ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Interaction of Apo-cytochrome b5 with Cytochromes P4503A4 and P45017A:  Relevance of Heme Transfer Reactions

View Author Information
Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038
Cite this: Biochemistry 2001, 40, 16, 5018–5031
Publication Date (Web):March 28, 2001
https://doi.org/10.1021/bi002305w
Copyright © 2001 American Chemical Society

    Article Views

    506

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Maximal activity of CYP3A4 is obtained using a reconstitution system consisting of NADPH−P450 reductase (CPR), dioleoylphosphatidylcholine (DOPC), an ionic detergent, and cytochrome b5 (b5). The mechanism by which b5 stimulates the catalytic activity of CYP3A4 is controversial. Recent data report that apo-cytochrome b5 (apo-b5) can substitute for holo-b5 by serving as an allosteric effector. These authors concluded that b5 is not directly involved in electron transfer reactions to CYP3A4. We have studied the effect of apo-b5 on the ability of purified CYP3A4 to catalyze the 6β-hydroxylation of testosterone and horse CYP17A to catalyze the 17,20-lyase reaction. The high molecular weight form of holo-b5 (HMW-holo-b5) stimulates the 6β-hydroxylation of testosterone while the low molecular weight (truncated) form of holo-b5 (LMW-holo-b5) does not. When added to the reconstituted system, HMW-apo-b5 stimulates the activity of CYP3A4 to a level 50−60% of that obtained with HMW-holo-b5. A similar stimulation of 17α-hydroxyprogesterone metabolism is seen when studying the CYP17A-catalyzed reaction. Neither LMW-holo-b5 nor LMW-apo-b5 stimulates the activity of CYP3A4 or CYP17A. CYP3A4 forms a complex during affinity chromatography with immobilized HMW-holo-b5 but not with immobilized HMW-apo-b5. Incubation of apo-b5 with CYP3A4, using conditions required for reconstitution of enzymatic activities, results in the transfer of heme from the CYP3A4 preparation to apo-b5, thereby forming holo-b5. The separation of heme proteins by thiol−disulfide exchange chromatography confirms the formation of holo-b5. A His67Ala mutant of HMW-b5 as well as the Zn-substituted protoporphyrin derivative of HMW-b5 do not stimulate the activity of either CYP3A4 or CYP17A. These data show that the mechanism of stimulation of CYP3A4 and CYP17A activities by apo-b5 results from the formation of holo-b5 by a heme transfer reaction.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     This work was supported in part by a grant from the U.S. Public Health Service, National Institutes of Health (NIGMS 16488-32).

     Permanent address:  Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Zhodinskaya 5, Minsk, 220141 Belarus.

    *

     To whom correspondence should be addressed. E-mail:  [email protected]; telephone:  214 648 3456.

    Cited By

    This article is cited by 82 publications.

    1. Yilin Liu, Ilia G. Denisov, Stephen G. Sligar, James R. Kincaid. Substrate-Specific Allosteric Effects on the Enhancement of CYP17A1 Lyase Efficiency by Cytochrome b5. Journal of the American Chemical Society 2021, 143 (10) , 3729-3733. https://doi.org/10.1021/jacs.1c00581
    2. F. Peter Guengerich. Mechanisms of Cytochrome P450-Catalyzed Oxidations. ACS Catalysis 2018, 8 (12) , 10964-10976. https://doi.org/10.1021/acscatal.8b03401
    3. Hwei-Ming Peng and Richard J. Auchus . The Action of Cytochrome b5 on CYP2E1 and CYP2C19 Activities Requires Anionic Residues D58 and D65. Biochemistry 2013, 52 (1) , 210-220. https://doi.org/10.1021/bi301384n
    4. Chunsheng Zhao, Qiuxia Gao, Arthur G. Roberts, Scott A. Shaffer, Catalin E. Doneanu, Song Xue, David R. Goodlett, Sidney D. Nelson, and William M. Atkins . Cross-Linking Mass Spectrometry and Mutagenesis Confirm the Functional Importance of Surface Interactions between CYP3A4 and Holo/Apo Cytochrome b5. Biochemistry 2012, 51 (47) , 9488-9500. https://doi.org/10.1021/bi301069r
    5. Carrie M. Mosher, Matthew A. Hummel, Timothy S. Tracy and Allan E. Rettie . Functional Analysis of Phenylalanine Residues in the Active Site of Cytochrome P450 2C9. Biochemistry 2008, 47 (45) , 11725-11734. https://doi.org/10.1021/bi801231m
    6. Jacqueline L. Naffin-Olivos and, Richard J. Auchus. Human Cytochrome b5 Requires Residues E48 and E49 to Stimulate the 17,20-Lyase Activity of Cytochrome P450c17. Biochemistry 2006, 45 (3) , 755-762. https://doi.org/10.1021/bi051623y
    7. Anton S. Rudovich, Miroslav Peřina, Anastasiya V. Krech, Maria Y. Novozhilova, Anastasia M. Tumilovich, Tatyana V. Shkel, Irina P. Grabovec, Miroslav Kvasnica, Lukáš Mada, Maria G. Zavialova, Arif R. Mekhtiev, Radek Jorda, Vladimir N. Zhabinskii, Vladimir A. Khripach. Synthesis and Biological Evaluation of New Isoxazolyl Steroids as Anti-Prostate Cancer Agents. International Journal of Molecular Sciences 2022, 23 (21) , 13534. https://doi.org/10.3390/ijms232113534
    8. Xin-Yi Tong, Xin-Zhi Yang, Shu-Qin Gao, Xiao-Juan Wang, Ge-Bo Wen, Ying-Wu Lin. Regulating Effect of Cytochrome b5 Overexpression on Human Breast Cancer Cells. Molecules 2022, 27 (14) , 4556. https://doi.org/10.3390/molecules27144556
    9. I.P. Grabovec, S.V. Smolskaya, A.V. Baranovsky, V.N. Zhabinskii, Y.V. Dichenko, P.S. Shabunya, S.A. Usanov, N.V. Strushkevich. Ligand-binding properties and catalytic activity of the purified human 24-hydroxycholesterol 7α-hydroxylase, CYP39A1. The Journal of Steroid Biochemistry and Molecular Biology 2019, 193 , 105416. https://doi.org/10.1016/j.jsbmb.2019.105416
    10. Irina V. Haidukevich, Tatsiana A. Sushko, Anastasia M. Tumilovich, Irina P. Grabovec, Sergey A. Usanov, Andrei A. Gilep. Different inhibitory effects of azole-containing drugs and pesticides on CYP2C9 polymorphic forms: An in vitro study. Toxicology in Vitro 2018, 50 , 249-256. https://doi.org/10.1016/j.tiv.2018.04.002
    11. Ruchia Duggal, Ilia G. Denisov, Stephen G. Sligar. Cytochrome b 5 enhances androgen synthesis by rapidly reducing the CYP 17A1 oxy‐complex in the lyase step. FEBS Letters 2018, 592 (13) , 2282-2288. https://doi.org/10.1002/1873-3468.13153
    12. Megh Raj Bhatt, Yogan Khatri, Raymond J. Rodgers, Lisandra L. Martin. Role of cytochrome b5 in the modulation of the enzymatic activities of cytochrome P450 17α-hydroxylase/17,20-lyase (P450 17A1). The Journal of Steroid Biochemistry and Molecular Biology 2017, 170 , 2-18. https://doi.org/10.1016/j.jsbmb.2016.02.033
    13. Evgeny Yablokov, Anna Florinskaya, Alexei Medvedev, Gennady Sergeev, Natallia Strushkevich, Alexander Luschik, Tatsiana Shkel, Irina Haidukevich, Andrei Gilep, Sergey Usanov, Alexis Ivanov. Thermodynamics of interactions between mammalian cytochromes P450 and b5. Archives of Biochemistry and Biophysics 2017, 619 , 10-15. https://doi.org/10.1016/j.abb.2017.02.006
    14. P.V. Ershov, E.O. Yablokov, Yu.V. Mezentsev, L.A. Kalushskiy, A.V. Florinskaya, A.V. Veselovsky, O.V. Gnedenko, A.A. Gilep, S.A. Usanov, A.E. Medvedev, A.S. Ivanov. The effect of isatin on protein-protein interactions between cytochrome b5 and cytochromes P450. Biomeditsinskaya Khimiya 2017, 63 (2) , 170-175. https://doi.org/10.18097/PBMC20176302170
    15. Peter Hlavica. Challenges in assignment of allosteric effects in cytochrome P450-catalyzed substrate oxidations to structural dynamics in the hemoprotein architecture. Journal of Inorganic Biochemistry 2017, 167 , 100-115. https://doi.org/10.1016/j.jinorgbio.2016.11.025
    16. Ruchia Duggal, Yilin Liu, Michael C. Gregory, Ilia G. Denisov, James R. Kincaid, Stephen G. Sligar. Evidence that cytochrome b5 acts as a redox donor in CYP17A1 mediated androgen synthesis. Biochemical and Biophysical Research Communications 2016, 477 (2) , 202-208. https://doi.org/10.1016/j.bbrc.2016.06.043
    17. Dmitrii S. Shcherbinin, Oksana V. Gnedenko, Svetlana A. Khmeleva, Sergey A. Usanov, Andrei A. Gilep, Aliaksei V. Yantsevich, Tatsiana V. Shkel, Ivan V. Yushkevich, Sergey P. Radko, Alexis S. Ivanov, Alexander V. Veselovsky, Alexander I. Archakov. Computer-aided design of aptamers for cytochrome p450. Journal of Structural Biology 2015, 191 (2) , 112-119. https://doi.org/10.1016/j.jsb.2015.07.003
    18. O.V. Gnedenko, A.S. Ivanov, E.O. Yablokov, S.A. Usanov, D.V. Mukha, G.V. Sergeev, A.V. Kuzikov, N.E. Moskaleva, T.V. Bulko, V.V. Shumyantseva, A.I. Archakov. Protein-protein interactions of cytochromes P450 3A4 and 3A5 with their intermediate redox partners cytochromes b5. Biomeditsinskaya Khimiya 2015, 61 (4) , 468-474. https://doi.org/10.18097/PBMC20156104468
    19. Richard J. Auchus, Walter L. Miller. P450 Enzymes in Steroid Processing. 2015, 851-879. https://doi.org/10.1007/978-3-319-12108-6_12
    20. Lucy Waskell, Jung-Ja P. Kim. Electron Transfer Partners of Cytochrome P450. 2015, 33-68. https://doi.org/10.1007/978-3-319-12108-6_2
    21. Alexis S. Ivanov, Alexei Medvedev, Pavel Ershov, Andrey Molnar, Yury Mezentsev, Evgeny Yablokov, Leonid Kaluzhsky, Oksana Gnedenko, Olga Buneeva, Irina Haidukevich, Gennadiy Sergeev, Aliaksandr Lushchyk, Alexey Yantsevich, Marina Medvedeva, Sergey Kozin, Igor Popov, Svetlana Novikova, Victor Zgoda, Andrey Gilep, Sergey Usanov, Andrey Lisitsa, Alexander Archakov. Protein interactomics based on direct molecular fishing on paramagnetic particles: Practical realization and further SPR validation. PROTEOMICS 2014, 14 (20) , 2261-2274. https://doi.org/10.1002/pmic.201400117
    22. O. V. Gnedenko, A. S. Ivanov, E. O. Yablokov, S. A. Usanov, D. V. Mukha, G. V. Sergeev, A. V. Kuzikov, N. E. Moskaleva, T. V. Bulko, V. V. Shumyantseva, A. I. Archakov. Protein-protein interactions in the systems of cytochromes P450 3A4 and 3A5. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry 2014, 8 (3) , 231-236. https://doi.org/10.1134/S1990750814030068
    23. G. V. Sergeev, A. A. Gilep, S. A. Usanov. The role of cytochrome b 5 structural domains in interaction with cytochromes P450. Biochemistry (Moscow) 2014, 79 (5) , 406-416. https://doi.org/10.1134/S0006297914050046
    24. Kei Takahashi, Yuki Oda, Yasuyuki Toyoda, Tatsuki Fukami, Tsuyoshi Yokoi, Miki Nakajima. Regulation of Cytochrome b 5 Expression by miR-223 in Human Liver: Effects on Cytochrome P450 Activities. Pharmaceutical Research 2014, 31 (3) , 780-794. https://doi.org/10.1007/s11095-013-1200-7
    25. Aleksei V. Yantsevich, Yaroslav V. Dichenko, Farrell MacKenzie, Dmitry V. Mukha, Alexander V. Baranovsky, Andrei A. Gilep, Sergey A. Usanov, Natallia V. Strushkevich. Human steroid and oxysterol 7α‐hydroxylase CYP 7B1: substrate specificity, azole binding and misfolding of clinically relevant mutants. The FEBS Journal 2014, 281 (6) , 1700-1713. https://doi.org/10.1111/febs.12733
    26. V.V. Shumyantseva, A.A. Makhova, T.V. Bulko, E.V. Shich, V.G. Kukes, S.A. Usanov, A.I. Archakov. Role of antioxidants in electro catalysis of cytochrome P450 3A4. Biomeditsinskaya Khimiya 2014, 60 (2) , 224-234. https://doi.org/10.18097/PBMC20146002224
    27. O.V. Gnedenko, E.O. Yablokov, S.A. Usanov, D.V. Mukha, G.V. Sergeev, T.V. Bulko, A.V. Kuzikov, N.E. Moskaleva, V.V. Shumyantseva, A.S. Ivanov, A.I. Archakov. SPR and electrochemical analyses of interactions between CYP3A4 or 3A5 and cytochrome b5. Chemical Physics Letters 2014, 593 , 40-44. https://doi.org/10.1016/j.cplett.2013.12.041
    28. F. Peter Guengerich. Fifty Years of Progress in Drug Metabolism and Toxicology: What Do We Still Need to Know About Cytochrome P450 Enzymes?. 2014, 17-41. https://doi.org/10.1007/978-4-431-54992-5_2
    29. O.V. Gnedenko, A.S. Ivanov, E.O. Yablokov, S.A. Usanov, D.V. Mukha, G.V. Sergeev, A.V. Kuzikov, T.V. Bulko, N.E. Moskaleva, V.V. Shumyantseva, A.I. Archakov. Protein-protein interactions of cytochromes P450 3A4 and 3A5 with their intermediate redox partners cytochromes. Biomeditsinskaya Khimiya 2014, 60 (1) , 17-27. https://doi.org/10.18097/pbmc20146001017
    30. Eric A. Evangelista, Rüdiger Kaspera, Nahush A. Mokadam, J. P. Jones, Rheem A. Totah. Activity, Inhibition, and Induction of Cytochrome P450 2J2 in Adult Human Primary Cardiomyocytes. Drug Metabolism and Disposition 2013, 41 (12) , 2087-2094. https://doi.org/10.1124/dmd.113.053389
    31. Karl-Heinz Storbeck, Amanda C. Swart, Pierre Goosen, Pieter Swart. Cytochrome b5: Novel roles in steroidogenesis. Molecular and Cellular Endocrinology 2013, 371 (1-2) , 87-99. https://doi.org/10.1016/j.mce.2012.11.020
    32. V. V. Shumyantseva, T. V. Bulko, V. B. Lisitsyna, V. B. Urlacher, A. V. Kuzikov, E. V. Suprun, A. I. Archakov. Electrochemical measurement of intraprotein and interprotein electron transfer. Biophysics 2013, 58 (3) , 349-354. https://doi.org/10.1134/S0006350913030172
    33. V. V. Shumyantseva, A. A. Makhova, T. V. Bulko, E. V. Shich, V. G. Kukes, S. A. Usanov, A. I. Archakov. The effect of antioxidants on electrocatalytic activity of cytochrome P450 3A4. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry 2013, 7 (2) , 160-164. https://doi.org/10.1134/S1990750813020108
    34. Amin Kamel, Kevin Colizza, R. Scott Obach. In vitro metabolism of the 5-hydroxytryptamine1B receptor antagonist elzasonan. Xenobiotica 2013, 43 (4) , 368-378. https://doi.org/10.3109/00498254.2012.723150
    35. Karl-Heinz Storbeck, Amanda C. Swart, Nicolaas Lombard, Craig V. Adriaanse, Pieter Swart. Cytochrome b5 forms homomeric complexes in living cells. The Journal of Steroid Biochemistry and Molecular Biology 2012, 132 (3-5) , 311-321. https://doi.org/10.1016/j.jsbmb.2012.07.006
    36. Pavel Ershov, Yury Mezentsev, Oksana Gnedenko, Dmitry Mukha, Aleksei Yantsevich, Vladimir Britikov, Leonid Kaluzhskiy, Evgeny Yablokov, Andrey Molnar, Alexis Ivanov, Andrey Lisitsa, Andrey Gilep, Sergey Usanov, Alexander Archakov. Protein interactomics based on direct molecular fishing on paramagnetic particles: Experimental simulation and SPR validation. PROTEOMICS 2012, 12 (22) , 3295-3298. https://doi.org/10.1002/pmic.201200135
    37. Su-Jun Lee, Joyce A. Goldstein. Comparison of CYP3A4 and CYP3A5: The Effects of Cytochrome b5 and NADPH-cytochrome P450 Reductase on Testosterone Hydroxylation Activities. Drug Metabolism and Pharmacokinetics 2012, 27 (6) , 663-667. https://doi.org/10.2133/dmpk.DMPK-12-SH-030
    38. Fangfang Zhong, Jie Pan, Xiaoxiao Liu, Hongyan Wang, Tianlei Ying, Jihu Su, Zhong-Xian Huang, Xiangshi Tan. A novel insight into the heme and NO/CO binding mechanism of the alpha subunit of human soluble guanylate cyclase. JBIC Journal of Biological Inorganic Chemistry 2011, 16 (8) , 1227-1239. https://doi.org/10.1007/s00775-011-0811-x
    39. Pierre Goosen, Karl-Heinz Storbeck, Amanda C. Swart, Riaan Conradie, Pieter Swart. Cytochrome b5 augments 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase activity. The Journal of Steroid Biochemistry and Molecular Biology 2011, 127 (3-5) , 238-247. https://doi.org/10.1016/j.jsbmb.2011.09.001
    40. Muhammad Akhtar, J. Neville Wright, Peter Lee-Robichaud. A review of mechanistic studies on aromatase (CYP19) and 17α-hydroxylase-17,20-lyase (CYP17). The Journal of Steroid Biochemistry and Molecular Biology 2011, 125 (1-2) , 2-12. https://doi.org/10.1016/j.jsbmb.2010.11.003
    41. Andrei A. Gilep, Tatyana A. Sushko, Sergey A. Usanov. At the crossroads of steroid hormone biosynthesis: The role, substrate specificity and evolutionary development of CYP17. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2011, 1814 (1) , 200-209. https://doi.org/10.1016/j.bbapap.2010.06.021
    42. Lesley A. McLaughlin, Sebastien Ronseaux, Robert D. Finn, Colin J. Henderson, C. Roland Wolf. Deletion of Microsomal Cytochrome b 5 Profoundly Affects Hepatic and Extrahepatic Drug Metabolism. Molecular Pharmacology 2010, 78 (2) , 269-278. https://doi.org/10.1124/mol.110.064246
    43. Tsuneo Omura. Structural diversity of cytochrome P450 enzyme system. The Journal of Biochemistry 2010, 147 (3) , 297-306. https://doi.org/10.1093/jb/mvq001
    44. Lucie Bořek-Dohalská, Marie Stiborová. Cytochrome P450 3A activities and their modulation by α-naphthoflavone in vitro are dictated by the efficiencies of model experimental systems. Collection of Czechoslovak Chemical Communications 2010, 75 (2) , 201-220. https://doi.org/10.1135/cccc2009525
    45. A. V. Yantsevich, A. A. Gilep, S. A. Usanov. Conformational stability of cytochrome b 5, enhanced green fluorescent protein, and their fusion protein Hmwb5-EGFP. Biochemistry (Moscow) 2009, 74 (5) , 518-527. https://doi.org/10.1134/S000629790905006X
    46. Ljiljana Fruk, Chi‐Hsien Kuo, Eduardo Torres, Christof M. Niemeyer. Rekonstitution von Apoenzymen als chemisches Werkzeug für die strukturelle Enzymologie und Biotechnologie. Angewandte Chemie 2009, 121 (9) , 1578-1603. https://doi.org/10.1002/ange.200803098
    47. Ljiljana Fruk, Chi‐Hsien Kuo, Eduardo Torres, Christof M. Niemeyer. Apoenzyme Reconstitution as a Chemical Tool for Structural Enzymology and Biotechnology. Angewandte Chemie International Edition 2009, 48 (9) , 1550-1574. https://doi.org/10.1002/anie.200803098
    48. Robert D. Finn, Lesley A. McLaughlin, Sebastien Ronseaux, Ian Rosewell, J. Brian Houston, Colin J. Henderson, C. Roland Wolf. Defining the in Vivo Role for Cytochrome b5 in Cytochrome P450 Function through the Conditional Hepatic Deletion of Microsomal Cytochrome b5. Journal of Biological Chemistry 2008, 283 (46) , 31385-31393. https://doi.org/10.1074/jbc.M803496200
    49. Helen E. Smith, J.P. Jones, Thomas F. Kalhorn, Federico M. Farin, Patricia L. Stapleton, Connie L. Davis, James D. Perkins, David K. Blough, Mary F. Hebert, Kenneth E. Thummel, Rheem A. Totah. Role of cytochrome P450 2C8 and 2J2 genotypes in calcineurin inhibitor-induced chronic kidney disease. Pharmacogenetics and Genomics 2008, 18 (11) , 943-953. https://doi.org/10.1097/FPC.0b013e32830e1e16
    50. Natallia Strushkevich, Sergey A. Usanov, Alexander N. Plotnikov, Glenville Jones, Hee-Won Park. Structural Analysis of CYP2R1 in Complex with Vitamin D3. Journal of Molecular Biology 2008, 380 (1) , 95-106. https://doi.org/10.1016/j.jmb.2008.03.065
    51. Haoming Zhang, Djemel Hamdane, Sang-Choul Im, Lucy Waskell. Cytochrome b5 Inhibits Electron Transfer from NADPH-Cytochrome P450 Reductase to Ferric Cytochrome P450 2B4. Journal of Biological Chemistry 2008, 283 (9) , 5217-5225. https://doi.org/10.1074/jbc.M709094200
    52. Lucie Bořek-Dohalská, Petr Hodek, Jiří Hudeček, Marie Stiborová. Experimental approaches to evaluate activities of cytochromes P450 3A. Interdisciplinary Toxicology 2008, 1 (2) https://doi.org/10.2478/v10102-010-0032-0
    53. Haoming Zhang, Sang-Choul Im, Lucy Waskell. Cytochrome b5 Increases the Rate of Product Formation by Cytochrome P450 2B4 and Competes with Cytochrome P450 Reductase for a Binding Site on Cytochrome P450 2B4. Journal of Biological Chemistry 2007, 282 (41) , 29766-29776. https://doi.org/10.1074/jbc.M703845200
    54. Charles W. Locuson, Larry C. Wienkers, Jeffrey P. Jones, Timothy S. Tracy. CYP2C9 Protein Interactions with Cytochrome b 5 : Effects on the Coupling of Catalysis. Drug Metabolism and Disposition 2007, 35 (7) , 1174-1181. https://doi.org/10.1124/dmd.107.014910
    55. Hsia-lien Lin, Paul F. Hollenberg. The Inactivation of Cytochrome P450 3A5 by 17α-Ethynylestradiol Is Cytochrome b 5 -Dependent: Metabolic Activation of the Ethynyl Moiety Leads to the Formation of Glutathione Conjugates, a Heme Adduct, and Covalent Binding to the Apoprotein. Journal of Pharmacology and Experimental Therapeutics 2007, 321 (1) , 276-287. https://doi.org/10.1124/jpet.106.117861
    56. V. M. Shkumatov, E. V. Usova, N. S. Frolova, G. Barth, S. Mauersberger. Effect of steroid biosynthesis modifiers on progesterone biotransformation by recombinant yeasts expressing cytochrome P450cl7. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry 2007, 1 (1) , 87-94. https://doi.org/10.1134/S1990750807010131
    57. Michael A. Noble, Hazel M. Girvan, Susan J. Smith, W. Ewen Smith, Marat Murataliev, Victor M. Guzov, René Feyereisen, Andrew W. Munro. Analysis of the Interactions of Cytochrome b 5 with Flavocytochrome P450 BM3 and its Domains. Drug Metabolism Reviews 2007, 39 (2-3) , 599-617. https://doi.org/10.1080/03602530701468458
    58. Andrea Gaedigk, Darren W. Baker, Rheem A. Totah, Roger Gaedigk, Robin E. Pearce, Carrie A. Vyhlidal, Darryl C. Zeldin, J. Steven Leeder. Variability of CYP2J2 Expression in Human Fetal Tissues. Journal of Pharmacology and Experimental Therapeutics 2006, 319 (2) , 523-532. https://doi.org/10.1124/jpet.106.109215
    59. Qiuxia Gao, Catalin E. Doneanu, Scott A. Shaffer, Elinor T. Adman, David R. Goodlett, Sidney D. Nelson. Identification of the Interactions between Cytochrome P450 2E1 and Cytochrome b5 by Mass Spectrometry and Site-directed Mutagenesis. Journal of Biological Chemistry 2006, 281 (29) , 20404-20417. https://doi.org/10.1074/jbc.M601785200
    60. Li Min, Natallia V. Strushkevich, Ivan N. Harnastai, Hiroko Iwamoto, Andrei A. Gilep, Hiroshi Takemori, Sergey A. Usanov, Yasuki Nonaka, Hiroshi Hori, Gavin P. Vinson, Mitsuhiro Okamoto. Molecular identification of adrenal inner zone antigen as a heme‐binding protein. The FEBS Journal 2005, 272 (22) , 5832-5843. https://doi.org/10.1111/j.1742-4658.2005.04977.x
    61. William M. Atkins. NON-MICHAELIS-MENTEN KINETICS IN CYTOCHROME P450-CATALYZED REACTIONS. Annual Review of Pharmacology and Toxicology 2005, 45 (1) , 291-310. https://doi.org/10.1146/annurev.pharmtox.45.120403.100004
    62. Santosh Kumar, Dmitri R. Davydov, James R. Halpert. ROLE OF CYTOCHROME B 5 IN MODULATING PEROXIDE-SUPPORTED CYP3A4 ACTIVITY: EVIDENCE FOR A CONFORMATIONAL TRANSITION AND CYTOCHROME P450 HETEROGENEITY. Drug Metabolism and Disposition 2005, 33 (8) , 1131-1136. https://doi.org/10.1124/dmd.105.004606
    63. Amit V. Pandey, Walter L. Miller. Regulation of 17,20 Lyase Activity by Cytochrome b5 and by Serine Phosphorylation of P450c17. Journal of Biological Chemistry 2005, 280 (14) , 13265-13271. https://doi.org/10.1074/jbc.M414673200
    64. T. A. Bonina, A. A. Gilep, R. W. Estabrook, S. A. Usanov. Engineering of proteolytically stable NADPH-cytochrome P450 reductase. Biochemistry (Moscow) 2005, 70 (3) , 357-365. https://doi.org/10.1007/s10541-005-0122-3
    65. Peter Lee-Robichaud, Monika E. Akhtar, J. Neville Wright, Qaiser I. Sheikh, Muhammad Akhtar. The cationic charges on Arg347, Arg358 and Arg449 of human cytochrome P450c17 (CYP17) are essential for the enzyme's cytochrome b5-dependent acyl-carbon cleavage activities. The Journal of Steroid Biochemistry and Molecular Biology 2004, 92 (3) , 119-130. https://doi.org/10.1016/j.jsbmb.2004.07.005
    66. James R Reed, Paul F Hollenberg. Examining the mechanism of stimulation of cytochrome P450 by cytochrome b5: the effect of cytochrome b5 on the interaction between cytochrome P450 2B4 and P450 reductase. Journal of Inorganic Biochemistry 2003, 97 (3) , 265-275. https://doi.org/10.1016/S0162-0134(03)00275-7
    67. Manisha K. Gupta, Oleg L. Guryev, Richard J. Auchus. 5α-reduced C21 steroids are substrates for human cytochrome P450c17. Archives of Biochemistry and Biophysics 2003, 418 (2) , 151-160. https://doi.org/10.1016/j.abb.2003.07.003
    68. Stephan Berry. Endosymbiosis and the design of eukaryotic electron transport. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2003, 1606 (1-3) , 57-72. https://doi.org/10.1016/S0005-2728(03)00084-7
    69. Matthew J Cheesman, Brian R Baer, Yi-Min Zheng, Elizabeth M.J Gillam, Allan E Rettie. Rabbit CYP4B1 engineered for high-level expression in Escherichia coli: ligand stabilization and processing of the N-terminus and heme prosthetic group. Archives of Biochemistry and Biophysics 2003, 416 (1) , 17-24. https://doi.org/10.1016/S0003-9861(03)00278-9
    70. Tadashi Ogishima, Jun-ya Kinoshita, Fumiko Mitani, Makoto Suematsu, Akio Ito. Identification of Outer Mitochondrial Membrane Cytochrome b5 as a Modulator for Androgen Synthesis in Leydig Cells. Journal of Biological Chemistry 2003, 278 (23) , 21204-21211. https://doi.org/10.1074/jbc.M301698200
    71. Vishwesh Mokashi, Li Li, Todd D Porter. Cytochrome b5 reductase and cytochrome b5 support the CYP2E1-mediated activation of nitrosamines in a recombinant Ames test. Archives of Biochemistry and Biophysics 2003, 412 (1) , 147-152. https://doi.org/10.1016/S0003-9861(03)00040-7
    72. John B Schenkman, Ingela Jansson. The many roles of cytochrome b5. Pharmacology & Therapeutics 2003, 97 (2) , 139-152. https://doi.org/10.1016/S0163-7258(02)00327-3
    73. Richard J. Auchus, A. Sampath Kumar, C. Andrew Boswell, Manisha K. Gupta, Kristen Bruce, Nigam P. Rath, Douglas F. Covey. The enantiomer of progesterone (ent-progesterone) is a competitive inhibitor of human cytochromes P450c17 and P450c21. Archives of Biochemistry and Biophysics 2003, 409 (1) , 134-144. https://doi.org/10.1016/S0003-9861(02)00491-5
    74. Todd D. Porter. The roles of cytochrome b 5 in cytochrome P450 reactions. Journal of Biochemical and Molecular Toxicology 2002, 16 (6) , 311-316. https://doi.org/10.1002/jbt.10052
    75. Hiroshi Yamazaki, Mami Nakamura, Tomoko Komatsu, Katsuhiro Ohyama, Naoya Hatanaka, Satoru Asahi, Noriaki Shimada, F.Peter Guengerich, Tsutomu Shimada, Miki Nakajima, Tsuyoshi Yokoi. Roles of NADPH-P450 Reductase and Apo- and Holo-Cytochrome b5 on Xenobiotic Oxidations Catalyzed by 12 Recombinant Human Cytochrome P450s Expressed in Membranes of Escherichia coli. Protein Expression and Purification 2002, 24 (3) , 329-337. https://doi.org/10.1006/prep.2001.1578
    76. J. Matthew Hutzler, Timothy S. Tracy. Atypical Kinetic Profiles in Drug Metabolism Reactions. Drug Metabolism and Disposition 2002, 30 (4) , 355-362. https://doi.org/10.1124/dmd.30.4.355
    77. F. P. Guengerich. Rate-Limiting Steps in Cytochrome P450 Catalysis. Biological Chemistry 2002, 383 (10) https://doi.org/10.1515/BC.2002.175
    78. Andrei A Gilep, Oleg L Guryev, Sergey A Usanov, Ronald W Estabrook. Apo-cytochrome b5 as an indicator of changes in heme accessability:. Journal of Inorganic Biochemistry 2001, 87 (4) , 237-244. https://doi.org/10.1016/S0162-0134(01)00333-6
    79. Hiroshi Yamazaki, Tsutomu Shimada, Martha V. Martin, F. Peter Guengerich. Stimulation of Cytochrome P450 Reactions by Apo-cytochromeb 5. Journal of Biological Chemistry 2001, 276 (33) , 30885-30891. https://doi.org/10.1074/jbc.M105011200
    80. Andrei A. Gilep, Oleg L. Guryev, Sergey A. Usanov, Ronald W. Estabrook. Reconstitution of the Enzymatic Activities of Cytochrome P450s Using Recombinant Flavocytochromes Containing Rat Cytochrome b5 Fused to NADPH–Cytochrome P450 Reductase with Various Membrane-Binding Segments. Archives of Biochemistry and Biophysics 2001, 390 (2) , 215-221. https://doi.org/10.1006/abbi.2001.2372
    81. Andrei A. Gilep, Oleg L. Guryev, Sergey A. Usanov, Ronald W. Estabrook. An Enzymatically Active Chimeric Protein Containing the Hydrophilic Form of NADPH-Cytochrome P450 Reductase Fused to the Membrane-Binding Domain of Cytochrome b5. Biochemical and Biophysical Research Communications 2001, 284 (4) , 937-941. https://doi.org/10.1006/bbrc.2001.5075
    82. F. Peter Guengerich. Human Cytochrome P450 Enzymes. , 377-530. https://doi.org/10.1007/0-387-27447-2_10

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect