , 43-48. https://doi.org/10.1016/j.jsb.2018.04.003
    44. Ariadna Recasens, Ayse Ulusoy, Philipp J. Kahle, Donato A. Di Monte, Benjamin Dehay. In vivo models of alpha-synuclein transmission and propagation. Cell and Tissue Research 2018, 373 (1) , 183-193. https://doi.org/10.1007/s00441-017-2730-9
    45. Abeje Ambaw, Lingxing Zheng, Mitali A. Tambe, Katherine E. Strathearn, Glen Acosta, Scott A. Hubers, Fang Liu, Seth A. Herr, Jonathan Tang, Alan Truong, Elwood Walls, Amber Pond, Jean-Christophe Rochet, Riyi Shi. Acrolein-mediated neuronal cell death and alpha-synuclein aggregation: Implications for Parkinson's disease. Molecular and Cellular Neuroscience 2018, 88 , 70-82. https://doi.org/10.1016/j.mcn.2018.01.006
    46. Jacqueline Burré, Manu Sharma, Thomas C. Südhof. Cell Biology and Pathophysiology of α-Synuclein. Cold Spring Harbor Perspectives in Medicine 2018, 8 (3) , a024091. https://doi.org/10.1101/cshperspect.a024091
    47. Bryan Andrew Killinger, Viviane Labrie. Vertebrate food products as a potential source of prion-like α-synuclein. npj Parkinson's Disease 2017, 3 (1) https://doi.org/10.1038/s41531-017-0035-z
    48. Zachary A. Sorrentino, Mieu M.T. Brooks, Vincent Hudson, Nicola J. Rutherford, Todd E. Golde, Benoit I. Giasson, Paramita Chakrabarty. Intrastriatal injection of α-synuclein can lead to widespread synucleinopathy independent of neuroanatomic connectivity. Molecular Neurodegeneration 2017, 12 (1) https://doi.org/10.1186/s13024-017-0182-z
    49. Danielle E Mor, Elpida Tsika, Joseph R Mazzulli, Neal S Gould, Hanna Kim, Malcolm J Daniels, Shachee Doshi, Preetika Gupta, Jennifer L Grossman, Victor X Tan, Robert G Kalb, Kim A Caldwell, Guy A Caldwell, John H Wolfe, Harry Ischiropoulos. Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration. Nature Neuroscience 2017, 20 (11) , 1560-1568. https://doi.org/10.1038/nn.4641
    50. Min Zhu, Shivaliben H. Patel, Shubo Han. DJ-1, a Parkinson's disease related protein, aggregates under denaturing conditions and co-aggregates with α-synuclein through hydrophobic interaction. Biochimica et Biophysica Acta (BBA) - General Subjects 2017, 1861 (7) , 1759-1769. https://doi.org/10.1016/j.bbagen.2017.03.013
    51. Dharmin Rokad, Shivani Ghaisas, Dilshan S. Harischandra, Huajun Jin, Vellareddy Anantharam, Arthi Kanthasamy, Anumantha G. Kanthasamy. Role of neurotoxicants and traumatic brain injury in α-synuclein protein misfolding and aggregation. Brain Research Bulletin 2017, 133 , 60-70. https://doi.org/10.1016/j.brainresbull.2016.12.003
    52. B.R. Ginn. The thermodynamics of protein aggregation reactions may underpin the enhanced metabolic efficiency associated with heterosis, some balancing selection, and the evolution of ploidy levels. Progress in Biophysics and Molecular Biology 2017, 126 , 1-21. https://doi.org/10.1016/j.pbiomolbio.2017.01.005
    53. Lungisa Bickle, John J. Hopwood, Litsa Karageorgos. Analysis of sheep α-synuclein provides a molecular strategy for the reduction of fibrillation. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2017, 1865 (3) , 261-273. https://doi.org/10.1016/j.bbapap.2016.12.008
    54. Steven J. Roeters, Aditya Iyer, Galja Pletikapić, Vladimir Kogan, Vinod Subramaniam, Sander Woutersen. Evidence for Intramolecular Antiparallel Beta-Sheet Structure in Alpha-Synuclein Fibrils from a Combination of Two-Dimensional Infrared Spectroscopy and Atomic Force Microscopy. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/srep41051
    55. Natalie Landeck, Kerstin Buck, Deniz Kirik, . Toxic effects of human and rodent variants of alpha‐synuclein in vivo. European Journal of Neuroscience 2017, 45 (4) , 536-547. https://doi.org/10.1111/ejn.13493
    56. Pu Chun Ke, Marc-Antonie Sani, Feng Ding, Aleksandr Kakinen, Ibrahim Javed, Frances Separovic, Thomas P. Davis, Raffaele Mezzenga. Implications of peptide assemblies in amyloid diseases. Chemical Society Reviews 2017, 46 (21) , 6492-6531. https://doi.org/10.1039/C7CS00372B
    57. M. Mučibabić, M.M. Apetri, G.W. Canters, T.J. Aartsma. The effect of fluorescent labeling on α-synuclein fibril morphology. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2016, 1864 (10) , 1419-1427. https://doi.org/10.1016/j.bbapap.2016.07.007
    58. Naveed Ahmad Fazili, Aabgeena Naeem. Exploring the Transition of Human α-Synuclein from Native to the Fibrillar State: Insights into the Pathogenesis of Parkinson’s Disease. Journal of Fluorescence 2016, 26 (5) , 1659-1669. https://doi.org/10.1007/s10895-016-1856-6
    59. Fares Bassil, Pierre-Olivier Fernagut, Erwan Bezard, Alain Pruvost, Thierry Leste-Lasserre, Quyen Q. Hoang, Dagmar Ringe, Gregory A. Petsko, Wassilios G. Meissner. Reducing C-terminal truncation mitigates synucleinopathy and neurodegeneration in a transgenic model of multiple system atrophy. Proceedings of the National Academy of Sciences 2016, 113 (34) , 9593-9598. https://doi.org/10.1073/pnas.1609291113
    60. Michael Helwig, Michael Klinkenberg, Raffaella Rusconi, Ruth E. Musgrove, Nour K. Majbour, Omar M. A. El-Agnaf, Ayse Ulusoy, Donato A. Di Monte. Brain propagation of transduced α-synuclein involves non-fibrillar protein species and is enhanced in α-synuclein null mice. Brain 2016, 139 (3) , 856-870. https://doi.org/10.1093/brain/awv376
    61. Mohamed-Bilal Fares, Bohumil Maco, Abid Oueslati, Edward Rockenstein, Natalia Ninkina, Vladimir L. Buchman, Eliezer Masliah, Hilal A. Lashuel. Induction of de novo α-synuclein fibrillization in a neuronal model for Parkinson’s disease. Proceedings of the National Academy of Sciences 2016, 113 (7) https://doi.org/10.1073/pnas.1512876113
    62. Tarek Ibrahim, JoAnne McLaurin. α-Synuclein aggregation, seeding and inhibition by scyllo-inositol. Biochemical and Biophysical Research Communications 2016, 469 (3) , 529-534. https://doi.org/10.1016/j.bbrc.2015.12.043
    63. Maria E. Bernis, Julius T. Babila, Sara Breid, Katharina Annick Wüsten, Ullrich Wüllner, Gültekin Tamgüney. Prion-like propagation of human brain-derived alpha-synuclein in transgenic mice expressing human wild-type alpha-synuclein. Acta Neuropathologica Communications 2015, 3 (1) https://doi.org/10.1186/s40478-015-0254-7
    64. Chai-jui Tsai, Kiran Aslam, Holli M. Drendel, Josephat M. Asiago, Kourtney M. Goode, Lake N. Paul, Jean-Christophe Rochet, Tony R. Hazbun. Hsp31 Is a Stress Response Chaperone That Intervenes in the Protein Misfolding Process. Journal of Biological Chemistry 2015, 290 (41) , 24816-24834. https://doi.org/10.1074/jbc.M115.678367
    65. Christopher Yip. Atomic Force Microscopy: Opportunities and Challenges for Probing Biomolecular Interactions. 2015, 16-1-16-38. https://doi.org/10.1201/b18690-17
    66. Jacqueline Burré, Manu Sharma, Thomas C. Südhof. Definition of a Molecular Pathway Mediating α-Synuclein Neurotoxicity. The Journal of Neuroscience 2015, 35 (13) , 5221-5232. https://doi.org/10.1523/JNEUROSCI.4650-14.2015
    67. Andrea Perucchi, Lisa Vaccari, Stefano Lupi. Infrared Synchrotron Radiation: From the Production to the Scientific Applications. 2015, 437-460. https://doi.org/10.1007/978-3-642-55315-8_15
    68. Chris Wai Tung Leung, Feng Guo, Yuning Hong, Engui Zhao, Ryan Tsz Kin Kwok, Nelson Lik Ching Leung, Sijie Chen, Nishant N. Vaikath, Omar Mukhtar El-Agnaf, Youhong Tang, Wei-Ping Gai, Ben Zhong Tang. Detection of oligomers and fibrils of α-synuclein by AIEgen with strong fluorescence. Chemical Communications 2015, 51 (10) , 1866-1869. https://doi.org/10.1039/C4CC07911F
    69. Dezerae Cox, John A. Carver, Heath Ecroyd. Preventing α-synuclein aggregation: The role of the small heat-shock molecular chaperone proteins. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2014, 1842 (9) , 1830-1843. https://doi.org/10.1016/j.bbadis.2014.06.024
    70. Sandra Tenreiro, Katrin Eckermann, Tiago F. Outeiro. Protein phosphorylation in neurodegeneration: friend or foe?. Frontiers in Molecular Neuroscience 2014, 7 https://doi.org/10.3389/fnmol.2014.00042
    71. Amanda N. Sacino, Mieu Brooks, Michael A. Thomas, Alex B. McKinney, Nicholas H. McGarvey, Nicola J. Rutherford, Carolina Ceballos-Diaz, Janice Robertson, Todd E. Golde, Benoit I. Giasson. Amyloidogenic α-synuclein seeds do not invariably induce rapid, widespread pathology in mice. Acta Neuropathologica 2014, 127 (5) , 645-665. https://doi.org/10.1007/s00401-014-1268-0
    72. Benjamin R Smith, Marta B Santos, Michael S Marshall, Ludovico Cantuti‐Castelvetri, Aurora Lopez‐Rosas, Guannan Li, Richard van Breemen, Kumiko I Claycomb, Jose I Gallea, Maria S Celej, Stephen J Crocker, Maria I Givogri, Ernesto R Bongarzone. Neuronal inclusions of α‐synuclein contribute to the pathogenesis of Krabbe disease. The Journal of Pathology 2014, 232 (5) , 509-521. https://doi.org/10.1002/path.4328
    73. N.B. Bolshette, K.K. Thakur, A.P. Bidkar, C. Trandafir, P. Kumar, R. Gogoi. Protein folding and misfolding in the neurodegenerative disorders: A review. Revue Neurologique 2014, 170 (3) , 151-161. https://doi.org/10.1016/j.neurol.2013.11.002
    74. Amy M. Griggs, Daniel Ysselstein, Jean-Christophe Rochet. Role of Aberrant α-Synuclein–Membrane Interactions in Parkinson’s Disease. 2014, 443-452. https://doi.org/10.1016/B978-0-12-394431-3.00039-0
    75. Ji-Shen Zheng, Shan Tang, Yun-Kun Qi, Zhi-Peng Wang, Lei Liu. Chemical synthesis of proteins using peptide hydrazides as thioester surrogates. Nature Protocols 2013, 8 (12) , 2483-2495. https://doi.org/10.1038/nprot.2013.152
    76. Tim Guilliams, Farah El-Turk, Alexander K. Buell, Elizabeth M. O'Day, Francesco A. Aprile, Elin K. Esbjörner, Michele Vendruscolo, Nunilo Cremades, Els Pardon, Lode Wyns, Mark E. Welland, Jan Steyaert, John Christodoulou, Christopher M. Dobson, Erwin De Genst. Nanobodies Raised against Monomeric α-Synuclein Distinguish between Fibrils at Different Maturation Stages. Journal of Molecular Biology 2013, 425 (14) , 2397-2411. https://doi.org/10.1016/j.jmb.2013.01.040
    77. Ayse Ulusoy, Donato A. Di Monte. α-Synuclein Elevation in Human Neurodegenerative Diseases: Experimental, Pathogenetic, and Therapeutic Implications. Molecular Neurobiology 2013, 47 (2) , 484-494. https://doi.org/10.1007/s12035-012-8329-y
    78. Martin T. Stöckl, Niels Zijlstra, Vinod Subramaniam. α-Synuclein Oligomers: an Amyloid Pore?. Molecular Neurobiology 2013, 47 (2) , 613-621. https://doi.org/10.1007/s12035-012-8331-4
    79. Niels Zijlstra, Vinod Subramaniam. Structural and Compositional Information about Pre‐Amyloid Oligomers. 2013, 103-126. https://doi.org/10.1002/9783527654185.ch6
    80. Erwan Bezard, Zhenyu Yue, Deniz Kirik, Maria Grazia Spillantini. Animal models of Parkinson's disease: Limits and relevance to neuroprotection studies. Movement Disorders 2013, 28 (1) , 61-70. https://doi.org/10.1002/mds.25108
    81. Marcus Fändrich. Oligomeric Intermediates in Amyloid Formation: Structure Determination and Mechanisms of Toxicity. Journal of Molecular Biology 2012, 421 (4-5) , 427-440. https://doi.org/10.1016/j.jmb.2012.01.006
    82. Guohua Lv, Ashutosh Kumar, Karin Giller, Maria L. Orcellet, Dietmar Riedel, Claudio O. Fernández, Stefan Becker, Adam Lange. Structural Comparison of Mouse and Human α-Synuclein Amyloid Fibrils by Solid-State NMR. Journal of Molecular Biology 2012, 420 (1-2) , 99-111. https://doi.org/10.1016/j.jmb.2012.04.009
    83. Alexey V. Krasnoslobodtsev, Jie Peng, Josephat M. Asiago, Jagadish Hindupur, Jean-Christophe Rochet, Yuri L. Lyubchenko, . Effect of Spermidine on Misfolding and Interactions of Alpha-Synuclein. PLoS ONE 2012, 7 (5) , e38099. https://doi.org/10.1371/journal.pone.0038099
    84. Leonid Breydo, Jessica W. Wu, Vladimir N. Uversky. α-Synuclein misfolding and Parkinson's disease. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2012, 1822 (2) , 261-285. https://doi.org/10.1016/j.bbadis.2011.10.002
    85. Jean-Christophe Rochet, Bruce A. Hay, Ming Guo. Molecular Insights into Parkinson's Disease. 2012, 125-188. https://doi.org/10.1016/B978-0-12-385883-2.00011-4
    86. Hui-Ming Gao, Jau-Shyong Hong. Gene–environment interactions: Key to unraveling the mystery of Parkinson's disease. Progress in Neurobiology 2011, 94 (1) , 1-19. https://doi.org/10.1016/j.pneurobio.2011.03.005
    87. Xingfei Zhou, Jingsong Liu, Bin Li, Saju Pillai, Dongdong Lin, Jianhua Liu, Yi Zhang. Assembly of glucagon (proto)fibrils by longitudinal addition of oligomers. Nanoscale 2011, 3 (8) , 3049. https://doi.org/10.1039/c1nr10332f
    88. Ronit Shaltiel-Karyo, Moran Frenkel-Pinter, Nirit Egoz-Matia, Anat Frydman-Marom, Deborah E. Shalev, Daniel Segal, Ehud Gazit, . Inhibiting α-Synuclein Oligomerization by Stable Cell-Penetrating β-Synuclein Fragments Recovers Phenotype of Parkinson's Disease Model Flies. PLoS ONE 2010, 5 (11) , e13863. https://doi.org/10.1371/journal.pone.0013863
    89. Erwin J. De Genst, Tim Guilliams, Joke Wellens, Elizabeth M. O'Day, Christopher A. Waudby, Sarah Meehan, Mireille Dumoulin, Shang-Te Danny Hsu, Nunilo Cremades, Koen H.G. Verschueren, Els Pardon, Lode Wyns, Jan Steyaert, John Christodoulou, Christopher M. Dobson. Structure and Properties of a Complex of α-Synuclein and a Single-Domain Camelid Antibody. Journal of Molecular Biology 2010, 402 (2) , 326-343. https://doi.org/10.1016/j.jmb.2010.07.001
    90. Rawan Tarawneh, James E. Galvin. Potential Future Neuroprotective Therapies for Neurodegenerative Disorders and Stroke. Clinics in Geriatric Medicine 2010, 26 (1) , 125-147. https://doi.org/10.1016/j.cger.2009.12.003
    91. Abid Oueslati, Margot Fournier, Hilal A. Lashuel. Role of post-translational modifications in modulating the structure, function and toxicity of α-synuclein. 2010, 115-145. https://doi.org/10.1016/S0079-6123(10)83007-9
    92. Marco Bisaglia, Isabella Tessari, Stefano Mammi, Luigi Bubacco. Interaction Between α-Synuclein and Metal Ions, Still Looking for a Role in the Pathogenesis of Parkinson’s Disease. NeuroMolecular Medicine 2009, 11 (4) , 239-251. https://doi.org/10.1007/s12017-009-8082-1
    93. S. Padalkar, J. Hulleman, S. M. Kim, T. Tumkur, J.-C. Rochet, E. Stach, L. Stanciu. Fabrication of ZnS nanoparticle chains on a protein template. Journal of Nanoparticle Research 2009, 11 (8) , 2031-2041. https://doi.org/10.1007/s11051-009-9689-8
    94. Brian Spencer, Rewati Potkar, Margarita Trejo, Edward Rockenstein, Christina Patrick, Ryan Gindi, Anthony Adame, Tony Wyss-Coray, Eliezer Masliah. Beclin 1 Gene Transfer Activates Autophagy and Ameliorates the Neurodegenerative Pathology in α-Synuclein Models of Parkinson's and Lewy Body Diseases. The Journal of Neuroscience 2009, 29 (43) , 13578-13588. https://doi.org/10.1523/JNEUROSCI.4390-09.2009
    95. Li Chen, Magali Periquet, Xu Wang, Alessandro Negro, Pamela J. McLean, Bradley T. Hyman, Mel B. Feany. Tyrosine and serine phosphorylation of α-synuclein have opposing effects on neurotoxicity and soluble oligomer formation. Journal of Clinical Investigation 2009, 302 https://doi.org/10.1172/JCI39088
    96. Su Ling Leong, Roberto Cappai, Kevin Jeffrey Barnham, Chi Le Lan Pham. Modulation of α-Synuclein Aggregation by Dopamine: A Review. Neurochemical Research 2009, 34 (10) , 1838-1846. https://doi.org/10.1007/s11064-009-9986-8
    97. Andrew J. Lees. The Parkinson chimera. Neurology 2009, 72 (7_supplement_2) https://doi.org/10.1212/WNL.0b013e318198daec
    98. Jean-Christophe Rochet, Fang Liu. Inhibition of α-Synuclein Aggregation by Antioxidants and Chaperones in Parkinson’s Disease. 2009, 175-206. https://doi.org/10.1007/978-1-4020-9434-7_8
    99. Wendy Phillips, Andrew Michell, Harald Pruess, Roger A. Barker. Animal Models of Neurodegenerative Diseases. 2009, 137-155. https://doi.org/10.1007/978-1-60327-931-4_10
    100. Fang Liu, Jagadish Hindupur, Jamie L. Nguyen, Katie J. Ruf, Junyi Zhu, Jeremy L. Schieler, Connie C. Bonham, Karl V. Wood, V. Jo Davisson, Jean-Christophe Rochet. Methionine sulfoxide reductase A protects dopaminergic cells from Parkinson's disease-related insults. Free Radical Biology and Medicine 2008, 45 (3) , 242-255. https://doi.org/10.1016/j.freeradbiomed.2008.03.022
    Load all citations

    Biochemistry

    Cite this: Biochemistry 2000, 39, 35, 10619–10626
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi001315u
    Published August 10, 2000
    Copyright © 2000 American Chemical Society

    Article Views

    1447

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.