ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Double-Stranded RNA Adenosine Deaminases ADAR1 and ADAR2 Have Overlapping Specificities

View Author Information
Department of Biochemistry and HHMI, University of Utah, 50 North Medical Drive, Room 211, Salt Lake City, Utah 84132
Cite this: Biochemistry 2000, 39, 42, 12875–12884
Publication Date (Web):September 28, 2000
https://doi.org/10.1021/bi001383g
Copyright © 2000 American Chemical Society

    Article Views

    1898

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Adenosine deaminases that act on RNA (ADARs) deaminate adenosines to produce inosines within RNAs that are largely double-stranded (ds). Like most dsRNA binding proteins, the enzymes will bind to any dsRNA without apparent sequence specificity. However, once bound, ADARs deaminate certain adenosines more efficiently than others. Most of what is known about the intrinsic deamination specificity of ADARs derives from analyses of Xenopus ADAR1. In addition to ADAR1, mammalian cells have a second ADAR, named ADAR2; the deamination specificity of this enzyme has not been rigorously studied. Here we directly compare the specificity of human ADAR1 and ADAR2. We find that, like ADAR1, ADAR2 has a 5‘ neighbor preference (A ≈ U > C = G), but, unlike ADAR1, also has a 3‘ neighbor preference (U = G > C = A). Simultaneous analysis of both neighbor preferences reveals that ADAR2 prefers certain trinucleotide sequences (UAU, AAG, UAG, AAU). In addition to characterizing ADAR2 preferences, we analyzed the fraction of adenosines deaminated in a given RNA at complete reaction, or the enzyme's selectivity. We find that ADAR1 and ADAR2 deaminate a given RNA with the same selectivity, and this appears to be dictated by features of the RNA substrate. Finally, we observed that Xenopus and human ADAR1 deaminate the same adenosines on all RNAs tested, emphasizing the similarity of ADAR1 in these two species. Our data add substantially to the understanding of ADAR2 specificity, and aid in efforts to predict which ADAR deaminates a given editing site adenosine in vivo.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     This work was supported by funds to B.L.B. from the National Institute of General Medical Sciences (GM44073). Oligonucleotides were synthesized by the Howard Hughes Medical Institute oligonucleotide synthesis facility at the University of Utah supported by the National Cancer Institute (Grant 42014) and HHMI. B.L.B. is an HHMI Associate Investigator.

    *

     To whom correspondence should be addressed. E-mail:  [email protected], phone:  801.581.3824, fax:  801. 581.5379.

    Cited By

    This article is cited by 217 publications.

    1. Casey S. Jacobsen, Prince Salvador, John F. Yung, Sabrina Kragness, Herra G. Mendoza, Gail Mandel, Peter A. Beal. Library Screening Reveals Sequence Motifs That Enable ADAR2 Editing at Recalcitrant Sites. ACS Chemical Biology 2023, 18 (10) , 2188-2199. https://doi.org/10.1021/acschembio.3c00107
    2. Herra G. Mendoza, Peter A. Beal. Chemical Modifications in RNA: Elucidating the Chemistry of dsRNA-Specific Adenosine Deaminases (ADARs). Accounts of Chemical Research 2023, 56 (18) , 2489-2499. https://doi.org/10.1021/acs.accounts.3c00390
    3. Herra G. Mendoza, Victorio Jauregui Matos, SeHee Park, Kevin M. Pham, Peter A. Beal. Selective Inhibition of ADAR1 Using 8-Azanebularine-Modified RNA Duplexes. Biochemistry 2023, 62 (8) , 1376-1387. https://doi.org/10.1021/acs.biochem.2c00686
    4. Erin E. Doherty, Xander E. Wilcox, Lenka van Sint Fiet, Cherie Kemmel, Janne J. Turunen, Bart Klein, Dean J. Tantillo, Andrew J. Fisher, Peter A. Beal. Rational Design of RNA Editing Guide Strands: Cytidine Analogs at the Orphan Position. Journal of the American Chemical Society 2021, 143 (18) , 6865-6876. https://doi.org/10.1021/jacs.0c13319
