Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Phenylalanine and Tryptophan Scanning Mutagenesis of CYP3A4 Substrate Recognition Site Residues and Effect on Substrate Oxidation and Cooperativity
My Activity

Figure 1Loading Img
    Article

    Phenylalanine and Tryptophan Scanning Mutagenesis of CYP3A4 Substrate Recognition Site Residues and Effect on Substrate Oxidation and Cooperativity
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-1031
    Other Access Options

    Biochemistry

    Cite this: Biochemistry 2001, 40, 34, 10150–10160
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi010758a
    Published August 4, 2001
    Copyright © 2001 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Phenylalanine and/or tryptophan scanning mutagenesis was performed at 15 sites within CYP3A4 proposed to be involved in substrate specificity or cooperativity. The sites were chosen on the basis of previous studies or from a comparison with the structure of P450eryF containing two molecules of androstenedione. The function of the 25 mutants was assessed in a reconstituted system using progesterone, testosterone, 7-benzyloxy-4-(trifluoromethyl)coumarin (7-BFC), and α-naphthoflavone (ANF) as substrates. CYP3A4 wild type displayed sigmoidal kinetics of ANF 5,6-oxide formation and 7-BFC debenzylation. Analysis of 12 mutants with significant steroid hydroxylase activity showed a lack of positive correlation between ANF oxidation and stimulation of progesterone 6β-hydroxylation by ANF, indicating that ANF binds at two sites within CYP3A4. 7-BFC debenzylation was stimulated by progesterone and ANF, and 7-BFC did not inhibit testosterone or progesterone 6β-hydroxylation. Correlational analysis showed no relationship between 7-BFC debenzylation and either progesterone or testosterone 6β-hydroxylation. These data are difficult to explain with a two-site model of CYP3A4 but suggest that three subpockets exist within the active site. Interestingly, classification of the mutants according to their ability to oxidize the four substrates utilized in this study suggested that substrates do bind at preferred locations in the CYP3A4 binding pocket.

    Copyright © 2001 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Supported by Grant GM54995 (J.R.H.) and Center Grant ES06676 from the National Institutes of Health.

    *

     To whom correspondence should be addressed. Telephone:  (409) 772-9677. Fax:  (409) 772-9642. E-mail:  [email protected].

     These authors contributed equally to the work presented in this paper.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 117 publications.

    1. Yanjun Feng, Changda Gong, Jieyu Zhu, Guixia Liu, Yun Tang, Weihua Li. Unraveling the Ligand-Binding Sites of CYP3A4 by Molecular Dynamics Simulations with Solvent Probes. Journal of Chemical Information and Modeling 2024, 64 (8) , 3451-3464. https://doi.org/10.1021/acs.jcim.4c00089
    2. Julie Ducharme, Irina F. Sevrioukova, Christopher J. Thibodeaux, Karine Auclair. Structural Dynamics of Cytochrome P450 3A4 in the Presence of Substrates and Cytochrome P450 Reductase. Biochemistry 2021, 60 (28) , 2259-2271. https://doi.org/10.1021/acs.biochem.1c00178
    3. Ilia G. Denisov, Yelena V. Grinkova, Tyler Camp, Mark A. McLean, Stephen G. Sligar. Midazolam as a Probe for Drug–Drug Interactions Mediated by CYP3A4: Homotropic Allosteric Mechanism of Site-Specific Hydroxylation. Biochemistry 2021, 60 (21) , 1670-1681. https://doi.org/10.1021/acs.biochem.1c00161
    4. Julie Ducharme, Vanja Polic, Christopher J. Thibodeaux, Karine Auclair. Combining Small-Molecule Bioconjugation and Hydrogen–Deuterium Exchange Mass Spectrometry (HDX-MS) to Expose Allostery: the Case of Human Cytochrome P450 3A4. ACS Chemical Biology 2021, 16 (5) , 882-890. https://doi.org/10.1021/acschembio.1c00084
    5. Julie Ducharme, Vanja Polic, Karine Auclair. A Covalently Attached Progesterone Molecule Outcompetes the Binding of Free Progesterone at an Allosteric Site of Cytochrome P450 3A4. Bioconjugate Chemistry 2019, 30 (6) , 1629-1635. https://doi.org/10.1021/acs.bioconjchem.9b00248
    6. Ilia G. Denisov, Yelena V. Grinkova, Prithviraj Nandigrami, Mrinal Shekhar, Emad Tajkhorshid, Stephen G. Sligar. Allosteric Interactions in Human Cytochrome P450 CYP3A4: The Role of Phenylalanine 213. Biochemistry 2019, 58 (10) , 1411-1422. https://doi.org/10.1021/acs.biochem.8b01268
    7. Ilia G. Denisov, Javier L. Baylon, Yelena V. Grinkova, Emad Tajkhorshid, and Stephen G. Sligar . Drug–Drug Interactions between Atorvastatin and Dronedarone Mediated by Monomeric CYP3A4. Biochemistry 2018, 57 (5) , 805-816. https://doi.org/10.1021/acs.biochem.7b01012
    8. Vanja Polic and Karine Auclair . Allosteric Activation of Cytochrome P450 3A4 via Progesterone Bioconjugation. Bioconjugate Chemistry 2017, 28 (4) , 885-889. https://doi.org/10.1021/acs.bioconjchem.6b00604
    9. Hanwen Du, Junhao Li, Yingchun Cai, Hongxiao Zhang, Guixia Liu, Yun Tang, and Weihua Li . Computational Investigation of Ligand Binding to the Peripheral Site in CYP3A4: Conformational Dynamics and Inhibitor Discovery. Journal of Chemical Information and Modeling 2017, 57 (3) , 616-626. https://doi.org/10.1021/acs.jcim.7b00012
    10. Markéta Paloncýová, Veronika Navrátilová, Karel Berka, Alessandro Laio, and Michal Otyepka . Role of Enzyme Flexibility in Ligand Access and Egress to Active Site: Bias-Exchange Metadynamics Study of 1,3,7-Trimethyluric Acid in Cytochrome P450 3A4. Journal of Chemical Theory and Computation 2016, 12 (4) , 2101-2109. https://doi.org/10.1021/acs.jctc.6b00075
    11. Ilia G. Denisov, Yelena V. Grinkova, Javier L. Baylon, Emad Tajkhorshid, and Stephen G. Sligar . Mechanism of Drug–Drug Interactions Mediated by Human Cytochrome P450 CYP3A4 Monomer. Biochemistry 2015, 54 (13) , 2227-2239. https://doi.org/10.1021/acs.biochem.5b00079
    12. Alfonso T. García-Sosa, Sulev Sild, Kalev Takkis, and Uko Maran . Combined Approach Using Ligand Efficiency, Cross-Docking, and Antitarget Hits for Wild-Type and Drug-Resistant Y181C HIV-1 Reverse Transcriptase. Journal of Chemical Information and Modeling 2011, 51 (10) , 2595-2611. https://doi.org/10.1021/ci200203h
    13. Josh T. Pearson, Jan L. Wahlstrom, Leslie J. Dickmann, Santosh Kumar, James R. Halpert, Larry C. Wienkers, Robert S. Foti and Dan A. Rock. Differential Time-Dependent Inactivation of P450 3A4 and P450 3A5 by Raloxifene: A Key Role for C239 in Quenching Reactive Intermediates. Chemical Research in Toxicology 2007, 20 (12) , 1778-1786. https://doi.org/10.1021/tx700207u
    14. Dmytro Havrylyuk, David K. Heidary, Edith C. Glazer. The Impact of Inorganic Systems and Photoactive Metal Compounds on Cytochrome P450 Enzymes and Metabolism: From Induction to Inhibition. Biomolecules 2024, 14 (4) , 441. https://doi.org/10.3390/biom14040441
    15. Peter Hlavica. Key regulators in the architecture of substrate access/egress channels in mammalian cytochromes P450 governing flexibility in substrate oxyfunctionalization. Journal of Inorganic Biochemistry 2023, 241 , 112150. https://doi.org/10.1016/j.jinorgbio.2023.112150
    16. Ilia G. Denisov, Yelena V. Grinkova, Mark A. McLean, Tyler Camp, Stephen G. Sligar. Midazolam as a Probe for Heterotropic Drug-Drug Interactions Mediated by CYP3A4. Biomolecules 2022, 12 (6) , 853. https://doi.org/10.3390/biom12060853
    17. Saheed Sabiu, Kehinde Idowu. An insight on the nature of biochemical interactions between glycyrrhizin, myricetin and CYP3A4 isoform. Journal of Food Biochemistry 2022, 46 (3) https://doi.org/10.1111/jfbc.13831
    18. Zeyuan Wang, Erickson M. Paragas, Swati Nagar, Ken Korzekwa. Complex Cytochrome P450 Kinetics Due to Multisubstrate Binding and Sequential Metabolism. Part 1. Theoretical Considerations. Drug Metabolism and Disposition 2021, 49 (12) , 1090-1099. https://doi.org/10.1124/dmd.121.000553
    19. Bikash Dangi, Nadezhda Y. Davydova, Marc A. Maldonado, Armina Abbasi, Nikita E. Vavilov, Victor G. Zgoda, Dmitri R. Davydov. Effects of alcohol-induced increase in CYP2E1 content in human liver microsomes on the activity and cooperativity of CYP3A4. Archives of Biochemistry and Biophysics 2021, 698 , 108677. https://doi.org/10.1016/j.abb.2020.108677
    20. James R. Halpert. So many roads traveled: A career in science and administration. Journal of Biological Chemistry 2020, 295 (3) , 822-832. https://doi.org/10.1074/jbc.X119.012206
    21. James R. Halpert. So many roads traveled: A career in science and administration. Journal of Biological Chemistry 2020, 295 (3) , 822-832. https://doi.org/10.1016/S0021-9258(17)49938-8
    22. Fei-peng Zhai, Hong-en Wei, Yi Liu, Feng-yun Hu. Theoretical explanation for the pharmaceutical incompatibility through the cooperativity effect of the drug–drug intermolecular interactions in the phenobarbital∙∙∙paracetamol∙∙∙H2O complex. Journal of Molecular Modeling 2019, 25 (7) https://doi.org/10.1007/s00894-019-4060-1
    23. Giacomo Parisi, Linda Celeste Montemiglio, Alessandro Giuffrè, Alberto Macone, Antonella Scaglione, Gabriele Cerutti, Cécile Exertier, Carmelinda Savino, Beatrice Vallone. Substrate‐induced conformational change in cytochrome P450 OleP. The FASEB Journal 2019, 33 (2) , 1787-1800. https://doi.org/10.1096/fj.201800450RR
    24. Tomohiko Ichikawa, Hirofumi Tsujino, Takahiro Miki, Masaya Kobayashi, Chiaki Matsubara, Sara Miyata, Taku Yamashita, Kohei Takeshita, Yasushige Yonezawa, Tadayuki Uno. Allosteric activation of cytochrome P450 3A4 by efavirenz facilitates midazolam binding. Xenobiotica 2018, 48 (12) , 1227-1236. https://doi.org/10.1080/00498254.2017.1412540
    25. Nico Kreß, Julia M Halder, Lea R Rapp, Bernhard Hauer. Unlocked potential of dynamic elements in protein structures: channels and loops. Current Opinion in Chemical Biology 2018, 47 , 109-116. https://doi.org/10.1016/j.cbpa.2018.09.010
    26. Xiaocong Pang, Baoyue Zhang, Guangyan Mu, Jie Xia, Qian Xiang, Xia Zhao, Ailin Liu, Guanhua Du, Yimin Cui. Screening of cytochrome P450 3A4 inhibitors via in silico and in vitro approaches. RSC Advances 2018, 8 (61) , 34783-34792. https://doi.org/10.1039/C8RA06311G
    27. Haoran Jiang, Jun Wu, Feiyong Zhang, Jikai Wen, Jun Jiang, Yiqun Deng. The critical role of porcine cytochrome P450 3A46 in the bioactivation of aflatoxin B1. Biochemical Pharmacology 2018, 156 , 177-185. https://doi.org/10.1016/j.bcp.2018.08.030
    28. Vanja Polic, Irina F. Sevrioukova, Karine Auclair. Steroid bioconjugation to a CYP3A4 allosteric site and its effect on substrate binding and coupling efficiency. Archives of Biochemistry and Biophysics 2018, 653 , 90-96. https://doi.org/10.1016/j.abb.2018.06.014
    29. John C. Hackett. Membrane-embedded substrate recognition by cytochrome P450 3A4. Journal of Biological Chemistry 2018, 293 (11) , 4037-4046. https://doi.org/10.1074/jbc.RA117.000961
    30. Julie Ducharme, Karine Auclair. Use of bioconjugation with cytochrome P450 enzymes. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2018, 1866 (1) , 32-51. https://doi.org/10.1016/j.bbapap.2017.06.007
    31. Jevgenij A. Raskatov, David B. Teplow. Using chirality to probe the conformational dynamics and assembly of intrinsically disordered amyloid proteins. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-10525-5
    32. Elyse M. Petrunak, Steven A. Rogers, Jeffrey Aubé, Emily E. Scott. Structural and Functional Evaluation of Clinically Relevant Inhibitors of Steroidogenic Cytochrome P450 17A1. Drug Metabolism and Disposition 2017, 45 (6) , 635-645. https://doi.org/10.1124/dmd.117.075317
    33. Peter Hlavica. Challenges in assignment of allosteric effects in cytochrome P450-catalyzed substrate oxidations to structural dynamics in the hemoprotein architecture. Journal of Inorganic Biochemistry 2017, 167 , 100-115. https://doi.org/10.1016/j.jinorgbio.2016.11.025
    34. James H. Wade, Joshua D. Jones, Ivan L. Lenov, Colleen M. Riordan, Stephen G. Sligar, Ryan C. Bailey. Microfluidic platform for efficient Nanodisc assembly, membrane protein incorporation, and purification. Lab on a Chip 2017, 17 (17) , 2951-2959. https://doi.org/10.1039/C7LC00601B
    35. Rong Shi, Jiasheng Wu, Cong Meng, Bingliang Ma, Tianming Wang, Yuanyuan Li, Yueming Ma. Cyp3a11‐mediated testosterone‐6β‐hydroxylation decreased, while UGT1a9‐mediated propofol O ‐glucuronidation increased, in mice with diabetes mellitus. Biopharmaceutics & Drug Disposition 2016, 37 (7) , 433-443. https://doi.org/10.1002/bdd.2027
    36. Eunyoung Lee, Jong Cheol Shon, Kwang‐Hyeon Liu. Simultaneous evaluation of substrate‐dependent CYP3A inhibition using a CYP3A probe substrates cocktail. Biopharmaceutics & Drug Disposition 2016, 37 (6) , 366-372. https://doi.org/10.1002/bdd.2019
    37. Anantha R. Nookala, Junhao Li, Anusha Ande, Lei Wang, Naveen K. Vaidya, Weihua Li, Santosh Kumar, Anil Kumar, . Effect of Methamphetamine on Spectral Binding, Ligand Docking and Metabolism of Anti-HIV Drugs with CYP3A4. PLOS ONE 2016, 11 (1) , e0146529. https://doi.org/10.1371/journal.pone.0146529
    38. Loai Basheer, Zohar Kerem. Interactions between CYP3A4 and Dietary Polyphenols. Oxidative Medicine and Cellular Longevity 2015, 2015 , 1-15. https://doi.org/10.1155/2015/854015
    39. Irina F. Sevrioukova, Thomas L. Poulos. Current Approaches for Investigating and Predicting Cytochrome P450 3A4-Ligand Interactions. 2015, 83-105. https://doi.org/10.1007/978-3-319-16009-2_3
    40. Dany Patoine, Michaël Petit, Sylvie Pilote, Frédéric Picard, Benoit Drolet, Chantale Simard. Modulation of CYP 3a expression and activity in mice models of type 1 and type 2 diabetes. Pharmacology Research & Perspectives 2014, 2 (6) https://doi.org/10.1002/prp2.82
    41. Hwei-Ming Peng, Richard J. Auchus. Two surfaces of cytochrome b5 with major and minor contributions to CYP3A4-catalyzed steroid and nifedipine oxygenation chemistries. Archives of Biochemistry and Biophysics 2014, 541 , 53-60. https://doi.org/10.1016/j.abb.2013.11.001
    42. Dmitri R. Davydov, Nadezhda Y. Davydova, Elena V. Sineva, Irina Kufareva, James R. Halpert. Pivotal role of P450–P450 interactions in CYP3A4 allostery: the case of α-naphthoflavone. Biochemical Journal 2013, 453 (2) , 219-230. https://doi.org/10.1042/BJ20130398
    43. Caiwen Zeng, Fang He, Chunhua Xia, Hong Zhang, Yuqing Xiong. Identification of the Active Components in Shenmai Injection that Differentially Affect Cyp3a4-Mediated 1′-Hydroxylation and 4-Hydroxylation of Midazolam. Drug Metabolism and Disposition 2013, 41 (4) , 785-790. https://doi.org/10.1124/dmd.112.048025
    44. Cornelia M. Smith, Christina K. Nolan, Manda A. Edwards, Jean B. Hatfield, Todd W. Stewart, Stephen S. Ferguson, Edward L. Lecluyse, Jasminder Sahi. A comprehensive evaluation of metabolic activity and intrinsic clearance in suspensions and monolayer cultures of cryopreserved primary human hepatocytes. Journal of Pharmaceutical Sciences 2012, 101 (10) , 3989-4002. https://doi.org/10.1002/jps.23262
    45. Sheila J. Sadeghi, Silvia Ferrero, Giovanna Di Nardo, Gianfranco Gilardi. Drug–drug interactions and cooperative effects detected in electrochemically driven human cytochrome P450 3A4. Bioelectrochemistry 2012, 86 , 87-91. https://doi.org/10.1016/j.bioelechem.2012.02.010
    46. Márton Vass, Ákos Tarcsay, György M. Keserű. Multiple ligand docking by Glide: implications for virtual second-site screening. Journal of Computer-Aided Molecular Design 2012, 26 (7) , 821-834. https://doi.org/10.1007/s10822-012-9578-6
    47. Ilia G. Denisov, Stephen G. Sligar. A novel type of allosteric regulation: Functional cooperativity in monomeric proteins. Archives of Biochemistry and Biophysics 2012, 519 (2) , 91-102. https://doi.org/10.1016/j.abb.2011.12.017
    48. Dmitri R. Davydov, Jessica A.O. Rumfeldt, Elena V. Sineva, Harshica Fernando, Nadezhda Y. Davydova, James R. Halpert. Peripheral Ligand-binding Site in Cytochrome P450 3A4 Located with Fluorescence Resonance Energy Transfer (FRET). Journal of Biological Chemistry 2012, 287 (9) , 6797-6809. https://doi.org/10.1074/jbc.M111.325654
    49. Khajamohiddin Syed, Aleksey Porollo, Ying Wai Lam, Jagjit S. Yadav, . A Fungal P450 (CYP5136A3) Capable of Oxidizing Polycyclic Aromatic Hydrocarbons and Endocrine Disrupting Alkylphenols: Role of Trp129 and Leu324. PLoS ONE 2011, 6 (12) , e28286. https://doi.org/10.1371/journal.pone.0028286
    50. Santosh Kumar, Anil Kumar. Differential Effects of Ethanol on Spectral Binding and Inhibition of Cytochrome P450 3A4 with Eight Protease Inhibitors Antiretroviral Drugs. Alcoholism: Clinical and Experimental Research 2011, 35 (12) , 2121-2127. https://doi.org/10.1111/j.1530-0277.2011.01575.x
    51. Monika Mesárošová, Zuzana Valovičová, Annamária Srančíková, Zdenka Krajčovičová, Alena Milcová, Romana Sokolová, Jana Schmuczerová, Jan Topinka, Alena Gábelová. The role of human cytochrome P4503A4 in biotransformation of tissue-specific derivatives of 7H-dibenzo[c,g]carbazole. Toxicology and Applied Pharmacology 2011, 255 (3) , 307-315. https://doi.org/10.1016/j.taap.2011.06.027
    52. Harshica Fernando, Jessica A. O. Rumfeldt, Nadezhda Y. Davydova, James R. Halpert, Dmitri R. Davydov. Multiple substrate-binding sites are retained in cytochrome P450 3A4 mutants with decreased cooperativity. Xenobiotica 2011, 41 (4) , 281-289. https://doi.org/10.3109/00498254.2010.538748
    53. Furong Qiu, Rong Zhang, Guangji Wang, Chenglu Gao, Jianguo Sun, Jian Jiang, Yueming Ma. Activation of CYP3A-mediated testosterone 6β-hydroxylation by tanshinone IIA and midazolam 1-hydroxylation by cryptotanshinone in human liver microsomes. Xenobiotica 2010, 40 (12) , 800-806. https://doi.org/10.3109/00498254.2010.519062
    54. Santosh Kumar, Ravinder Earla, Mengyao Jin, Ashim K. Mitra, Anil Kumar. Effect of ethanol on spectral binding, inhibition, and activity of CYP3A4 with an antiretroviral drug nelfinavir. Biochemical and Biophysical Research Communications 2010, 402 (1) , 163-167. https://doi.org/10.1016/j.bbrc.2010.10.014
    55. Zhiyuan Xie, Tao Zhang, Jing-Fang Wang, Kuo-Chen Chou, Dong-Qing Wei. The computational model to predict accurately inhibitory activity for inhibitors towardsCYP3A4. Computers in Biology and Medicine 2010, 40 (11-12) , 845-852. https://doi.org/10.1016/j.compbiomed.2010.09.004
    56. Murali Subramanian, Timothy S. Tracy. Allosteric Enzyme- and Transporter-Based Interactions. 2010, 497-515. https://doi.org/10.1007/978-1-4419-0840-7_20
    57. Ilia G. Denisov, Daniel J. Frank, Stephen G. Sligar. Cooperative properties of cytochromes P450. Pharmacology & Therapeutics 2009, 124 (2) , 151-167. https://doi.org/10.1016/j.pharmthera.2009.05.011
    58. Kunal Roy, Partha Pratim Roy. QSAR of cytochrome inhibitors. Expert Opinion on Drug Metabolism & Toxicology 2009, 5 (10) , 1245-1266. https://doi.org/10.1517/17425250903158940
    59. Daniel J. Frank, Ilia G. Denisov, Stephen G. Sligar. Mixing apples and oranges: Analysis of heterotropic cooperativity in cytochrome P450 3A4. Archives of Biochemistry and Biophysics 2009, 488 (2) , 146-152. https://doi.org/10.1016/j.abb.2009.06.013
    60. Min Yao, Zhaoying Liu, Menghong Dai, Lingli Huang, Dongmei Chen, Yulian Wang, Yanfei Tao, Xu Wang, Zhenli Liu, Zonghui Yuan. Transcriptional Profile of CYP3As and Functional Expression of CYP3A29 from Piglets. 2009, 1-4. https://doi.org/10.1109/ICBBE.2009.5163697
    61. Santosh Kumar, Huan Qiu, Numan Oezguen, Holger Herlyn, James R. Halpert, Leszek Wojnowski. Ligand Diversity of Human and Chimpanzee CYP3A4: Activation of Human CYP3A4 by Lithocholic Acid Results from Positive Selection. Drug Metabolism and Disposition 2009, 37 (6) , 1328-1333. https://doi.org/10.1124/dmd.108.024372
    62. Jorge Aburto, Jose Correa-Basurto, Eduardo Torres. Atypical kinetic behavior of chloroperoxidase-mediated oxidative halogenation of polycyclic aromatic hydrocarbons. Archives of Biochemistry and Biophysics 2008, 480 (1) , 33-40. https://doi.org/10.1016/j.abb.2008.09.003
    63. Dmitri R Davydov, James R Halpert. Allosteric P450 mechanisms: multiple binding sites, multiple conformers or both?. Expert Opinion on Drug Metabolism & Toxicology 2008, 4 (12) , 1523-1535. https://doi.org/10.1517/17425250802500028
    64. Verawan Uchaipichat, Aleksandra Galetin, J. Brian Houston, Peter I. Mackenzie, J. Andrew Williams, John O. Miners. Kinetic Modeling of the Interactions between 4-Methylumbelliferone, 1-Naphthol, and Zidovudine Glucuronidation by UDP-Glucuronosyltransferase 2B7 (UGT2B7) Provides Evidence for Multiple Substrate Binding and Effector Sites. Molecular Pharmacology 2008, 74 (4) , 1152-1162. https://doi.org/10.1124/mol.108.048645
    65. Harshica Fernando, James R. Halpert, Dmitri R. Davydov. Kinetics of electron transfer in the complex of cytochrome P450 3A4 with the flavin domain of cytochrome P450BM-3 as evidence of functional heterogeneity of the heme protein. Archives of Biochemistry and Biophysics 2008, 471 (1) , 20-31. https://doi.org/10.1016/j.abb.2007.11.020
    66. Dmitri R. Davydov, Nadezhda Y. Davydova, Tamara N. Tsalkova, James R. Halpert. Effect of glutathione on homo- and heterotropic cooperativity in cytochrome P450 3A4. Archives of Biochemistry and Biophysics 2008, 471 (2) , 134-145. https://doi.org/10.1016/j.abb.2008.01.001
    67. Dan Li, Xian-Le Yang, Shu-Jun Zhang, Mao Lin, Wen-Juan Yu, Kun Hu. Effects of mammalian CYP3A inducers on CYP3A-related enzyme activities in grass carp (Ctenopharyngodon idellus): Possible implications for the establishment of a fish CYP3A induction model. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 2008, 147 (1) , 17-29. https://doi.org/10.1016/j.cbpc.2007.07.003
    68. Huan Qiu, Stefan Taudien, Holger Herlyn, Juergen Schmitz, Yuan Zhou, Guopei Chen, Roberta Roberto, Mariano Rocchi, Matthias Platzer, Leszek Wojnowski. CYP3 phylogenomics: evidence for positive selection of CYP3A4 and CYP3A7. Pharmacogenetics and Genomics 2008, 18 (1) , 53-66. https://doi.org/10.1097/FPC.0b013e3282f313f8
    69. Dan Fishelovitch, Carina Hazan, Hajime Hirao, Haim J. Wolfson, Ruth Nussinov, Sason Shaik. QM/MM Study of the Active Species of the Human Cytochrome P450 3A4, and the Influence Thereof of the Multiple Substrate Binding. The Journal of Physical Chemistry B 2007, 111 (49) , 13822-13832. https://doi.org/10.1021/jp076401j
    70. Arthur G. Roberts, William M. Atkins. Energetics of heterotropic cooperativity between α-naphthoflavone and testosterone binding to CYP3A4. Archives of Biochemistry and Biophysics 2007, 463 (1) , 89-101. https://doi.org/10.1016/j.abb.2007.03.006
    71. Harshica Fernando, Dmitri R. Davydov, Christopher C. Chin, James R. Halpert. Role of subunit interactions in P450 oligomers in the loss of homotropic cooperativity in the cytochrome P450 3A4 mutant L211F/D214E/F304W. Archives of Biochemistry and Biophysics 2007, 460 (1) , 129-140. https://doi.org/10.1016/j.abb.2006.12.025
    72. Nick Plant. The human cytochrome P450 sub-family: Transcriptional regulation, inter-individual variation and interaction networks. Biochimica et Biophysica Acta (BBA) - General Subjects 2007, 1770 (3) , 478-488. https://doi.org/10.1016/j.bbagen.2006.09.024
    73. Ilia G. Denisov, Bradley J. Baas, Yelena V. Grinkova, Stephen G. Sligar. Cooperativity in Cytochrome P450 3A4. Journal of Biological Chemistry 2007, 282 (10) , 7066-7076. https://doi.org/10.1074/jbc.M609589200
    74. Dan Fishelovitch, Carina Hazan, Sason Shaik, Haim J. Wolfson, Ruth Nussinov. Structural Dynamics of the Cooperative Binding of Organic Molecules in the Human Cytochrome P450 3A4. Journal of the American Chemical Society 2007, 129 (6) , 1602-1611. https://doi.org/10.1021/ja066007j
    75. B. K. Muralidhara, Surendra S. Negi, James R. Halpert. Dissecting the Thermodynamics and Cooperativity of Ligand Binding in Cytochrome P450eryF. Journal of the American Chemical Society 2007, 129 (7) , 2015-2024. https://doi.org/10.1021/ja066303w
    76. Santosh Kumar, Hong Liu, James R. Halpert. Engineering of Cytochrome P450 3A4 for Enhanced Peroxide-Mediated Substrate Oxidation Using Directed Evolution and Site-Directed Mutagenesis. Drug Metabolism and Disposition 2006, 34 (12) , 1958-1965. https://doi.org/10.1124/dmd.106.012054
    77. Brian Carr, Ryan Norcross, Yulin Fang, Ping Lu, A. David Rodrigues, Magang Shou, Tom Rushmore, Catherine Booth-Genthe. Characterization of the Rhesus Monkey CYP3A64 Enzyme: Species Comparisons of CYP3A Substrate Specificity and Kinetics Using Baculovirus-Expressed Recombinant Enzymes. Drug Metabolism and Disposition 2006, 34 (10) , 1703-1712. https://doi.org/10.1124/dmd.106.009977
    78. Dmitri R. Davydov, Harshica Fernando, James R. Halpert. Variable path length and counter-flow continuous variation methods for the study of the formation of high-affinity complexes by absorbance spectroscopy. An application to the studies of substrate binding in cytochrome P450. Biophysical Chemistry 2006, 123 (2-3) , 95-101. https://doi.org/10.1016/j.bpc.2006.04.007
    79. James J Cali, Dongping Ma, Mary Sobol, Daniel J Simpson, Susan Frackman, Troy D Good, William J Daily, David Liu. Luminogenic cytochrome P450 assays. Expert Opinion on Drug Metabolism & Toxicology 2006, 2 (4) , 629-645. https://doi.org/10.1517/17425255.2.4.629
    80. Diansong Zhou, Lovisa Afzelius, Scott W. Grimm, Tommy B. Andersson, Randy J. Zauhar, Ismael Zamora. COMPARISON OF METHODS FOR THE PREDICTION OF THE METABOLIC SITES FOR CYP3A4-MEDIATED METABOLIC REACTIONS. Drug Metabolism and Disposition 2006, 34 (6) , 976-983. https://doi.org/10.1124/dmd.105.008631
    81. C. Emoto, K. Iwasaki. Enzymatic characteristics of CYP3A5 and CYP3A4: A comparison of in vitro kinetic and drug–drug interaction patterns. Xenobiotica 2006, 36 (2-3) , 219-233. https://doi.org/10.1080/00498250500489968
    82. Lata Kaphalia, Bhupendra S. Kaphalia, Santosh Kumar, Mary F. Kanz, Mary Treinen-Moslen. Efficient high performance liquid chromatograph/ultraviolet method for determination of diclofenac and 4′-hydroxydiclofenac in rat serum. Journal of Chromatography B 2006, 830 (2) , 231-237. https://doi.org/10.1016/j.jchromb.2005.10.045
    83. Hwangseo Park, Sangyoub Lee, Junghun Suh. Structural and Dynamical Basis of Broad Substrate Specificity, Catalytic Mechanism, and Inhibition of Cytochrome P450 3A4. Journal of the American Chemical Society 2005, 127 (39) , 13634-13642. https://doi.org/10.1021/ja053809q
    84. William M. Atkins. NON-MICHAELIS-MENTEN KINETICS IN CYTOCHROME P450-CATALYZED REACTIONS. Annual Review of Pharmacology and Toxicology 2005, 45 (1) , 291-310. https://doi.org/10.1146/annurev.pharmtox.45.120403.100004
    85. Chaohong Sun, Jeffrey R. Huth, Philip J. Hajduk. NMR in Pharmacokinetic and Pharmacodynamic Profiling. ChemBioChem 2005, 6 (9) , 1592-1600. https://doi.org/10.1002/cbic.200500028
    86. Shosaku Kashiwada, David E. Hinton, Seth W. Kullman. Functional characterization of medaka CYP3A38 and CYP3A40: Kinetics and catalysis by expression in a recombinant baculovirus system. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 2005, 141 (4) , 338-348. https://doi.org/10.1016/j.cca.2005.07.006
    87. Santosh Kumar, Dmitri R. Davydov, James R. Halpert. ROLE OF CYTOCHROME B 5 IN MODULATING PEROXIDE-SUPPORTED CYP3A4 ACTIVITY: EVIDENCE FOR A CONFORMATIONAL TRANSITION AND CYTOCHROME P450 HETEROGENEITY. Drug Metabolism and Disposition 2005, 33 (8) , 1131-1136. https://doi.org/10.1124/dmd.105.004606
    88. Monica I. Jushchyshyn, J. Matthew Hutzler, Michael L. Schrag, Larry C. Wienkers. Catalytic turnover of pyrene by CYP3A4: Evidence that cytochrome b5 directly induces positive cooperativity. Archives of Biochemistry and Biophysics 2005, 438 (1) , 21-28. https://doi.org/10.1016/j.abb.2005.02.027
    89. Ram P. Gupta, You Ai He, Kennerly S. Patrick, James R. Halpert, Norman H. Bell. CYP3A4 Is a Vitamin D-24- and 25-Hydroxylase: Analysis of Structure Function by Site-Directed Mutagenesis. The Journal of Clinical Endocrinology & Metabolism 2005, 90 (2) , 1210-1219. https://doi.org/10.1210/jc.2004-0966
    90. J. Brian Houston, Aleksandra Galetin. Modelling atypical CYP3A4 kinetics: principles and pragmatism. Archives of Biochemistry and Biophysics 2005, 433 (2) , 351-360. https://doi.org/10.1016/j.abb.2004.09.010
    91. Gilly Regev-Shoshani, Oded Shoseyov, Zohar Kerem. Influence of lipophilicity on the interactions of hydroxy stilbenes with cytochrome P450 3A4. Biochemical and Biophysical Research Communications 2004, 323 (2) , 668-673. https://doi.org/10.1016/j.bbrc.2004.08.141
    92. Jason K. Yano, Michael R. Wester, Guillaume A. Schoch, Keith J. Griffin, C. David Stout, Eric F. Johnson. The Structure of Human Microsomal Cytochrome P450 3A4 Determined by X-ray Crystallography to 2.05-Å Resolution. Journal of Biological Chemistry 2004, 279 (37) , 38091-38094. https://doi.org/10.1074/jbc.C400293200
    93. Seth W. Kullman, Shosaku Kashiwada, David E. Hinton. Analysis of medaka cytochrome P450 3A homotropic and heterotropic cooperativity. Marine Environmental Research 2004, 58 (2-5) , 469-473. https://doi.org/10.1016/j.marenvres.2004.03.030
    94. Pamela A. Williams, Jose Cosme, Dijana Matak Vinković, Alison Ward, Hayley C. Angove, Philip J. Day, Clemens Vonrhein, Ian J. Tickle, Harren Jhoti. Crystal Structures of Human Cytochrome P450 3A4 Bound to Metyrapone and Progesterone. Science 2004, 305 (5684) , 683-686. https://doi.org/10.1126/science.1099736
    95. William M Atkins. Implications of the allosteric kinetics of cytochrome P450s. Drug Discovery Today 2004, 9 (11) , 478-484. https://doi.org/10.1016/S1359-6446(04)03072-7
    96. Sean Ekins. Predicting undesirable drug interactions with promiscuous proteins in silico. Drug Discovery Today 2004, 9 (6) , 276-285. https://doi.org/10.1016/S1359-6446(03)03008-3
    97. Lixin Shen, John F. Fitzloff, Chyung S. Cook. DIFFERENTIAL ENANTIOSELECTIVITY AND PRODUCT-DEPENDENT ACTIVATION AND INHIBITION IN METABOLISM OF VERAPAMIL BY HUMAN CYP3AS. Drug Metabolism and Disposition 2004, 32 (2) , 186-196. https://doi.org/10.1124/dmd.32.2.186
    98. F. Peter Guengerich. Cytochrome P450: What Have We Learned and What Are the Future Issues?. Drug Metabolism Reviews 2004, 36 (2) , 159-197. https://doi.org/10.1081/DMR-120033996
    99. Yoshitaka Yamaguchi, Kishore K. Khan, You Ai He, You Qun He, James R. Halpert. TOPOLOGICAL CHANGES IN THE CYP3A4 ACTIVE SITE PROBED WITH PHENYLDIAZENE: EFFECT OF INTERACTION WITH NADPH-CYTOCHROME P450 REDUCTASE AND CYTOCHROME B 5 AND OF SITE-DIRECTED MUTAGENESIS. Drug Metabolism and Disposition 2004, 32 (1) , 155-161. https://doi.org/10.1124/dmd.32.1.155
    100. Dmitri R Davydov, James R Halpert, Jean-Paul Renaud, Gaston Hui Bon Hoa. Conformational heterogeneity of cytochrome P450 3A4 revealed by high pressure spectroscopy. Biochemical and Biophysical Research Communications 2003, 312 (1) , 121-130. https://doi.org/10.1016/j.bbrc.2003.09.247
    Load all citations

    Biochemistry

    Cite this: Biochemistry 2001, 40, 34, 10150–10160
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi010758a
    Published August 4, 2001
    Copyright © 2001 American Chemical Society

    Article Views

    905

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.