    5. Yuru Wang, SeHee Park, Peter A. Beal. Selective Recognition of RNA Substrates by ADAR Deaminase Domains. Biochemistry 2018, 57 (10) , 1640-1651. https://doi.org/10.1021/acs.biochem.7b01100
    6. Yuru Wang, Jocelyn Havel, and Peter A. Beal . A Phenotypic Screen for Functional Mutants of Human Adenosine Deaminase Acting on RNA 1. ACS Chemical Biology 2015, 10 (11) , 2512-2519. https://doi.org/10.1021/acschembio.5b00711
    7. Tristan Eifler, Subhash Pokharel, and Peter A. Beal . RNA-Seq Analysis Identifies a Novel Set of Editing Substrates for Human ADAR2 Present in Saccharomyces cerevisiae. Biochemistry 2013, 52 (45) , 7857-7869. https://doi.org/10.1021/bi4006539
    8. Tuan Tran and Matthew D. Disney . Molecular Recognition of 6′-N-5-Hexynoate Kanamycin A and RNA 1x1 Internal Loops Containing CA Mismatches. Biochemistry 2011, 50 (6) , 962-969. https://doi.org/10.1021/bi101724h
    9. Subhash Pokharel and Peter A. Beal. High-Throughput Screening for Functional Adenosine to Inosine RNA Editing Systems. ACS Chemical Biology 2006, 1 (12) , 761-765. https://doi.org/10.1021/cb6003838
    10. Olena Maydanovych and, Peter A. Beal. Breaking the Central Dogma by RNA Editing. Chemical Reviews 2006, 106 (8) , 3397-3411. https://doi.org/10.1021/cr050314a
    11. Shenghui Weng, Xinyi Yang, Nannan Yu, Peng-Cheng Wang, Sidong Xiong, Hang Ruan. Harnessing ADAR-Mediated Site-Specific RNA Editing in Immune-Related Disease: Prediction and Therapeutic Implications. International Journal of Molecular Sciences 2024, 25 (1) , 351. https://doi.org/10.3390/ijms25010351
    12. Chao-Wei Hsu, Hsueh-Ying Hsu, Chien-Hung Chen, Mei Chao. Unbranched rod-like RNA is required for RNA editing of hepatitis delta virus genotype 2 and genotype 4. Virus Research 2023, 338 , 199239. https://doi.org/10.1016/j.virusres.2023.199239
    13. Marlon S. Zambrano-Mila, Monika Witzenberger, Zohar Rosenwasser, Anna Uzonyi, Ronit Nir, Shay Ben-Aroya, Erez Y. Levanon, Schraga Schwartz. Dissecting the basis for differential substrate specificity of ADAR1 and ADAR2. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-43633-0
    14. Lucyna Budzko, Karolina Hoffa-Sobiech, Paulina Jackowiak, Marek Figlerowicz. Engineered deaminases as a key component of DNA and RNA editing tools. Molecular Therapy - Nucleic Acids 2023, 34 , 102062. https://doi.org/10.1016/j.omtn.2023.102062
    15. Valentina Frezza, Lidia Chellini, Arianna Del Verme, Maria Paola Paronetto. RNA Editing in Cancer Progression. Cancers 2023, 15 (21) , 5277. https://doi.org/10.3390/cancers15215277
    16. Jacob H. Schroader, Mark T. Handley, Kaalak Reddy. Inosine triphosphate pyrophosphatase: A guardian of the cellular nucleotide pool and potential mediator of RNA function. WIREs RNA 2023, 14 (5) https://doi.org/10.1002/wrna.1790
    17. Isabel C. Vallecillo-Viejo, Gjendine Voss, Caroline B. Albertin, Noa Liscovitch-Brauer, Eli Eisenberg, Joshua J. C. Rosenthal. Squid express conserved ADAR orthologs that possess novel features. Frontiers in Genome Editing 2023, 5 https://doi.org/10.3389/fgeed.2023.1181713
    18. Julia-Sophia Bellingrath, Michelle E. McClements, M. Dominik Fischer, Robert E. MacLaren. Programmable RNA editing with endogenous ADAR enzymes – a feasible option for the treatment of inherited retinal disease?. Frontiers in Molecular Neuroscience 2023, 16 https://doi.org/10.3389/fnmol.2023.1092913
    19. Simona Panni, Alessia Corbelli, Joanna Sztuba-Solinska. Regulation of non-coding RNAs. 2023, 209-271. https://doi.org/10.1016/B978-0-323-90406-3.00009-9
    20. A.E. Abaturov, V.L. Babуch. Mechanisms of action of extracellular miRNAs. CHILD`S HEALTH 2022, 17 (8) , 420-425. https://doi.org/10.22141/2224-0551.17.8.2022.1550
    21. Haoqing Shen, Omer An, Xi Ren, Yangyang Song, Sze Jing Tang, Xin-Yu Ke, Jian Han, Daryl Jin Tai Tay, Vanessa Hui En Ng, Fernando Bellido Molias, Priyankaa Pitcheshwar, Ka Wai Leong, Ker-Kan Tan, Henry Yang, Leilei Chen. ADARs act as potent regulators of circular transcriptome in cancer. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-29138-2
    22. Wenjian Han, Wendi Huang, Tong Wei, Yanwen Ye, Miaowei Mao, Zefeng Wang. Programmable RNA base editing with a single gRNA-free enzyme. Nucleic Acids Research 2022, 50 (16) , 9580-9595. https://doi.org/10.1093/nar/gkac713
    23. Suba Rajendren, John Karijolich. The impact of RNA modifications on the biology of DNA virus infection. European Journal of Cell Biology 2022, 101 (3) , 151239. https://doi.org/10.1016/j.ejcb.2022.151239
    24. Tram Anh Nguyen, Jia Wei Joel Heng, Pornchai Kaewsapsak, Eng Piew Louis Kok, Dominik Stanojević, Hao Liu, Angelysia Cardilla, Albert Praditya, Zirong Yi, Mingwan Lin, Jong Ghut Ashley Aw, Yin Ying Ho, Kai Lay Esther Peh, Yuanming Wang, Qixing Zhong, Jacki Heraud-Farlow, Shifeng Xue, Bruno Reversade, Carl Walkley, Ying Swan Ho, Mile Šikić, Yue Wan, Meng How Tan. Direct identification of A-to-I editing sites with nanopore native RNA sequencing. Nature Methods 2022, 19 (7) , 833-844. https://doi.org/10.1038/s41592-022-01513-3
    25. Yichen Xiang, Dhruva Katrekar, Prashant Mali. Methods For Recruiting Endogenous And Exogenous ADAR Enzymes For Site-Specific RNA Editing. Methods 2022, 19 https://doi.org/10.1016/j.ymeth.2022.06.011
    26. Chenghao Li, Xinrui Shi, Jiaying Yang, Ke Li, Lijun Dai, Yan Zhang, Meng Zhou, Jianzhong Su. Genome-wide characterization of RNA editing highlights roles of high editing events of glutamatergic synapse during mouse retinal development. Computational and Structural Biotechnology Journal 2022, 17 https://doi.org/10.1016/j.csbj.2022.05.029
    27. Jing Zhai, Joanne Huifen Koh, Tuck Wah Soong. RNA editing of ion channels and receptors in physiology and neurological disorders. Oxford Open Neuroscience 2022, 1 https://doi.org/10.1093/oons/kvac010
    28. Xinxin Peng, Yikai Luo, Hongyue Li, Xuejiao Guo, Hu Chen, Xuwo Ji, Han Liang, . RNA editing increases the nucleotide diversity of SARS-CoV-2 in human host cells. PLOS Genetics 2022, 18 (3) , e1010130. https://doi.org/10.1371/journal.pgen.1010130
    29. Nivedita Dutta, Indrajit Deb, Joanna Sarzynska, Ansuman Lahiri. Inosine and its methyl derivatives: Occurrence, biogenesis, and function in RNA. Progress in Biophysics and Molecular Biology 2022, 169-170 , 21-52. https://doi.org/10.1016/j.pbiomolbio.2022.01.001
    30. Yu Zhang, Xiaoyuan Yang, Yalei Cui, Xiaobo Zhang. Suppression of RNA editing by miR-17 inhibits the stemness of melanoma stem cells. Molecular Therapy - Nucleic Acids 2022, 27 , 439-455. https://doi.org/10.1016/j.omtn.2021.12.021
    31. Xin Liu, Tao Sun, Anna Shcherbina, Qin Li, Inga Jarmoskaite, Kalli Kappel, Gokul Ramaswami, Rhiju Das, Anshul Kundaje, Jin Billy Li. Learning cis-regulatory principles of ADAR-based RNA editing from CRISPR-mediated mutagenesis. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-22489-2
    32. Gioacchino P. Marceca, Rosario Distefano, Luisa Tomasello, Alessandro Lagana, Francesco Russo, Federica Calore, Giulia Romano, Marina Bagnoli, Pierluigi Gasparini, Alfredo Ferro, Mario Acunzo, Qin Ma, Carlo M. Croce, Giovanni Nigita. MiREDiBase, a manually curated database of validated and putative editing events in microRNAs. Scientific Data 2021, 8 (1) https://doi.org/10.1038/s41597-021-00979-8
    33. Helen Piontkivska, Benjamin Wales-McGrath, Michael Miyamoto, Marta L Wayne, . ADAR Editing in Viruses: An Evolutionary Force to Reckon with. Genome Biology and Evolution 2021, 13 (11) https://doi.org/10.1093/gbe/evab240
    34. Jalal Siddiqui, Wayne O. Miles. RNA editing signatures identify melanoma patients who respond to Pembrolizumab or Nivolumab treatment. Translational Oncology 2021, 14 (11) , 101197. https://doi.org/10.1016/j.tranon.2021.101197
    35. Maik Schauerte, Nadiia Pozhydaieva, Katharina Höfer. Shaping the Bacterial Epitranscriptome—5′‐Terminal and Internal RNA Modifications. Advanced Biology 2021, 5 (8) https://doi.org/10.1002/adbi.202100834
    36. A.E. Abaturov, V.L. Babуch. Regulation of miRNA content. Part 1. Editing miRNA. Тailing miRNA. CHILD`S HEALTH 2021, 16 (4) , 317-324. https://doi.org/10.22141/2224-0551.16.4.2021.236911
    37. Suna Sun, Francesca Frontini, Weihong Qi, Ananya Hariharan, Manuel Ronner, Martin Wipplinger, Christophe Blanquart, Hubert Rehrauer, Jean-François Fonteneau, Emanuela Felley-Bosco. Endogenous retrovirus expression activates type-I interferon signaling in an experimental mouse model of mesothelioma development. Cancer Letters 2021, 507 , 26-38. https://doi.org/10.1016/j.canlet.2021.03.004
    38. Nikolaos I. Vlachogiannis, Kleio-Maria Verrou, Konstantinos Stellos, Petros P. Sfikakis, Dimitrios Paraskevis. The role of A-to-I RNA editing in infections by RNA viruses: Possible implications for SARS-CoV-2 infection. Clinical Immunology 2021, 226 , 108699. https://doi.org/10.1016/j.clim.2021.108699
    39. Gioacchino P. Marceca, Luisa Tomasello, Rosario Distefano, Mario Acunzo, Carlo M. Croce, Giovanni Nigita. Detecting and Characterizing A-To-I microRNA Editing in Cancer. Cancers 2021, 13 (7) , 1699. https://doi.org/10.3390/cancers13071699
    40. Ronja Weissinger, Lisa Heinold, Saira Akram, Ralf-Peter Jansen, Orit Hermesh. RNA Proximity Labeling: A New Detection Tool for RNA–Protein Interactions. Molecules 2021, 26 (8) , 2270. https://doi.org/10.3390/molecules26082270
    41. Suba Rajendren, Alfa Dhakal, Pranathi Vadlamani, Jack Townsend, Sarah N. Deffit, Heather A. Hundley. Profiling neural editomes reveals a molecular mechanism to regulate RNA editing during development. Genome Research 2021, 31 (1) , 27-39. https://doi.org/10.1101/gr.267575.120
    42. Josep Gregori, Maria Francesca Cortese, Maria Piñana, Carolina Campos, Damir Garcia-Cehic, Cristina Andrés, Josep Francesc Abril, Maria Gema Codina, Ariadna Rando, Juliana Esperalba, Elena Sulleiro, Joan Joseph, Narcís Saubí, Sergi Colomer-Castell, Mari Carmen Martin, Carla Castillo, Juan Ignacio Esteban, Tomas Pumarola, Francisco Rodriguez-Frias, Andrés Antón, Josep Quer. Host-dependent editing of SARS-CoV-2 in COVID-19 patients. Emerging Microbes & Infections 2021, 10 (1) , 1777-1789. https://doi.org/10.1080/22221751.2021.1969868
    43. Noel-Marie Plonski, Emily Johnson, Madeline Frederick, Heather Mercer, Gail Fraizer, Richard Meindl, Gemma Casadesus, Helen Piontkivska. Automated Isoform Diversity Detector (AIDD): a pipeline for investigating transcriptome diversity of RNA-seq data. BMC Bioinformatics 2020, 21 (S18) https://doi.org/10.1186/s12859-020-03888-6
    44. Hanhan Shi, Peiwei Chai, Renbing Jia, Xianqun Fan. Novel insight into the regulatory roles of diverse RNA modifications: Re-defining the bridge between transcription and translation. Molecular Cancer 2020, 19 (1) https://doi.org/10.1186/s12943-020-01194-6
    45. SeHee Park, Erin E. Doherty, Yixuan Xie, Anil K. Padyana, Fang Fang, Yue Zhang, Agya Karki, Carlito B. Lebrilla, Justin B. Siegel, Peter A. Beal. High-throughput mutagenesis reveals unique structural features of human ADAR1. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-18862-2
    46. Salvatore Di Giorgio, Filippo Martignano, Maria Gabriella Torcia, Giorgio Mattiuz, Silvestro G. Conticello. Evidence for host-dependent RNA editing in the transcriptome of SARS-CoV-2. Science Advances 2020, 6 (25) https://doi.org/10.1126/sciadv.abb5813
    47. Prajakta Bajad, Florian Ebner, Fabian Amman, Brigitta Szabó, Utkarsh Kapoor, Greeshma Manjali, Alwine Hildebrandt, Michael P Janisiw, Michael F Jantsch. An internal deletion of ADAR rescued by MAVS deficiency leads to a minute phenotype. Nucleic Acids Research 2020, 48 (6) , 3286-3303. https://doi.org/10.1093/nar/gkaa025
    48. Guy Ling, Danielle Miller, Rasmus Nielsen, Adi Stern, . A Bayesian Framework for Inferring the Influence of Sequence Context on Point Mutations. Molecular Biology and Evolution 2020, 37 (3) , 893-903. https://doi.org/10.1093/molbev/msz248
    49. Mako Yanai, Shohei Kojima, Madoka Sakai, Ryo Komorizono, Keizo Tomonaga, Akiko Makino, . ADAR2 Is Involved in Self and Nonself Recognition of Borna Disease Virus Genomic RNA in the Nucleus. Journal of Virology 2020, 94 (6) https://doi.org/10.1128/JVI.01513-19
    50. Thomas J. Lopdell, Kathryn Tiplady, Christine Couldrey, Thomas J. J. Johnson, Michael Keehan, Stephen R. Davis, Bevin L. Harris, Richard J. Spelman, Russell G. Snell, Mathew D. Littlejohn. Multiple QTL underlie milk phenotypes at the CSF2RB locus. Genetics Selection Evolution 2019, 51 (1) https://doi.org/10.1186/s12711-019-0446-x
    51. Alistair M. Chalk, Scott Taylor, Jacki E. Heraud-Farlow, Carl R. Walkley. The majority of A-to-I RNA editing is not required for mammalian homeostasis. Genome Biology 2019, 20 (1) https://doi.org/10.1186/s13059-019-1873-2
    52. Fabrice Chimienti, Laurent Cavarec, Laurent Vincent, Nicolas Salvetat, Victoria Arango, Mark D. Underwood, J. John Mann, Jean-François Pujol, Dinah Weissmann. Brain region-specific alterations of RNA editing in PDE8A mRNA in suicide decedents. Translational Psychiatry 2019, 9 (1) https://doi.org/10.1038/s41398-018-0331-3
    53. Pavla Brachova, Nehemiah S Alvarez, Xiaoman Hong, Sumedha Gunewardena, Kailey A Vincent, Keith E Latham, Lane K Christenson. Inosine RNA modifications are enriched at the codon wobble position in mouse oocytes and eggs†. Biology of Reproduction 2019, 101 (5) , 938-949. https://doi.org/10.1093/biolre/ioz130
    54. Te-Lun Mai, Trees-Juen Chuang. A-to-I RNA editing contributes to the persistence of predicted damaging mutations in populations. Genome Research 2019, 29 (11) , 1766-1776. https://doi.org/10.1101/gr.246033.118
    55. Wai-Mun Leong, Adiratna Mat Ripen, Hoda Mirsafian, Saharuddin Bin Mohamad, Amir Feisal Merican. Transcriptogenomics identification and characterization of RNA editing sites in human primary monocytes using high-depth next generation sequencing data. Genomics 2019, 111 (4) , 899-905. https://doi.org/10.1016/j.ygeno.2018.05.019
    56. Qiaowei Liu, Hao Li, Lukuan You, Tao Li, Lingling Li, Pingkun Zhou, Xiaochen Bo, Hebing Chen, Xiaohua Chen, Yi Hu, . Genome-wide identification and analysis of A-to-I RNA editing events in the malignantly transformed cell lines from bronchial epithelial cell line induced by α-particles radiation. PLOS ONE 2019, 14 (6) , e0213047. https://doi.org/10.1371/journal.pone.0213047
    57. Yalan Yang, Min Zhu, Xinhao Fan, Yilong Yao, Junyu Yan, Yijie Tang, Siyuan Liu, Kui Li, Zhonglin Tang. Developmental atlas of the RNA editome in Sus scrofa skeletal muscle. DNA Research 2019, 26 (3) , 261-272. https://doi.org/10.1093/dnares/dsz006
    58. Valentina Tassinari, Valeriana Cesarini, Domenico Alessandro Silvestris, Angela Gallo. The adaptive potential of RNA editing-mediated miRNA-retargeting in cancer. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 2019, 1862 (3) , 291-300. https://doi.org/10.1016/j.bbagrm.2018.12.007
    59. Dhruva Katrekar, Genghao Chen, Dario Meluzzi, Ashwin Ganesh, Atharv Worlikar, Yu-Ru Shih, Shyni Varghese, Prashant Mali. In vivo RNA editing of point mutations via RNA-guided adenosine deaminases. Nature Methods 2019, 16 (3) , 239-242. https://doi.org/10.1038/s41592-019-0323-0
    60. Daniel P. Reich, Brenda L. Bass. Mapping the dsRNA World. Cold Spring Harbor Perspectives in Biology 2019, 11 (3) , a035352. https://doi.org/10.1101/cshperspect.a035352
    61. Thomas J. Lopdell, Victoria Hawkins, Christine Couldrey, Kathryn Tiplady, Stephen R. Davis, Bevin L. Harris, Russell G. Snell, Mathew D. Littlejohn. Widespread cis -regulation of RNA editing in a large mammal. RNA 2019, 25 (3) , 319-335. https://doi.org/10.1261/rna.066902.118
    62. Kajsa Fritzell, Li-Di Xu, Magdalena Otrocka, Claes Andréasson, Marie Öhman. Sensitive ADAR editing reporter in cancer cells enables high-throughput screening of small molecule libraries. Nucleic Acids Research 2019, 47 (4) , e22-e22. https://doi.org/10.1093/nar/gky1228
    63. Leanna R. Monteleone, Melissa M. Matthews, Cody M. Palumbo, Justin M. Thomas, Yuxuan Zheng, Yao Chiang, Andrew J. Fisher, Peter A. Beal. A Bump-Hole Approach for Directed RNA Editing. Cell Chemical Biology 2019, 26 (2) , 269-277.e5. https://doi.org/10.1016/j.chembiol.2018.10.025
    64. Giovanni Nigita, Gioacchino P. Marceca, Luisa Tomasello, Rosario Distefano, Federica Calore, Dario Veneziano, Giulia Romano, Serge Patrick Nana-Sinkam, Mario Acunzo, Carlo M. Croce. ncRNA Editing: Functional Characterization and Computational Resources. 2019, 133-174. https://doi.org/10.1007/978-1-4939-8982-9_6
    65. Holly A. Rees, David R. Liu. Base editing: precision chemistry on the genome and transcriptome of living cells. Nature Reviews Genetics 2018, 19 (12) , 770-788. https://doi.org/10.1038/s41576-018-0059-1
    66. Zhangyi Ouyang, Chao Ren, Feng Liu, Gaole An, Xiaochen Bo, Wenjie Shu. The landscape of the A-to-I RNA editome from 462 human genomes. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-30583-7
    67. HuiQi Hong, Omer An, Tim H M Chan, Vanessa H E Ng, Hui Si Kwok, Jaymie S Lin, Lihua Qi, Jian Han, Daryl J T Tay, Sze Jing Tang, Henry Yang, Yangyang Song, Fernando Bellido Molias, Daniel G Tenen, Leilei Chen. Bidirectional regulation of adenosine-to-inosine (A-to-I) RNA editing by DEAH box helicase 9 (DHX9) in cancer. Nucleic Acids Research 2018, 46 (15) , 7953-7969. https://doi.org/10.1093/nar/gky396
    68. Reazur Rahman, Weijin Xu, Hua Jin, Michael Rosbash. Identification of RNA-binding protein targets with HyperTRIBE. Nature Protocols 2018, 13 (8) , 1829-1849. https://doi.org/10.1038/s41596-018-0020-y
    69. Kajsa Fritzell, Li-Di Xu, Jens Lagergren, Marie Öhman. ADARs and editing: The role of A-to-I RNA modification in cancer progression. Seminars in Cell & Developmental Biology 2018, 79 , 123-130. https://doi.org/10.1016/j.semcdb.2017.11.018
    70. Yun-Hua Esther Hsiao, Jae Hoon Bahn, Yun Yang, Xianzhi Lin, Stephen Tran, Ei-Wen Yang, Giovanni Quinones-Valdez, Xinshu Xiao. RNA editing in nascent RNA affects pre-mRNA splicing. Genome Research 2018, 28 (6) , 812-823. https://doi.org/10.1101/gr.231209.117
    71. Redmond P Smyth, Maureen R Smith, Anne-Caroline Jousset, Laurence Despons, Géraldine Laumond, Thomas Decoville, Pierre Cattenoz, Christiane Moog, Fabrice Jossinet, Marylène Mougel, Jean-Christophe Paillart, Max von Kleist, Roland Marquet. In cell mutational interference mapping experiment (in cell MIME) identifies the 5′ polyadenylation signal as a dual regulator of HIV-1 genomic RNA production and packaging. Nucleic Acids Research 2018, 46 (9) , e57-e57. https://doi.org/10.1093/nar/gky152
    72. Mohammad Reza Bakhtiarizadeh, Abdolreza Salehi, Rocío Melissa Rivera, . Genome-wide identification and analysis of A-to-I RNA editing events in bovine by transcriptome sequencing. PLOS ONE 2018, 13 (2) , e0193316. https://doi.org/10.1371/journal.pone.0193316
    73. Li-Yuan Hung, Yen-Ju Chen, Te-Lun Mai, Chia-Ying Chen, Min-Yu Yang, Tai-Wei Chiang, Yi-Da Wang, Trees-Juen Chuang. An Evolutionary Landscape of A-to-I RNA Editome across Metazoan Species. Genome Biology and Evolution 2018, 10 (2) , 521-537. https://doi.org/10.1093/gbe/evx277
    74. Weijin Xu, Reazur Rahman, Michael Rosbash. Mechanistic implications of enhanced editing by a HyperTRIBE RNA-binding protein. RNA 2018, 24 (2) , 173-182. https://doi.org/10.1261/rna.064691.117
    75. Isabel C. Vallecillo-Viejo, Noa Liscovitch-Brauer, Maria Fernanda Montiel-Gonzalez, Eli Eisenberg, Joshua J. C. Rosenthal. Abundant off-target edits from site-directed RNA editing can be reduced by nuclear localization of the editing enzyme. RNA Biology 2018, 15 (1) , 104-114. https://doi.org/10.1080/15476286.2017.1387711
    76. Masataka Nakano, Miki Nakajima. Significance of A-to-I RNA editing of transcripts modulating pharmacokinetics and pharmacodynamics. Pharmacology & Therapeutics 2018, 181 , 13-21. https://doi.org/10.1016/j.pharmthera.2017.07.003
    77. Wilson H. McKerrow, Yiannis A. Savva, Ali Rezaei, Robert A. Reenan, Charles E. Lawrence. Predicting RNA hyper-editing with a novel tool when unambiguous alignment is impossible. BMC Genomics 2017, 18 (1) https://doi.org/10.1186/s12864-017-3898-9
    78. Chammiran Daniel, Albin Widmark, Ditte Rigardt, Marie Öhman. Editing inducer elements increases A-to-I editing efficiency in the mammalian transcriptome. Genome Biology 2017, 18 (1) https://doi.org/10.1186/s13059-017-1324-x
    79. Carl R. Walkley, Jin Billy Li. Rewriting the transcriptome: adenosine-to-inosine RNA editing by ADARs. Genome Biology 2017, 18 (1) https://doi.org/10.1186/s13059-017-1347-3
    80. Deepanjan Paul, Ashis Narayan Sinha, Arjun Ray, Megha Lal, Subhashree Nayak, Anchal Sharma, Bharati Mehani, Debasish Mukherjee, Saurabh V. Laddha, Ashish Suri, Chitra Sarkar, Arijit Mukhopadhyay. A-to-I editing in human miRNAs is enriched in seed sequence, influenced by sequence contexts and significantly hypoedited in glioblastoma multiforme. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-02397-6
    81. David B. T. Cox, Jonathan S. Gootenberg, Omar O. Abudayyeh, Brian Franklin, Max J. Kellner, Julia Joung, Feng Zhang. RNA editing with CRISPR-Cas13. Science 2017, 358 (6366) , 1019-1027. https://doi.org/10.1126/science.aaq0180
    82. John R. Sinnamon, Susan Y. Kim, Glen M. Corson, Zhen Song, Hiroyuki Nakai, John P. Adelman, Gail Mandel. Site-directed RNA repair of endogenous Mecp2 RNA in neurons. Proceedings of the National Academy of Sciences 2017, 114 (44) https://doi.org/10.1073/pnas.1715320114
    83. Angela Gallo, Dragana Vukic, David Michalík, Mary A. O’Connell, Liam P. Keegan. ADAR RNA editing in human disease; more to it than meets the I. Human Genetics 2017, 136 (9) , 1265-1278. https://doi.org/10.1007/s00439-017-1837-0
    84. Jonathan M.O. Rawson, Daryl M. Gohl, Sean R. Landman, Megan E. Roth, Morgan E. Meissner, Tara S. Peterson, James S. Hodges, Kenneth B. Beckman, Louis M. Mansky. Single-Strand Consensus Sequencing Reveals that HIV Type but not Subtype Significantly Impacts Viral Mutation Frequencies and Spectra. Journal of Molecular Biology 2017, 429 (15) , 2290-2307. https://doi.org/10.1016/j.jmb.2017.05.010
    85. Charles Cho, Seung-Jae Myung, Suhwan Chang. ADAR1 and MicroRNA; A Hidden Crosstalk in Cancer. International Journal of Molecular Sciences 2017, 18 (4) , 799. https://doi.org/10.3390/ijms18040799
    86. Nurit Gal-Mark, Lea Shallev, Sahar Sweetat, Michal Barak, Jin Billy Li, Erez Y. Levanon, Eli Eisenberg, Oded Behar. Abnormalities in A-to-I RNA editing patterns in CNS injuries correlate with dynamic changes in cell type composition. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/srep43421
    87. Vladislav V. Khrustalev, Tatyana A. Khrustaleva, Nitin Sharma, Rajanish Giri. Mutational Pressure in Zika Virus: Local ADAR-Editing Areas Associated with Pauses in Translation and Replication. Frontiers in Cellular and Infection Microbiology 2017, 7 https://doi.org/10.3389/fcimb.2017.00044
    88. Emily M. Harcourt, Anna M. Kietrys, Eric T. Kool. Chemical and structural effects of base modifications in messenger RNA. Nature 2017, 541 (7637) , 339-346. https://doi.org/10.1038/nature21351
    89. Yuru Wang, Yuxuan Zheng, Peter A. Beal. Adenosine Deaminases That Act on RNA (ADARs). 2017, 215-268. https://doi.org/10.1016/bs.enz.2017.03.006
    90. Shraddha Sharma, Bora E. Baysal. Stem-loop structure preference for site-specific RNA editing by APOBEC3A and APOBEC3G. PeerJ 2017, 5 , e4136. https://doi.org/10.7717/peerj.4136
    91. Chunzi Song, Masayuki Sakurai, Yusuke Shiromoto, Kazuko Nishikura. Functions of the RNA Editing Enzyme ADAR1 and Their Relevance to Human Diseases. Genes 2016, 7 (12) , 129. https://doi.org/10.3390/genes7120129
    92. Jochen C. Meier, Svenja Kankowski, Heinz Krestel, Florian Hetsch. RNA Editing—Systemic Relevance and Clue to Disease Mechanisms?. Frontiers in Molecular Neuroscience 2016, 9 https://doi.org/10.3389/fnmol.2016.00124
    93. Yuru Wang, Peter A. Beal. Probing RNA recognition by human ADAR2 using a high-throughput mutagenesis method. Nucleic Acids Research 2016, 44 (20) , 9872-9880. https://doi.org/10.1093/nar/gkw799
    94. Brian J. Liddicoat, Jochen C. Hartner, Robert Piskol, Gokul Ramaswami, Alistair M. Chalk, Paul D. Kingsley, Vijay G. Sankaran, Meaghan Wall, Louise E. Purton, Peter H. Seeburg, James Palis, Stuart H. Orkin, Jun Lu, Jin Billy Li, Carl R. Walkley. Adenosine-to-inosine RNA editing by ADAR1 is essential for normal murine erythropoiesis. Experimental Hematology 2016, 44 (10) , 947-963. https://doi.org/10.1016/j.exphem.2016.06.250
    95. Helen Piontkivska, Luis F. Matos, Sinu Paul, Brian Scharfenberg, William G. Farmerie, Michael M. Miyamoto, Marta L. Wayne. Role of Host-Driven Mutagenesis in Determining Genome Evolution of Sigma Virus (DMelSV; Rhabdoviridae) in Drosophila melanogaster. Genome Biology and Evolution 2016, 8 (9) , 2952-2963. https://doi.org/10.1093/gbe/evw212
    96. Maria Fernanda Montiel-González, Isabel C. Vallecillo-Viejo, Joshua J. C. Rosenthal. An efficient system for selectively altering genetic information within mRNAs. Nucleic Acids Research 2016, 48 , gkw738. https://doi.org/10.1093/nar/gkw738
    97. Yao Yu, Hongxia Zhou, Yimeng Kong, Bohu Pan, Longxian Chen, Hongbing Wang, Pei Hao, Xuan Li, . The Landscape of A-to-I RNA Editome Is Shaped by Both Positive and Purifying Selection. PLOS Genetics 2016, 12 (7) , e1006191. https://doi.org/10.1371/journal.pgen.1006191
    98. Giovanni Nigita, Mario Acunzo, Giulia Romano, Dario Veneziano, Alessandro Laganà, Marika Vitiello, Dorothee Wernicke, Alfredo Ferro, Carlo M. Croce. microRNA editing in seed region aligns with cellular changes in hypoxic conditions. Nucleic Acids Research 2016, 44 (13) , 6298-6308. https://doi.org/10.1093/nar/gkw532
    99. José M. Cuevas, Marine Combe, Manoli Torres-Puente, Raquel Garijo, Susana Guix, Javier Buesa, Jesús Rodríguez-Díaz, Rafael Sanjuán. Human norovirus hyper-mutation revealed by ultra-deep sequencing. Infection, Genetics and Evolution 2016, 41 , 233-239. https://doi.org/10.1016/j.meegid.2016.04.017
    100. Michael C. Washburn, Heather A. Hundley. Trans and cis factors affecting A-to-I RNA editing efficiency of a noncoding editing target in C. elegans. RNA 2016, 22 (5) , 722-728. https://doi.org/10.1261/rna.055079.115
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect